1
|
Petrović A, Štancl P, Gršković P, Hančić S, Karlić R, Gašparov S, Korać P. Gene Expression Aberrations in Alcohol-Associated Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:10558. [PMID: 39408891 PMCID: PMC11476681 DOI: 10.3390/ijms251910558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, ranking as the sixth most common cancer worldwide and the fourth leading cause of cancer-related deaths. Most HCC cases originate from cirrhotic livers, typically due to chronic liver diseases, such as hepatitis B (HBV) and hepatitis C (HCV) infections, and alcoholism. HCC cells often harbor numerous somatic mutations that are implicated in HCC development, but epigenetic factors, such as miRNA interference, can also affect HCC initiation and progress. miRNA-221 has been explored as a factor affecting HCC development in HCC of viral etiology, but little is known about its effects on gene expression in alcohol-associated HCC. This study aimed to explore potentially similar gene expression aberrations underlying viral and alcohol-induced HCC. We analyzed available transcriptome data from non-tumor hepatocytes and viral-induced HCC tissues. The most notable differences in gene expression associated with miRNA-221 between non-tumor hepatocytes and viral-induced HCC involved NTF-3 and MYBL1 genes. To assess these data in alcohol-induced HCC, we examined 111 tissue samples: tumor tissue and cirrhotic tissue samples from 37 HCC patients and 37 samples from non-tumor liver tissue using RT-Q PCR. We found no significant difference in NTF-3 expression, but MYBL1 expression was significantly lower in HCC tissue compared to non-tumor hepatocytes and cirrhotic tissue. Our findings highlight the importance of the MYBL1 gene in HCC development and emphasize the need for diverse approaches in evaluating tumor mechanisms.
Collapse
Affiliation(s)
- Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia; (S.H.); (S.G.)
| | - Paula Štancl
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
| | - Suzana Hančić
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia; (S.H.); (S.G.)
| | - Rosa Karlić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
| | - Slavko Gašparov
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia; (S.H.); (S.G.)
- Department of Pathology, Medical School Zagreb, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
| |
Collapse
|
2
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Hsu CY, Jasim SA, Pallathadka H, Kumar A, Konnova K, Qasim MT, Alubiady MHS, Pramanik A, Al-Ani AM, Abosaoda MK. A comprehensive insight into the contribution of epigenetics in male infertility; focusing on immunological modifications. J Reprod Immunol 2024; 164:104274. [PMID: 38865894 DOI: 10.1016/j.jri.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Karina Konnova
- Assistant of the Department of Propaedeutics of Dental Diseases. Sechenov First Moscow State Medical University, Russia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Munther Kadhim Abosaoda
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhu S, Zhao Q, Fan Y, Tang C. Development of a prognostic model to predict BLCA based on anoikis-related gene signature: preliminary findings. BMC Urol 2023; 23:199. [PMID: 38049825 PMCID: PMC10694890 DOI: 10.1186/s12894-023-01382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The prevalence of bladder urothelial carcinoma (BLCA) is significant on a global scale. Anoikis is a type of procedural cell death that has an important role in tumor invasion and metastasis. The advent of single-cell RNA sequencing (scRNA-seq) approaches has revolutionized the genomics field by providing unprecedented opportunities for elucidating cellular heterogeneity. Understanding the mechanisms associated with anoikis in BLCA is essential to improve its survival rate. METHODS Data on BLCA and clinical information were acquired from the databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). ARGs were obtained from Genecards and Harmonizome databases. According to univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized to select the ARGs associated with the overall rate (OS). A multivariate Cox regression analysis was carried out to identify eight prognostic ARGs, leading to the establishment of a risk model. The OS rate of BLCA patients was evaluated using Kaplan-Meier survival analysis. To explore the molecular mechanism in low- and high-risk groups, we employed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSVA). Immune infiltration landscape estimation was performed using ESTIMATE, CIBERSOT, and single sample gene set enrichment analysis (ssGSEA) algorithms. Patients were categorized into different subgroups through consensus clustering analysis. We employed biological functional enrichment analysis and conducted immune infiltration analysis to examine the disparities in potential biological functions, infiltration of immune cells, immune activities, and responses to immunotherapy. RESULTS We identified 647 ARGs and 37 survival-related genes. We further developed a risk scoring model to quantitatively assess the predictive capacity of ARGs. The high-risk score group exhibited an unfavorable prognosis, whereas the low-risk score group demonstrated a converse effect. We also found that the two groups of patients might respond differently to immune targets and anti-tumor drugs. CONCLUSION The nomogram with 8 ARGs may help guide treatment of BLCA. The systematic assessment of risk scores can help to design more individualized and precise treatment strategies for BLCA patients.
