1
|
Yardim M, Deniz L, Saltabas MA, Celik N. Effect of Thyroxine Replacement Therapy on Serum Maresin 1 and NF-kB Levels in Patients with Hashimoto Thyroiditis. Diagnostics (Basel) 2025; 15:1248. [PMID: 40428241 PMCID: PMC12109602 DOI: 10.3390/diagnostics15101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/24/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: This study aimed to investigate the effects of thyroxine replacement therapy (TRT) on serum Maresin 1 and nuclear factor kappa beta (NF-kB) levels in patients with Hashimoto's thyroiditis (HT). Methods: A total of 90 patients were included in this study, 60 with HT and 30 without. Patients in the HT group were divided into two groups according to whether they received TRT. Group 1 included 30 patients who underwent TRT, and Group 2 comprised 30 patients who were newly diagnosed with HT, either euthyroid or hypothyroid. The analysis included serum levels of thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), thyroid peroxidase antibody (TPOAb), Maresin 1, and NF-kB. Results: The serum NF-kB level in the TRT group was significantly higher than that in the control and non-TRT groups. In the subgroup analysis of patients who did not receive TRT, the serum NF-kB level in euthyroid patients was significantly lower than that in hypothyroid patients. Maresin 1 levels in the control group were significantly higher than those in patients who did and did not receive TRT. The serum Maresin 1 level in the TRT group was significantly lower than that in the untreated group. Maresin 1 levels were higher in the euthyroid group than in the hypothyroid group. TPOAb levels were positively correlated with NF-kB and negatively correlated with Maresin 1. Conclusions: TRT maintains the euthyroid state in patients with HT, but may not contribute positively to the pro-anti-inflammatory balance in these patients.
Collapse
Affiliation(s)
- Meltem Yardim
- Department of Medical Biochemistry, Yerkoy State Hospital, 66900 Yozgat, Türkiye
| | - Levent Deniz
- Department of Medical Biochemistry, University of Health Sciences, Istanbul Training and Research Hospital, 34098 Istanbul, Türkiye;
| | | | - Nilufer Celik
- Department of Medical Biochemistry, Dr. Behcet Uz Children’s Hospital, 35210 Izmir, Türkiye;
| |
Collapse
|
2
|
Demirci S, Sezer S. Serum Maresin-1 and Resolvin-D1 Levels as Non-Invasive Biomarkers for Monitoring Disease Activity in Ulcerative Colitis. Diagnostics (Basel) 2025; 15:834. [PMID: 40218184 PMCID: PMC11988678 DOI: 10.3390/diagnostics15070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Specialized pro-resolving lipid mediators (SPMs), such as maresins and resolvins, play a key role in resolving inflammation and repairing tissues. This study aimed to evaluate whether maresin-1 (MaR1) and resolvin-D1 (RvD1) could serve as serum non-invasive biomarkers for monitoring disease activity in ulcerative colitis (UC). Methods: This cross-sectional study included 60 UC patients (30 active, 30 remission) and 30 healthy controls. Disease activity was assessed using the Mayo Endoscopic Subscore (MES). Inflammatory indices, including the neutrophil-lymphocyte ratio (NLR), monocyte-HDL cholesterol ratio (MHR), platelet-lymphocyte ratio (PLR), CRP-lymphocyte ratio (CLR), CRP-albumin ratio (CAR), systemic inflammation response index (SIRI), and systemic immune-inflammation index (SII), were calculated. Plasma MaR1 and RvD1 levels were measured via enzyme-linked immunosorbent assay (ELISA). Receiver operating characteristic (ROC) analysis was performed to evaluate biomarker accuracy. Results: CRP, NLR, PLR, CLR, CAR, SIRI, and SII were significantly elevated in active UC, whereas MaR1 and RvD1 were lower compared to remission and controls (p < 0.05). MaR1 levels were lower in the remission group than in controls. ROC analysis demonstrated high area under the curve (AUC) values for RvD1 (0.906), CAR (0.872), CLR (0.861), and CRP (0.858) in distinguishing active UC from remission, and for CRP (0.944), CAR (0.939), CLR (0.939), RvD1 (0.928), and MaR1 (0.889) in distinguishing active UC from controls. The specificity for detecting active UC was 60% for MaR1 and 80% for RvD1. Both RvD1 and MaR1 showed a negative correlation with the MES, with RvD1 demonstrating a stronger correlation (r = -0.754, p < 0.001). Conclusions: RvD1 shows a strong negative correlation with disease severity in ulcerative colitis, while low MaR1 levels in remission may indicate subclinical inflammation. Although MaR1 and RvD1 are not disease-specific, their role in inflammation resolution suggests they may complement conventional inflammatory markers for more comprehensive UC monitoring.
