1
|
Kramer A, Vaughan OR, Barentsen K, Urschitz J, Powell TL, Jansson T, Rosario FJ. Lentivirus-Mediated Trophoblast-Specific Deptor Knockdown Increases Transplacental System A and System L Amino Acid Transport and Fetal Growth in Mice. FUNCTION 2025; 6:zqaf018. [PMID: 40133007 PMCID: PMC11992690 DOI: 10.1093/function/zqaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 03/23/2025] [Indexed: 03/27/2025] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling is a positive regulator of human placental function including system A/L amino acid transport activity. Placental mTOR signaling is inhibited in fetal growth restriction (FGR) and activated in fetal overgrowth in women; however, the causes of these changes in placental mTOR signaling are unknown. DEP (Dishevelled, Egl-10, Pleckstrin) domain containing mTOR-interacting protein (DEPTOR) is an endogenous inhibitor of mTOR. We tested the hypothesis that trophoblast-specific Deptor knockdown activates placental mTOR signaling and amino acid transport and causes fetal overgrowth. Using lentiviral transduction of blastocyst trophectoderm with a small hairpin RNA, we achieved 47% knockdown of placental Deptor mRNA expression, without altering fetal Deptor mRNA expression. Trophoblast-specific Deptor knockdown activated placental mTORC1 and mTORC2 signaling and increased trophoblast plasma membrane (TPM) LAT1 and SNAT2 protein abundance, and TPM system L and A transporter activity. In addition, Deptor knockdown increased in vivo transplacental system A and L amino acid transport and stimulated placental and fetal growth. In human FGR, placental DEPTOR protein expression was higher and negatively correlated with birth weight and microvillus plasma membrane system A activity. In conclusion, we provide mechanistic evidence that DEPTOR regulates placental mTOR signaling and amino acid transport and fetal growth in vivo. We speculate that modulation of placental DEPTOR is a promising target for intervention in pregnancies characterized by abnormal placental function and fetal growth.
Collapse
Affiliation(s)
- Avery Kramer
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Owen R Vaughan
- EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK
| | - Kenneth Barentsen
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Broberg E, English J, Clarke DM, Shin MJ, Bikman BT, Reynolds PR, Arroyo JA. Differential Regulation of PKM2, AMPK, and mTOR in Response to Insulin and Dietary Management. Cells 2025; 14:416. [PMID: 40136665 PMCID: PMC11940920 DOI: 10.3390/cells14060416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/27/2025] Open
Abstract
Gestational diabetes mellitus (GDM) affects placental metabolism, influencing both maternal and fetal outcomes. This study investigated the expression of metabolic regulators-Pyruvate Kinase M2 (PKM2), AMP-activated protein kinase (AMPK), and mTOR pathway components-in placental tissues from GDM pregnancies managed with either insulin (GDM-I) or dietary interventions (GDM-D). We hypothesize that metabolic adaptation in GDM is differentially regulated by treatment modality. This study analyzed 30 cases, including 10 control pregnancies,10 GDM-D cases, and 10 GDM-I cases. Analytical methods included immunofluorescence and immunoblotting. We observed an upregulation of PKM2 in both GDM-I and GDM-D placentas, suggesting enhanced glycolytic adaptation under GDM-induced metabolic stress. AMPK expression was significantly elevated in GDM-I and moderately increased in GDM-D placentas, potentially compensating for insulin resistance by promoting glucose uptake and energy homeostasis. Furthermore, mTOR pathway activation differed by treatment type, suggesting a treatment-specific mTOR response. The metabolic changes observed suggest that treatment modality in GDM may have direct implications for maternal and fetal health. Our findings indicate that while insulin and dietary management support metabolic adaptation in GDM, they do so through distinct mechanisms. These findings support a personalized approach in GDM treatment, where patient-specific metabolic responses should guide therapeutic decisions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA (J.E.); (M.J.S.)