Collapse
Affiliation(s)
- Shusheng Zhu
- Department of Urology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Qingsong Zhao
- Department of Urology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Yanpeng Fan
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Tang
- Department of Urology, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
6
|
Wu Y, Hao Y, Zhuang Q, Ma X, Shi C. AKR1B10 regulates M2 macrophage polarization to promote the malignant phenotype of gastric cancer. Biosci Rep 2023; 43:BSR20222007. [PMID: 37039038 PMCID: PMC10545534 DOI: 10.1042/bsr20222007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Immunotherapy has brought new hope to gastric cancer (GC) patients. Exploring the immune infiltration pattern in GC and the key molecules is critical for optimizing the efficacy of immunotherapy. Aldo-keto reductase family 1 member B10 (AKR1B10) is an inflammatory regulator and is closely related to the prognosis of patients with GC. However, the function of AKR1B10 in GC remains unclear. METHODS In the present study, the CIBERSORT algorithm was used to analyze the immune infiltration pattern in 373 samples in the Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were seared by combing the TCGA database and the Gene Expression Omnibus (GEO) database, and the key molecule AKR1B10 was identified by weighted gene coexpression network analysis (WGCNA). The biological functions of AKR1B10 in stomach adenocarcinoma (STAD) were investigated in vitro. RESULTS Macrophage polarization was the main immune infiltration pattern in GC, and the state of macrophage polarization was closely related to the pathological grading of GC and the clinical stage of patients. AKR1B10, MUC5AC, TFF2, GKN1, and PGC were significantly down-regulated in GC tissues. Low AKR1B10 expression induced M2 macrophage polarization and promoted the malignant phenotype of GC. CONCLUSION M2 macrophage polarization is the main immune infiltration pattern in GC. Low AKR1B10 expression induces M2 macrophage polarization and promotes the malignant transformation of GC.
Collapse
Affiliation(s)
- Yi Wu
- Department of Medical Oncology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750001, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Yanjie Hao
- Laser Department, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Qing'xin Zhuang
- Department of Medical Oncology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Xiaoli Ma
- Department of Medical Oncology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Chao Shi
- Central lLaboratory, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750001, China
| |
Collapse
|
7
|
Wang H, Zhong C, Qi L, Fang X, Yuan Y. Expression and prognostic impact of NTF3 and TrkC in hepatocellular carcinoma. Scand J Gastroenterol 2023; 58:1309-1316. [PMID: 37272057 DOI: 10.1080/00365521.2023.2217976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Treatment of patients with NTRK fusion-positive cancers using first-generation tropomyosin-related kinase (Trk) inhibitors is associated with high response rates, regardless of tumor histology. However, there have been few studies on neurotrophin-3 (NTF3) and TrkC ligands in hepatocellular carcinoma (HCC). METHODS We used immunohistochemistry to evaluate NTF3 and TrkC expression levels in tissue samples. Gene expression profiling interactive analysis was used to determine TrkC and NTF3 expression in HCC. Western blotting, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assays were utilized to analyze TrkC and NTF3 levels in HCC cell lines. Proliferation tests and cell migration were also explored. RESULTS NTF3 and TrkC levels were lower in HCC tissue (median H- scores 149.09 and 54.60, respectively) than those in para-cancerous tissue (192.69 and 71.70, respectively); no statistical difference was found in the survival rate. Positive correlations were observed between NTF3 and TrkC levels in both HCC and para-cancerous tissues. Alpha-fetoprotein was the only clinical characteristic associated with TrkC levels. The transcription of NTF3 was lower in HCC samples compared to normal samples. NTF3 overexpression inhibited the proliferation of MHCC97-L and HepG2 cells but did not significantly affect cell migration. CONCLUSIONS The transcription of NTF3 was lower in HCC samples compared to normal samples, indicating a potential association with disease-free survival and overall survival in HCC. NTF3 and TrkC expression levels were lower in HCC tissues than those in para-cancerous tissues. Our results indicate that NTF3 may be a prognostic factor for HCC.
Collapse
Affiliation(s)
- Hejing Wang
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenhan Zhong
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lina Qi
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuefeng Fang
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Increased Expression of NXPH4 Correlates with Immune Cell Infiltration and Unfavorable Prognosis in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5005747. [PMID: 36245978 PMCID: PMC9560829 DOI: 10.1155/2022/5005747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading malignant carcinomas. Despite the advancement in the treatment for HCC, such as precise hepatectomy, radiotherapy, transarterial therapies, chemotherapy, targeted treatments, and immunotherapy, the 5-year overall survival rate of HCC is extremely low. Hence, novel biomarkers are urgently needed for advancing the therapy and prognosis of HCC. Neurexophilin 4 (NXPH4) is a neuropeptide-like glycoprotein. The study is designed to investigate the function of NXPH4 in HCC through a comprehensive bioinformatics analysis. NXPH4 expression status and prognostic values were analyzed via multiple datasets, such as TCGA, GEO, and ICGC. The association between NXPH4 and immune cell infiltration was estimated by TIMER, TISIDB, and CIBERSORT. In vitro, we explored the biological function of NXPH4 in JHH7 and SNU182 cells through knocking down the expression of NXPH4 via siRNA. In general, NXPH4 was predominantly upregulated in HCC tumors, and increased NXPH4 expression predicted unfavorable prognosis. The gene enrichment analysis displayed that NXPH4 was related with metabolic pathways. NXPH4 expression was correlated with immune cell infiltration. NXPH4 knockdown significantly suppressed proliferation, migration, and invasion of JHH7 and SNU182 cells. This study suggested that the upregulation of NXPH4 is associated with adverse prognosis and immune cell infiltration in HCC. NXPH4 could be a novel biomarker of unfavorable prognosis and an underlying target for immunotherapy in HCC.
