1
|
Zhao Z, Li W, Ding X, Sun J, Xu LX. TTGA U-Net: Two-stage two-stream graph attention U-Net for hepatic vessel connectivity enhancement. Comput Med Imaging Graph 2025; 122:102514. [PMID: 40020507 DOI: 10.1016/j.compmedimag.2025.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025]
Abstract
Accurate segmentation of hepatic vessels is pivotal for guiding preoperative planning in ablation surgery utilizing CT images. While non-contrast CT images often lack observable vessels, we focus on segmenting hepatic vessels within preoperative MR images. However, the vascular structures depicted in MR images are susceptible to noise, leading to challenges in connectivity. To address this issue, we propose a two-stage two-stream graph attention U-Net (i.e., TTGA U-Net) for hepatic vessel segmentation. Specifically, the first-stage network employs a CNN or Transformer-based architecture to preliminarily locate the vessel position, followed by an improved superpixel segmentation method to generate graph structures based on the positioning results. The second-stage network extracts graph node features through two parallel branches of a graph spatial attention network (GAT) and a graph channel attention network (GCT), employing self-attention mechanisms to balance these features. The graph pooling operation is utilized to aggregate node information. Moreover, we introduce a feature fusion module instead of skip connections to merge the two graph attention features, providing additional information to the decoder effectively. We establish a novel well-annotated high-quality MR image dataset for hepatic vessel segmentation and validate the vessel connectivity enhancement network's effectiveness on this dataset and the public dataset 3D IRCADB. Experimental results demonstrate that our TTGA U-Net outperforms state-of-the-art methods, notably enhancing vessel connectivity.
Collapse
Affiliation(s)
- Ziqi Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wentao Li
- Fudan University Shanghai Cancer Center, Shanghai 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Xiaoyi Ding
- Ruijin Hospital, Shanghai Jiao Tong University School Of Medicine, Shanghai 200030, China
| | - Jianqi Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
2
|
Wang F, Zou Z, Sakla N, Partyka L, Rawal N, Singh G, Zhao W, Ling H, Huang C, Prasanna P, Chen C. TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs. Med Image Anal 2025; 99:103373. [PMID: 39454312 DOI: 10.1016/j.media.2024.103373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning models, lack explicit quantification of intricate and subtle parenchymal structures, including fibroglandular tissue. To address this, we propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures, and then incorporates these structures into a deep-learning-based prediction model via an attention mechanism. Our topology-informed deep learning model, TopoTxR, leverages topology to provide enhanced insights into tissues critical for disease pathophysiology and treatment response. We empirically validate TopoTxR using the VICTRE phantom breast dataset, showing that the topological structures extracted by our model effectively approximate the breast parenchymal structures. We further demonstrate TopoTxR's efficacy in predicting response to neoadjuvant chemotherapy. Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-naïve imaging, in patients who respond favorably to therapy as achieving pathological complete response (pCR) versus those who do not. In a comparative analysis with several baselines on the publicly available I-SPY 1 dataset (N = 161, including 47 patients with pCR and 114 without) and the Rutgers proprietary dataset (N = 120, with 69 patients achieving pCR and 51 not), TopoTxR demonstrates a notable improvement, achieving a 2.6% increase in accuracy and a 4.6% enhancement in AUC compared to the state-of-the-art method.
Collapse
Affiliation(s)
- Fan Wang
- Department of Computer Science, State University of New York at Stony Brook, NY, USA.
| | - Zhilin Zou
- Department of Computer Science, State University of New York at Stony Brook, NY, USA
| | - Nicole Sakla
- Department of Radiology, Newark Beth Israel Medical Center, NJ, USA
| | - Luke Partyka
- Department of Radiology, Newark Beth Israel Medical Center, NJ, USA
| | - Nil Rawal
- Department of Radiology, Newark Beth Israel Medical Center, NJ, USA
| | - Gagandeep Singh
- Department of Radiology, Columbia University Irving Medical Center, NY, USA
| | - Wei Zhao
- Department of Radiology, State University of New York at Stony Brook, NY, USA
| | - Haibin Ling
- Department of Computer Science, State University of New York at Stony Brook, NY, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, State University of New York at Stony Brook, NY, USA.
| | - Chao Chen
- Department of Biomedical Informatics, State University of New York at Stony Brook, NY, USA.