| |
Collapse
|
3
|
Zhang B, Leung PC, Cho WCS, Wong CK, Wang D. Targeting PI3K signaling in Lung Cancer: advances, challenges and therapeutic opportunities. J Transl Med 2025; 23:184. [PMID: 39953539 PMCID: PMC11829425 DOI: 10.1186/s12967-025-06144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, necessitating the continual exploration of novel therapeutic targets. The phosphoinositide 3-kinase (PI3K) signaling pathway plays a pivotal role in oncogenic processes, including cell growth, survival, metabolism and immune modulation. This comprehensive review delineates the distinct roles of PI3K subtypes-PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ-in lung cancer pathogenesis and progression. We evaluate the current landscape of PI3K inhibitors, transitioning from non-selective early-generation compounds to isoform-specific agents, highlighting their clinical efficacy, resistance mechanisms and potential combination strategies. Furthermore, the intricate interplay between PI3K signaling and the tumor immune microenvironment is explored, elucidating how PI3K modulation can enhance immunotherapeutic responses. Metabolic reprogramming driven by PI3K signaling is also dissected, revealing vulnerabilities that can be therapeutically exploited. Despite promising advancements, challenges such as therapeutic resistance and adverse effects underscore the need for personalized medicine approaches and the development of next-generation inhibitors. This review underscores the multifaceted role of PI3K in lung cancer and advocates for integrated strategies to harness its full therapeutic potential, paving the way for improved patient outcomes.
Collapse
Affiliation(s)
- Bitian Zhang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Dongjie Wang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
4
|
Benítez-Marín MJ, Blasco-Alonso M, de Rodríguez de Fonseca F, Jiménez JS, Rivera P, González-Mesa E. Evaluating neuronal damage biomarkers at birth for predicting neurodevelopmental risks in foetal growth restriction. Acta Paediatr 2025; 114:272-284. [PMID: 39601356 DOI: 10.1111/apa.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
AIM This study was based on the need to predict neurodevelopmental outcomes of children with foetal growth restriction. The aim was to systematically review the correlation between biomarkers of neural injury in children with foetal growth restriction and their neurodevelopment. METHOD Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the review included studies on growth-restricted foetuses that measured biomarkers of postpartum brain injury and assessed neurodevelopment in childhood. Studies published between 1 January 2014 and 31 March 2024 were identified through PubMed and Embase, with the study protocol registered in PROSPERO (CRD42024520254). RESULTS Only five met the inclusion criteria. Results showed that urinary S100B levels were significantly elevated in foetal growth restriction, negatively correlating with neurological development at 7 days of life. Neuron-specific enolase negatively correlated with cognitive, motor and socio-emotional development. Urinary nerve growth factor levels were significantly lower in neonates with foetal growth restriction, correlating with poor neurodevelopment. No alterations in BDNF levels were observed. Tau protein levels were lower in children with foetal growth restriction and adverse outcomes. CONCLUSION The study emphasised the need for further research on biomarkers and predictive models of neurodevelopment in children with foetal growth restriction.