Collapse
|
11
|
Deng H, Zhang J, Zheng Y, Li J, Xiao Q, Wei F, Han W, Xu X, Zhang Y. CCDC25 may be a potential diagnostic and prognostic marker of hepatocellular carcinoma: Results from microarray analysis. Front Surg 2022; 9:878648. [PMID: 36211267 PMCID: PMC9537757 DOI: 10.3389/fsurg.2022.878648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a tumor with a high recurrence rate, poor prognosis, and rapid progression. Therefore, it is necessary to find a novel biomarker for HCC. Coiled-coil domain containing 25 (CCDC25) has been identified as a target molecule that mediates liver metastasis in colon cancer. However, the molecular mechanisms of CCDC25 in HCC are unknown. This study aimed to explore the role of CCDC25 in HCC.MethodsThe expression of CCDC25 in HCC was identified through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic curve (ROC) curves were drawn to evaluate the diagnostic value of CCDC25 for HCC. The effect of CCDC25 on the prognosis of HCC was analyzed by using the Kaplan–Meier plotter. Co-expressed genes and Gene Set Enrichment Analysis (GSEA) were used to explore the related functions and regulatory signaling pathways of CCDC25. Moreover, we employed the Tumor Immune Estimation Resource (TIMER) database and CIBERSORT algorithm to investigate the relationship between CCDC25 and the tumor immune microenvironment (TME) in HCC. Meanwhile, the effect of CCDC25 on the sensitivity of HCC patients to chemotherapy drugs was evaluated. Finally, we explored the prognostic methylation sites of CCDC25 using the MethSurv database.ResultsCCDC25 expression was low in HCC. Low CCDC25 expression was significantly associated with poor overall survival of HCC and may be comparable to the ability of AFP to diagnose HCC. Dysregulation of glucose metabolism, fatty acid metabolism, amino acid metabolism, ubiquitination modification, and apoptosis inhibition caused by CCDC25 downregulation may be the causes and results of HCC. In addition, CCDC25 was positively correlated with the infiltration level of various adaptive antitumor immune cells. The levels of immune cell infiltration and immune checkpoint expression were lower in the samples with high CCDC25 expression. What is more, we found that downregulated CCDC25 may increase the sensitivity or resistance of HCC patients to multiple drugs, including sorafenib. We also identified a methylation site for CCDC25, which may be responsible for poor prognosis and low CCDC25 expression in HCC patients. Finally, CCDC25 may be associated with HCC ferroptosis.ConclusionsCCDC25 may be a potential diagnostic and prognostic marker for HCC and is associated with immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Hongyang Deng
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yijun Zheng
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Jipin Li
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Qi Xiao
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Fengxian Wei
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Wei Han
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaodong Xu
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Youcheng Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
- Correspondence: Youcheng Zhang
| |
Collapse
|
12
|
Garcia-Etxebarria K, Etxart A, Barrero M, Nafria B, Segues Merino NM, Romero-Garmendia I, Franke A, D’Amato M, Bujanda L. Performance of the Use of Genetic Information to Assess the Risk of Colorectal Cancer in the Basque Population. Cancers (Basel) 2022; 14:4193. [PMID: 36077729 PMCID: PMC9454881 DOI: 10.3390/cancers14174193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/14/2023] Open
Abstract
Although the genetic contribution to colorectal cancer (CRC) has been studied in various populations, studies on the applicability of available genetic information in the Basque population are scarce. In total, 835 CRC cases and 940 controls from the Basque population were genotyped and genome-wide association studies were carried out. Mendelian Randomization analyses were used to discover the effect of modifiable risk factors and microbiota on CRC. In total, 25 polygenic risk score models were evaluated to assess their performance in CRC risk calculation. Moreover, 492 inflammatory bowel disease cases were used to assess whether that genetic information would not confuse both conditions. Five suggestive (p < 5 × 10−6) loci were associated with CRC risk, where genes previously associated with CRC were located (e.g., ABCA12, ATIC or ERBB4). Moreover, the analyses of CRC locations detected additional genes consistent with the biology of CRC. The possible contribution of cholesterol, BMI, Firmicutes and Cyanobacteria to CRC risk was detected by Mendelian Randomization. Finally, although polygenic risk score models showed variable performance, the best model performed correctly regardless of the location and did not misclassify inflammatory bowel disease cases. Our results are consistent with CRC biology and genetic risk models and could be applied to assess CRC risk in the Basque population.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Biodonostia, Gastrointestinal Genetics Group, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Ane Etxart
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Maialen Barrero
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Beatriz Nafria
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Nerea Miren Segues Merino
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), 48940 Leioa, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE, Basque Research and Technology Alliance, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Sciences, 48009 Bilbao, Spain
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| |
Collapse
|