1
|
Tran HT, Kondo T, Ashry A, Fu Y, Okawa H, Sawangmake C, Egusa H. Effect of circadian clock disruption on type 2 diabetes. Front Physiol 2024; 15:1435848. [PMID: 39165284 PMCID: PMC11333352 DOI: 10.3389/fphys.2024.1435848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Type 2 diabetes (T2D) is the predominant form of diabetes mellitus and is among the leading causes of death with an increasing prevalence worldwide. However, the pathological mechanism underlying T2D remains complex and unclear. An increasing number of studies have suggested an association between circadian clock disruption and high T2D prevalence. Method This review explores the physiological and genetic evidence underlying T2D symptoms associated with circadian clock disturbances, including insulin secretion and glucose metabolism. Results and Discussion Notably, circadian clock disruption reduces insulin secretion and insulin sensitivity and negatively affects glucose homeostasis. The circadian clock regulates the hypothalamic-pituitary-adrenal axis, an important factor that regulates glucose metabolism and influences T2D progression. Therefore, circadian clock regulation is an attractive, novel therapeutic approach for T2D, and various circadian clock stabilizers play therapeutic roles in T2D. Lastly, this review suggests novel therapeutic and preventive approaches using circadian clock regulators for T2D.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Stem Cell Institute, University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Amal Ashry
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yunyu Fu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Chenphop Sawangmake
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
2
|
Lin Z, Shibuya Y, Imai Y, Oshima J, Sasaki M, Sasaki K, Aihara Y, Khanh VC, Sekido M. Therapeutic Potential of Adipose-Derived Stem Cell-Conditioned Medium and Extracellular Vesicles in an In Vitro Radiation-Induced Skin Injury Model. Int J Mol Sci 2023; 24:17214. [PMID: 38139042 PMCID: PMC10743562 DOI: 10.3390/ijms242417214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy (RT) is one of three major treatments for malignant tumors, and one of its most common side effects is skin and soft tissue injury. However, the treatment of these remains challenging. Several studies have shown that mesenchymal stem cell (MSC) treatment enhances skin wound healing. In this study, we extracted human dermal fibroblasts (HDFs) and adipose-derived stem cells (ADSCs) from patients and generated an in vitro radiation-induced skin injury model with HDFs to verify the effect of conditioned medium derived from adipose-derived stem cells (ADSC-CM) and extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) on the healing of radiation-induced skin injury. The results showed that collagen synthesis was significantly increased in wounds treated with ADSC-CM or ADSC-EVs compared with the control group, which promoted the expression of collagen-related genes and suppressed the expression of inflammation-related genes. These findings indicated that treatment with ADSC-CM or ADSC-EVs suppressed inflammation and promoted extracellular matrix deposition; treatment with ADSC-EVs also promoted fibroblast proliferation. In conclusion, these results demonstrate the effectiveness of ADSC-CM and ADSC-EVs in the healing of radiation-induced skin injury.
Collapse
Affiliation(s)
- Zhixiang Lin
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yoichiro Shibuya
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yukiko Imai
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Junya Oshima
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Masahiro Sasaki
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
- Department of Plastic and Reconstructive Surgery, Mito Saiseikai General Hospital, Mito 311-4145, Ibaraki, Japan
| | - Kaoru Sasaki
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yukiko Aihara
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Mitsuru Sekido
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| |
Collapse
|
3
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
4
|
Chen Y, He Z, Zhao B, Zheng R. Downregulation of a potential therapeutic target NPAS2, regulated by p53, alleviates pulmonary fibrosis by inhibiting epithelial-mesenchymal transition via suppressing HES1. Cell Signal 2023:110795. [PMID: 37406788 DOI: 10.1016/j.cellsig.2023.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease and a severe form of pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is induced in response to epithelial injury, which leads to the accumulation of extracellular matrix in the lung parenchyma and contributes to pulmonary fibrosis. NPAS2 (neuronal PAS domain protein 2) is significantly increased in the lung tissues of IPF patients according to microarray dataset GSE10667 and NPAS2 is downregulated in differentiated human pulmonary type 2 epithelial cells in vitro based on microarray dataset GSE3306 from Gene Expression Omnibus (GEO). In this study, we demonstrated that NPAS2 was increased in bleomycin (BLM)- induced fibrotic lungs in mice. Knockdown of NPAS2 inhibited EMT in primary mouse lung alveolar type 2 epithelial (pmATII) cells and human lung alveolar type 2 epithelial cell line A549 cells under BLM challenge in vitro. Moreover, the silence of NPAS2 alleviated the BLM-induced pulmonary fibrosis in a murine model. Mechanistically, NPAS2 promotes EMT through positively regulating hairy and enhancer of split 1 (HES1) expression. In this study, we present novel findings that have not been previously reported, emphasizing that p53 transcriptionally activates NPAS2 in ATII cells and overexpression of NPAS2 weakens the effects of TP53 knockdown on EMT of pmATII and A549 cells. Our results suggest NPAS2 is a novel target gene of p53 in regulating BLM-mediated EMT in ATII cells and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhong He
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bo Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|