Collapse
Affiliation(s)
- Mª José Benítez-Marín
- Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, Málaga, Spain
- Obstetrics and Gynecology Service, Virgen de la Victoria University Hospital, Málaga, Spain
| | - Marta Blasco-Alonso
- Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, Málaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Málaga University, Málaga, Spain
| | - Fernando de Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- Servicio Neurologia, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jesús S Jiménez
- Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, Málaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Málaga University, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Ernesto González-Mesa
- Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, Málaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Málaga University, Málaga, Spain
| |
Collapse
|
5
|
Singh A, Perez ML, Kirsanov O, Padilla-Banks E, Guardia CM. Autophagy in reproduction and pregnancy-associated diseases. iScience 2024; 27:111268. [PMID: 39628569 PMCID: PMC11613427 DOI: 10.1016/j.isci.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As advantageous as sexual reproduction is during progeny generation, it is also an expensive and treacherous reproductive strategy. The viviparous eukaryote has evolved to survive stress before, during, and after pregnancy. An important and conserved intracellular pathway for the control of metabolic stress is autophagy. The autophagy process occurs in multiple stages through the coordinated action of autophagy-related genes. This review summarizes the evidence that autophagy is an integral component of reproduction. Additionally, we discuss emerging in vitro techniques that will enable cellular and molecular studies of autophagy and its associated pathways in reproduction. Finally, we discuss the role of autophagy in the pathogenesis and progression of several pregnancy-related disorders such as preterm birth, preeclampsia, and intra-uterine growth restriction, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Asmita Singh
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Maira L. Perez
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Oleksandr Kirsanov
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Elizabeth Padilla-Banks
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Carlos M. Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
6
|
Cui L, Li Z, Liu X, Li Z, Li J, Guo Y, Zhou H, Yang X, Zhang Z, Gao Y, Ren L, Hua L. Association between serum branched chain amino acids, mammalian target of rapamycin levels and the risk of gestational diabetes mellitus: a 1:1 matched case control study. BMC Pregnancy Childbirth 2024; 24:633. [PMID: 39358711 PMCID: PMC11446021 DOI: 10.1186/s12884-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND To investigate the association between serum branched chain amino acids (BCAAs), mammalian target of rapamycin (mTOR) levels and the risk of gestational diabetes mellitus (GDM) in pregnant women. METHODS 1:1 matched case-control study was conducted including 66 GDM patients and 66 matched healthy pregnant women (± 3 years) in 2019, in China. Fasting bloods of pregnant women were collected in pregnancy at 24 ~ 28 weeks gestation. And the serum levels of valine (Val), leucine (Leu), isoleucine (Ile) and mTOR were determined. Conditional logistic regressions models were used to estimate the associations of BCAAs and mTOR concentrations with the risk of GDM. RESULTS Concentrations of serum Val and mTOR in cases were significantly higher than that in controls (P < 0.05). After adjusted for the confounded factors, both the second tertile and the third tertile of mTOR increased the risk of GDM (OR = 11.771, 95%CI: 3.949-35.083; OR = 4.869 95%CI: 1.742-13.611, respectively) compared to the first tertile of mTOR. However, the second tertile of serum Val (OR = 0.377, 95%CI:0.149-0.954) and the second tertile of serum Leu (OR = 0.322, 95%CI: 0.129-0.811) decreased the risk of GDM compared to the first tertile of serum Val and Leu, respectively. The restricted cubic spline indicated a significant nonlinear association between the serum levels of mTOR and the risk of GDM (P values for non-linearity = 0.0058). CONCLUSION We confirmed the association of higher mTOR with the increased risk of GDM in pregnant women. Pregnant women who were in the certain range level of Val and Leu were at lower risk of GDM. Our findings provided epidemiological evidence for the relation of serum BCAAs and mTOR with risk of GDM.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiqian Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinxin Liu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhonglei Li
- Department of Nutrition, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China
| | - Jiaxin Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingying Guo