| |
Collapse
|
3
|
Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A, Bozdag S, Chen DZ, Cowen L, Devkota K, Gitter A, Gosline SJC, Gu P, Guzzi PH, Huang H, Jiang M, Kesimoglu ZN, Koyuturk M, Ma J, Pico AR, Pržulj N, Przytycka TM, Raphael BJ, Ritz A, Sharan R, Shen Y, Singh M, Slonim DK, Tong H, Yang XH, Yoon BJ, Yu H, Milenković T. Current and future directions in network biology. BIOINFORMATICS ADVANCES 2024; 4:vbae099. [PMID: 39143982 PMCID: PMC11321866 DOI: 10.1093/bioadv/vbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Summary Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation Not applicable.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Aydin Wells
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deisy Morselli Gysi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Statistics, Federal University of Paraná, Curitiba, Paraná 81530-015, Brazil
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Wisconsin Institute for Discovery, Madison, WI 53715, United States
| | - Anaïs Baudot
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- Department of Mathematics, University of North Texas, Denton, TX 76203, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Kapil Devkota
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Morgridge Institute for Research, Madison, WI 53715, United States
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, United States
| | - Pengfei Gu
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Heng Huang
- Department of Computer Science, University of Maryland College Park, College Park, MD 20742, United States
| | - Meng Jiang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziynet Nesibe Kesimoglu
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, England
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Hanghang Tong
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Xinan Holly Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, United States
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
6
|
Du X, Chen Z, Li Q, Yang S, Jiang L, Yang Y, Li Y, Gu Z. Organoids revealed: morphological analysis of the profound next generation in-vitro model with artificial intelligence. Biodes Manuf 2023; 6:319-339. [PMID: 36713614 PMCID: PMC9867835 DOI: 10.1007/s42242-022-00226-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
In modern terminology, "organoids" refer to cells that grow in a specific three-dimensional (3D) environment in vitro, sharing similar structures with their source organs or tissues. Observing the morphology or growth characteristics of organoids through a microscope is a commonly used method of organoid analysis. However, it is difficult, time-consuming, and inaccurate to screen and analyze organoids only manually, a problem which cannot be easily solved with traditional technology. Artificial intelligence (AI) technology has proven to be effective in many biological and medical research fields, especially in the analysis of single-cell or hematoxylin/eosin stained tissue slices. When used to analyze organoids, AI should also provide more efficient, quantitative, accurate, and fast solutions. In this review, we will first briefly outline the application areas of organoids and then discuss the shortcomings of traditional organoid measurement and analysis methods. Secondly, we will summarize the development from machine learning to deep learning and the advantages of the latter, and then describe how to utilize a convolutional neural network to solve the challenges in organoid observation and analysis. Finally, we will discuss the limitations of current AI used in organoid research, as well as opportunities and future research directions. Graphic abstract
Collapse
Affiliation(s)
- Xuan Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| | - Lincao Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Yi Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Yanhui Li
- State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210008 China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| |
Collapse
|
7
|
Montaha S, Azam S, Rafid AKMRH, Hasan MZ, Karim A, Hasib KM, Patel SK, Jonkman M, Mannan ZI. MNet-10: A robust shallow convolutional neural network model performing ablation study on medical images assessing the effectiveness of applying optimal data augmentation technique. Front Med (Lausanne) 2022; 9:924979. [PMID: 36052321 PMCID: PMC9424498 DOI: 10.3389/fmed.2022.924979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Interpretation of medical images with a computer-aided diagnosis (CAD) system is arduous because of the complex structure of cancerous lesions in different imaging modalities, high degree of resemblance between inter-classes, presence of dissimilar characteristics in intra-classes, scarcity of medical data, and presence of artifacts and noises. In this study, these challenges are addressed by developing a shallow convolutional neural network (CNN) model with optimal configuration performing ablation study by altering layer structure and hyper-parameters and utilizing a suitable augmentation technique. Eight medical datasets with different modalities are investigated where the proposed model, named MNet-10, with low computational complexity is able to yield optimal performance across all datasets. The impact of photometric and geometric augmentation techniques on different datasets is also evaluated. We selected the mammogram dataset to proceed with the ablation study for being one of the most challenging imaging modalities. Before generating the model, the dataset is augmented using the two approaches. A base CNN model is constructed first and applied to both the augmented and non-augmented mammogram datasets where the highest accuracy is obtained with the photometric dataset. Therefore, the architecture and hyper-parameters of the model are determined by performing an ablation study on the base model using the mammogram photometric dataset. Afterward, the robustness of the network and the impact of different augmentation techniques are assessed by training the model with the rest of the seven datasets. We obtain a test accuracy of 97.34% on the mammogram, 98.43% on the skin cancer, 99.54% on the brain tumor magnetic resonance imaging (MRI), 97.29% on the COVID chest X-ray, 96.31% on the tympanic membrane, 99.82% on the chest computed tomography (CT) scan, and 98.75% on the breast cancer ultrasound datasets by photometric augmentation and 96.76% on the breast cancer microscopic biopsy dataset by geometric augmentation. Moreover, some elastic deformation augmentation methods are explored with the proposed model using all the datasets to evaluate their effectiveness. Finally, VGG16, InceptionV3, and ResNet50 were trained on the best-performing augmented datasets, and their performance consistency was compared with that of the MNet-10 model. The findings may aid future researchers in medical data analysis involving ablation studies and augmentation techniques.
Collapse
Affiliation(s)
- Sidratul Montaha
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Sami Azam
- College of Engineering, IT & Environment, Charles Darwin University, Darwin, NT, Australia
| | | | - Md. Zahid Hasan
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Asif Karim
- College of Engineering, IT & Environment, Charles Darwin University, Darwin, NT, Australia
| | - Khan Md. Hasib
- Department of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Shobhit K. Patel
- Department of Computer Engineering, Marwadi University, Rajkot, India
| | - Mirjam Jonkman
- College of Engineering, IT & Environment, Charles Darwin University, Darwin, NT, Australia
| | - Zubaer Ibna Mannan
- Department of Smart Computing, Kyungdong University – Global Campus, Sokcho-si, South Korea
| |
Collapse
|