Collapse
Affiliation(s)
- Selim Demirci
- Department of Gastroenterology, Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, 06200 Ankara, Türkiye;
| | | |
Collapse
|
3
|
Yin Z, Zhang J, Zhao M, Peng S, Ye J, Liu J, Xu Y, Xu S, Pan W, Wei C, Qin J, Wan J, Wang M. Maresin-1 ameliorates hypertensive vascular remodeling through its receptor LGR6. MedComm (Beijing) 2024; 5:e491. [PMID: 38463394 PMCID: PMC10924638 DOI: 10.1002/mco2.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
Hypertensive vascular remodeling is defined as the changes in vascular function and structure induced by persistent hypertension. Maresin-1 (MaR1), one of metabolites from Omega-3 fatty acids, has been reported to promote inflammation resolution in several inflammatory diseases. This study aims to investigate the effect of MaR1 on hypertensive vascular remodeling. Here, we found serum MaR1 levels were reduced in hypertensive patients and was negatively correlated with systolic blood pressure (SBP). The treatment of MaR1 reduced the elevation of blood pressure and alleviated vascular remodeling in the angiotensin II (AngII)-infused mouse model. In addition, MaR1-treated vascular smooth muscle cells (VSMCs) exhibited reduced excessive proliferation, migration, and phenotype switching, as well as impaired pyroptosis. However, the knockout of the receptor of MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was seen to aggravate pathological vascular remodeling, which could not be reversed by additional MaR1 treatment. The mechanisms by which MaR1 regulates vascular remodeling through LGR6 involves the Ca2+/calmodulin-dependent protein kinase II/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Overall, supplementing MaR1 may be a novel therapeutic strategy for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Center for Healthy AgingWuhan University School of NursingWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
4
|
Sun S, Wang L, Wang J, Chen R, Pei S, Yao S, Lin Y, Yao C, Xia H. Maresin1 prevents sepsis-induced acute liver injury by suppressing NF-κB/Stat3/MAPK pathways, mitigating inflammation. Heliyon 2023; 9:e21883. [PMID: 38027581 PMCID: PMC10665730 DOI: 10.1016/j.heliyon.2023.e21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Aims The treatment of sepsis remains challenging and the liver is a non-neglectful target of sepsis-induced injury. Uncontrolled inflammatory responses exert a central role in the pathophysiological process of sepsis-induced acute liver injury (SI-ALI). Maresin1 (MaR1) is a derivative of omega-3 docosahexaenoic acid (DHA), which has been shown to have anti-inflammatory effects and is effective in a variety of sepsis-related diseases. This study aimed to determine the effect of MaR1 on cecal ligation and puncture (CLP)-caused SI-ALI and explore its possible mechanisms. Main methods Mice were subjected to CLP, and then intravenously injected via tail vein with low-dose MaR1 (0.5 ng, 200 μL) or high-dose MaR1 (1 ng, 200 μL) or sterile normal saline (NS) (200 μL) 1 h later. Then, the survival rate, body weight change, liver function, bacterial load, neutrophil infiltration, and inflammatory cytokines were detected. Results MaR1 significantly increased the 7-day survival rate and reduced the bacterial load in peritoneal lavage fluid and blood in a dose-dependent manner in mice with SI-ALI. Treatment with MaR1 could also restore the function of the liver in septic mice. Besides, MaR1 exerted anti-inflammatory effects by decreasing the expression of pro-inflammatory molecules (TNF-α, IL-6 and IL-1β), bacterial load, and neutrophil infiltration and increasing the expression of anti-inflammatory molecules (IL-10). Significance Our experimental results showed that MaR1 alleviated liver injury induced by sepsis. This work highlighted a potential clinic use of MaR1 in treating acute inflammation of SI-ALI, but also provided new insight into the underlying molecular mechanism.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jiamei Wang
- Wuhan Institute of Biological Products Co. Ltd, Wuhan, 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shuaijie Pei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| |
Collapse
|
5
|
Beyer MP, Videla LA, Farías C, Valenzuela R. Potential Clinical Applications of Pro-Resolving Lipids Mediators from Docosahexaenoic Acid. Nutrients 2023; 15:3317. [PMID: 37571256 PMCID: PMC10421104 DOI: 10.3390/nu15153317] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Docosahexaenoic acid (C22:6n-3, DHA) is the precursor of specialized pro-resolving lipid mediators (SPMs), such as resolvin, protectin, and maresin families which have been considered therapeutic bioactive compounds for human health. Growing evidence indicates that DHA and SPMs are beneficial strategies in the amelioration, regulation, and duration of inflammatory processes through different biological actions. The present review discusses the reported therapeutic benefits of SPMs on various diseases and their potential clinical applications.
Collapse
Affiliation(s)
- María Paz Beyer
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile;
| | - Camila Farías
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| |
Collapse
|
6
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|