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Huijun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoli Yang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhengya Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuting Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lina Ren
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linlin Hua
- Department of Advanced Medical Research, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
7
|
Zhu Y, Huang S, Chai D, Liang L. G protein-coupled receptor 1 participating in the mechanism of mediating gestational diabetes mellitus by phosphorylating the AKT pathway. Open Life Sci 2024; 19:20220920. [PMID: 39220593 PMCID: PMC11365467 DOI: 10.1515/biol-2022-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disease that occurs during pregnancy. Herein, we investigate G protein-coupled receptor 1 (GPR1) in mediating GDM through the phosphorylation of serine/threonine kinase (AKT) pathway. Thirty pregnant SD rats were grouped into: normal pregnancy control group (NC), GDM model group, and GDM model + high-dose GPR1 antagonist treatment (GDM + Ari) group. GDM model was established, and the GDM + Ari group adopted GPR1 antagonist aripiprazole. The blood glucose level, insulin level, and insulin resistance (IR) were detected. The expression and phosphorylation of GPR1, AKT, and extracellular signal-regulated kinase (ERK) in placental tissue were detected using reverse transcription-polymerase chain reaction (RT-PCR) and western blotting (WB). The serum insulin concentration, glucose concentration, and glycated hemoglobin concentration during pregnancy in GDM group SD rats were significantly higher than those in the NC group (P < 0.05). The expression and phosphorylation levels of GPR1, AKT, and ERK in the placental tissue of SD pregnant rats in the GDM group were significantly lower than those in the NC group. Furthermore, compared with the GDM group, the expression of GPR1, AKT, and ERK in placental tissue was significantly reduced in the GDM + Ari group, while simultaneously enhancing the blood glucose level and IR level. In addition, the survival number, body weight, and malformation rate of the offspring of the GDM + Ari group were significantly improved, and there was no significant effect on the number of offspring. The expressions of GPR1, AKT, and ERK in placental tissue exhibited a significant decrease, while the glucose level and IR were observed to increase in the GDM + Ari group. Enhancing the expression of GPR1 may activate AKT phosphorylation to alleviate GDM. GPR1 could potentially serve as a novel target for diabetes treatment, offering new insights into managing GDM.
Collapse
Affiliation(s)
- Yanbin Zhu
- Department of Obstetrics and Gynecology, Shenzhen Futian District Maternity & Child Healthcare Hospital, Shenzhen, 518017, Guangdong, China
| | - Shufeng Huang
- Department of Gynecology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Dan Chai
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Lei Liang
- Department of Gynecology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| |
Collapse
|
8
|
Hu C, Yang Q, Huang X, Wang F, Zhou H, Su X. Three-Dimensional Mechanical Microenvironment Rescued the Decline of Osteogenic Differentiation of Old Human Jaw Bone Marrow Mesenchymal Stem Cells. ACS Biomater Sci Eng 2024; 10:4496-4509. [PMID: 38860704 DOI: 10.1021/acsbiomaterials.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Resorption and atrophy of the alveolar bone, as two consequences of osteoporosis that remarkably complicate the orthodontic and prosthodontic treatments, contribute to the differentiated biological features and force-induced response of jaw bone marrow-derived mesenchymal stem cells (JBMSCs) in elderly patients. We isolated and cultured JBMSCs from adolescent and adult patients and then simulated the loading of orthodontic tension stress by constructing an in vitro three-dimensional (3D) stress loading model. The decline in osteogenic differentiation of aged JBMSCs was reversed by tensile stress stimulation. It is interesting to note that tension stimulation had a stronger effect on the osteogenic differentiation of elderly JBMSCs compared to the young ones, indicating a possible mechanism of aging rescue. High-throughput sequencing of microRNA (miRNAs) was subsequently performed before and after tension stimulation in all JBMSCs, followed by the comprehensive comparison of mechanically responsive miRNAs in the 3D strain microenvironment. The results suggested a significant reduction in the expression of miR-210-3p and miR-214-3p triggered by the 3D strain microenvironment in old-JBMSCs. Bioinformatic analysis indicated that both miRNAs participate in the regulation of critical pathways of aging and cellular senescence. Taken together, this study demonstrated that the 3D strain microenvironment efficiently rescued the cellular senescence of old-JBMSCs via modulating specific miRNAs, which provides a novel strategy for coordinating periodontal bone loss and regeneration of the elderly.
Collapse
Affiliation(s)
- Cheng Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Hospital of Stomatology & Guangdong Provincial Key Laboratory of Stomatology & Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiyuan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojun Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
9
|
Shi L, Kang K, Wang Z, Wang J, Xiao J, Peng Q, Hu R, Zhou J, Zhang X, Yue Z, Zou H, Xue B, Wang L. Glucose Regulates Glucose Transport and Metabolism via mTOR Signaling Pathway in Bovine Placental Trophoblast Cells. Animals (Basel) 2023; 14:40. [PMID: 38200771 PMCID: PMC10778405 DOI: 10.3390/ani14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
It has been confirmed that improving the energy level of the diet contributed to the greater reproductive performance and birth weight of calves in periparturient dairy cows. To investigate the effect of glucose on nutrient transport during fetal development, the bovine placental trophoblast cells (BPTCs) were cultured in media with different glucose concentrations (1, 2, 4, 8, or 16 mg/mL). Subsequently, the BPTCs were cultured in media with 1, 8 mg/mL glucose and 8 mg/mL glucose plus 100 nmol/L rapamycin (the inhibitor of mTOR pathway). Compared with the 1 mg/mL glucose, the addition of 8 mg/mL glucose stimulated cell proliferation, upregulated the mRNA abundance of the glucose transporter GLUT1 and GLUT4, and increased the activity of glucose metabolism-related enzyme glucose-6-phosphate dehydrogenease (G6PD), lactate dehydrogenase (LDHA) and phosphoglycerate kinase 1 (PGK1), as well as adenosine-triphosphate (ATP) content (p < 0.05).Furthermore, compared with the treatment of 1 mg/mL glucose, adding 8 mg/mL of glucose-upregulated gene expression in the mTOR signaling pathway, including phosphatidylinositol3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase 2 (P70S6K) (p < 0.05).The supplementation of rapamycin downregulated the gene and protein expression of the mTOR signaling pathway, including mTOR, P70S6K, EIF4E-binding protein 1 (4EBP1), hypoxia-inducible factor 1-alpha (HIF-1α) and gene expression of glucose transporter upregulated by 8 mg/mL glucose (p < 0.05). Thus, these results indicated that the addition of 8 mg/mL glucose regulated the glucose transport and metabolism in BPTCs through the mTOR signaling pathway, thereby promoting the supply of nutrients to fetus.
Collapse
Affiliation(s)
| | | | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (K.K.); (J.W.); (J.X.); (Q.P.); (R.H.); (J.Z.); (X.Z.); (Z.Y.); (H.Z.); (B.X.); (L.W.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosario FJ, Urschitz J, Powell TL, Brown TL, Jansson T. Overexpression of the LAT1 in primary human trophoblast cells increases the uptake of essential amino acids and activates mTOR signaling. Clin Sci (Lond) 2023; 137:1651-1664. [PMID: 37861075 PMCID: PMC11654738 DOI: 10.1042/cs20230490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
The System L amino acid transporter, particularly the isoform Large Neutral Amino Acid Transporter Small Subunit 1 (LAT1) encoded by SLC7A5, is believed to mediate the transfer of essential amino acids in the human placenta. Placental System L amino acid transporter expression and activity is decreased in pregnancies complicated by IUGR and increased in fetal overgrowth. However, it remains unknown if changes in the expression of LAT1 are mechanistically linked to System L amino acid transport activity. Here, we combined overexpression approaches with protein analysis and functional studies in cultured primary human trophoblast (PHT) cells to test the hypothesis that SLC7A5 overexpression increases the uptake of essential amino acids and activates mTOR signaling in PHT cells. Overexpression of SLC7A5 resulted in a marked increase in protein expression of LAT1 in the PHT cells microvillous plasma membrane and System L amino acid transporter activity. Moreover, mTOR signaling was activated, and System A amino acid transporter activity increased following SLC7A5 overexpression, suggesting coordination of trophoblast amino transporter expression and activity to ensure balanced nutrient flux to the fetus. This is the first report showing that overexpression of LAT1 is sufficient to increase the uptake of essential amino acids in PHT cells, which activates mTOR, a master regulator of placental function. The decreased placental System L activity in human IUGR and the increased placental activity of this transporter system in some cases of fetal overgrowth may directly contribute to changes in fetal amino acid availability and altered fetal growth in these pregnancy complications.
Collapse
Affiliation(s)
- Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, United States
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, United States
| | - Thomas L Brown
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
11
|
Opoku R, DeCata J, Phillips CL, Schulz LC. Effect of Genetically Reduced Maternal Myostatin on Late Gestation Maternal, Fetal, and Placental Metabolomes in Mice. Metabolites 2023; 13:719. [PMID: 37367877 PMCID: PMC10302353 DOI: 10.3390/metabo13060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Myostatin (gene symbol: Mstn) is an autocrine and paracrine inhibitor of muscle growth. Pregnant mice with genetically reduced levels of myostatin give birth to offspring with greater adult muscle mass and bone biomechanical strength. However, maternal myostatin is not detectable in fetal circulations. Fetal growth is dependent on the maternal environment, and the provisioning of nutrients and growth factors by the placenta. Thus, this study examined the effect of reduced maternal myostatin on maternal and fetal serum metabolomes, as well as the placental metabolome. Fetal and maternal serum metabolomes were highly distinct, which is consistent with the role of the placenta in creating a specific fetal nutrient environment. There was no effect from myostatin on maternal glucose tolerance or fasting insulin. In comparisons between pregnant control and Mstn+/- mice, there were more significantly different metabolite concentrations in fetal serum, at 50, than in the mother's serum at 33, confirming the effect of maternal myostatin reduction on the fetal metabolic milieu. Polyamines, lysophospholipids, fatty acid oxidation, and vitamin C, in fetal serum, were all affected by maternal myostatin reduction.
Collapse
Affiliation(s)
- Ruth Opoku
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (R.O.); (J.D.)
| | - Jenna DeCata
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (R.O.); (J.D.)
| | | | - Laura C. Schulz
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
12
|
Wang JJ, Wang X, Li Q, Huang H, Zheng QL, Yao Q, Zhang J. Feto-placental endothelial dysfunction in Gestational Diabetes Mellitus under dietary or insulin therapy. BMC Endocr Disord 2023; 23:48. [PMID: 36814227 PMCID: PMC9948408 DOI: 10.1186/s12902-023-01305-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is a serious complication in pregnancy. Despite controlling the plasma glucose levels with dietary intervention (GDM-D) or insulin therapy (GDM-I), children born of diabetic mothers suffer more long-term complications from childhood to early adulthood. Placental circulation and nutrient exchange play a vital role in fetal development. Additionally, placental endothelial function is an indicator of vascular health, and plays an important role in maintaining placental circulation for nutrient exchange. This study was conducted to assess changes in fetal endothelial dysfunction in GDM under different interventions during pregnancy. METHODS The primary human umbilical vein endothelial cells (HUVECs) were obtained from normal pregnant women (n = 11), GDM-D (n = 14), and GDM-I (n = 12) patients. LC-MS/MS was used to identify differentially expressed proteins in primary HUVECs among the three groups, after which Bioinformatics analysis was performed. Glucose uptake, ATP level, apoptosis, and differentially expressed proteins were assessed to investigate changes in energy metabolism. RESULTS A total of 8174 quantifiable proteins were detected, and 142 differentially expressed proteins were identified after comparing patients with GDM-D/GDM-I and healthy controls. Of the 142, 64 proteins were upregulated while 77 were downregulated. Bioinformatics analysis revealed that the differentially expressed proteins were involved in multiple biological processes and signaling pathways related to cellular processes, biological regulation, and metabolic processes. According to the results from KEGG analysis, there were changes in the PI3K/AKT signaling pathway after comparing the three groups. In addition, there was a decrease in glucose uptake in the GDM-I (P < 0.01) group. In GDM-I, there was a significant decrease in the levels of glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3). Moreover, glucose uptake was significantly decreased in GDM-I, although in GDM-D, there was only a decrease in the levels of GLUT1. ATP levels decreased in GDM-I (P < 0.05) and apoptosis occurred in both the GDM-D and GDM-I groups. Compared to the normal controls, the levels of phosphate AKT and phosphate AMPK over total AKT and AMPK were reduced in the GDM-I group. CONCLUSION In summary, endothelial dysfunction occurred in pregnancies with GDM even though the plasma glucose levels were controlled, and this dysfunction might be related to the degree of glucose tolerance. The energy dysfunction might be related to the regulation of the AKT/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Xi Wang
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Qian Li
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Hua Huang
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Qiao-Ling Zheng
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Qin Yao
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Jun Zhang
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China.
| |
Collapse
|
13
|
Wang S, Ning J, Huai J, Yang H. Hyperglycemia in Pregnancy-Associated Oxidative Stress Augments Altered Placental Glucose Transporter 1 Trafficking via AMPKα/p38MAPK Signaling Cascade. Int J Mol Sci 2022; 23:ijms23158572. [PMID: 35955706 PMCID: PMC9369398 DOI: 10.3390/ijms23158572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
GLUT1, being a ubiquitous transporter isoform, is considered primarily responsible for glucose uptake during glycolysis. However, there is still uncertainty about the regulatory mechanisms of GLUT1 in hyperglycemia in pregnancy (HIP, PGDM, and GDM) accompanied by abnormal oxidative stress responses. In the present study, it was observed that the glycolysis was enhanced in GDM and PGDM pregnancies. In line with this, the antioxidant system was disturbed and GLUT1 expression was increased due to diabetes impairment in both placental tissues and in vitro BeWo cells. GLUT1 responded to high glucose stimulation through p38MAPK in an AMPKα-dependent manner. Both the medical-mediated and genetic depletion of p38MAPK in BeWo cells could suppress GLUT1 expression and OS-induced proapoptotic effects. Furthermore, blocking AMPKα with an inhibitor or siRNA strategy promoted p38MAPK, GLUT1, and proapoptotic molecules expression and vice versa. In general, a new GLUT1 regulation pathway was identified, which could exert effects on placental transport function through the AMPKα-p38MAPK pathway. AMPKα may be a therapeutic target in HIP for alleviating diabetes insults.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China; (S.W.); (J.N.); (J.H.)
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
| | - Jie Ning
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China; (S.W.); (J.N.); (J.H.)
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
| | - Jing Huai
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China; (S.W.); (J.N.); (J.H.)
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China; (S.W.); (J.N.); (J.H.)
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
- Correspondence:
| |
Collapse
|
14
|
Probiotics-Derived Extracellular Vesicles Protect Oxidative Stress against H2O2 Induction in Placental Cells. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: The microbial phase in the vaginal environment has been found to regulate the physiological activity of host cells. Studies have demonstrated that abnormal microbial growth in the vagina and a significant reduction in the proportion of lactic acid bacteria promote the occurrence of spontaneous preterm birth (sPTB). However, the contributing mechanism remains unknown. (2) Methods: This study uses extracellular vesicles (EVs) secreted by the probiotic Lactobacillus crispatus, commonly found in the vagina, to explore their potential to attenuate placental cells caused by oxidative stress induction. (3) Results: We found that L. crispatus-derived EVs improved Akt phosphorylation and attenuated both cell senescence and death in placental cells caused by oxidative stress induction. In addition, L. crispatus-derived EVs enhanced the resistance to H2O2 induction mediated by increasing mitochondrial fusion. (4) Conclusion: This is the first study to demonstrate that L. crispatus in the vagina can not only regulate the physiological functions of placental cells through the delivery of L. crispatus-EVs but also reduce cell senescence. As cell senescence is related to the occurrence of sPTB, these results indicate that maintaining the population of L. crispatus in the vaginal environment should be an adjuvant treatment strategy to avoid sPTB.
Collapse
|