1
|
Li X, Zhao Z, Ke Y, Jiang Y, Liu Y, Liu Z. Links Between Cellular Energy Metabolism and Pain Sensation. Anesth Analg 2025; 140:616-627. [PMID: 39110636 PMCID: PMC11805490 DOI: 10.1213/ane.0000000000007096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 02/09/2025]
Abstract
One of the functions of organism cells is to maintain energy homeostasis to promote metabolism and adapt to the environment. The 3 major pathways of cellular energy metabolism are glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). Neurons, astrocytes, and microglia are crucial in allodynia, hyperalgesia, and sensitization in nociceptive pathways. This review focused on these 3 major cellular energy metabolism pathways, aiming to elucidate the relationship between neurocyte and pain sensation and present the reprogramming of energy metabolism on pain, as well as the cellular and molecular mechanism underlying various forms of pain. The clinical and preclinical drugs involved in pain treatment and molecular mechanisms via cellular energy metabolism were also discussed.
Collapse
Affiliation(s)
- Xiongjuan Li
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhao Zhao
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuwen Ke
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yonghan Jiang
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuqiang Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhiheng Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Yang JJ, Li Z, Wang LN, Huang BX, Ng JPL, Xu XF, Wang YP, Zhang DW, Qin B, Zhang DQ, Liu C, Luo WD, Law BYK, Wang HM, Liu MH, Yun XY, Chan JTW, Wu WY, Li YT, Cheung PKF, Pou MC, Ha KS, Ao Ieong WF, Leong CH, Leong KI, Lei CW, Cheang LH, Wong VKW. X-chromosome-linked miR-542-5p as a key regulator of sex disparity in rats with adjuvant-induced arthritis by promoting Th17 differentiation. Biomark Res 2025; 13:36. [PMID: 40025567 PMCID: PMC11872315 DOI: 10.1186/s40364-025-00741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Studies have indicated that X-linked microRNAs (miRNAs) play a role in the pathogenesis of rheumatoid arthritis (RA) and its gender-specific differences. However, research on specific miRNAs remains limited. This study aims to investigate the possible role of X-linked miR-542-5p in RA pathogenesis and gender differences. METHODS We investigated the impact of miR-542-5p on RA pathogenesis and gender differences by manipulating its expression in various rat models. RESULTS Our findings revealed a significant overexpression of miR-542-5p in RA patients compared with healthy individuals, with a notable gender difference among RA patients. In vivo experiments confirmed that upregulation of miR-542-5p could accelerate RA pathogenesis. Further analysis showed that the onset of adjuvant-induced arthritis (AIA) in rats exhibited significant gender differences, with more severe clinical phenotypes found in female rats. This may be attributed to their stronger immune responses and elevated levels of miR-542-5p. Subsequent in vitro and in vivo experiments demonstrated that miR-542-5p contributes to the regulation of gender differences in RA pathogenesis by promoting the differentiation of Th17 cells. CONCLUSIONS This study offers new insights into the sex-specific nature of RA, suggesting X-linked miR-542-5p as a potential target for both diagnostic and therapeutic purposes. These findings lay the groundwork for the development of gender-specific therapeutic strategies for RA and underscore the importance of gender consideration in RA research.
Collapse
Affiliation(s)
- Jiu Jie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- Macau Medical Science and Technology Research Association, Macao SAR, China
| | - Zhi Li
- Macau Medical Science and Technology Research Association, Macao SAR, China
- Centro Hospitalar Conde de São Januário, Macau SAR, China
| | - Lin Na Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Bai Xiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Xiong Fei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Yu Ping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - David Wei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Bo Qin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Ding Qi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Chang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Wei Dan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hui Miao Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Meng Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Xiao Yun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Joyce Tsz Wai Chan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Wan Yu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Yi Ting Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Peter Kam Fai Cheung
- Macau Medical Science and Technology Research Association, Macao SAR, China
- Centro Hospitalar Conde de São Januário, Macau SAR, China
| | - Man Chon Pou
- Macau Medical Science and Technology Research Association, Macao SAR, China
- Centro Hospitalar Conde de São Januário, Macau SAR, China
| | - Kat Sang Ha
- Macau Medical Science and Technology Research Association, Macao SAR, China
- Centro Hospitalar Conde de São Januário, Macau SAR, China
| | - Wang Fai Ao Ieong
- Macau Medical Science and Technology Research Association, Macao SAR, China
- Centro Hospitalar Conde de São Januário, Macau SAR, China
| | - Chi Hou Leong
- Macau Medical Science and Technology Research Association, Macao SAR, China
- Centro Hospitalar Conde de São Januário, Macau SAR, China
| | - Kit Ieng Leong
- Macau Medical Science and Technology Research Association, Macao SAR, China
- Centro Hospitalar Conde de São Januário, Macau SAR, China
| | - Chan Wang Lei
- Macau Medical Science and Technology Research Association, Macao SAR, China
- Centro Hospitalar Conde de São Januário, Macau SAR, China
| | - Lek Hang Cheang
- Macau Medical Science and Technology Research Association, Macao SAR, China.
- Centro Hospitalar Conde de São Januário, Macau SAR, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China.
| |
Collapse
|
3
|
Saleh RO, Aboqader Al-Aouadi RF, Almuzaini NA, Uthirapathy S, Sanghvi G, Soothwal P, Arya R, Bareja L, Mohamed Abdelgawwad El-Sehrawy AA, Hulail HM. Glucose metabolism is controlled by non-coding RNAs in autoimmune diseases; a glimpse into immune system dysregulation. Hum Immunol 2025; 86:111269. [PMID: 39999745 DOI: 10.1016/j.humimm.2025.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The immune system accidentally targets the body's tissues, causing inflammation and tissue damage, the root causes of autoimmune illnesses. In recent studies, non-coding RNAs have been shown to significantly control gene expression and metabolic pathways linked to autoimmune diseases. This review investigates the effects of non-coding RNA on glucose metabolism, a route frequently dysregulated in autoimmune illnesses such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and diabetes. We review how non-coding RNA affects immune cell activity modulation, glucose absorption, glycolysis, and other metabolic processes critical to immune function. We also investigate the possibility of using non-coding RNA-mediated metabolic pathway targeting as a new therapeutic approach to treat autoimmune disorders. By clarifying the complex interplay of non-coding RNA, glucose metabolism, and immune dysregulation, this study endeavors to enhance comprehension of autoimmune etiology and facilitate the creation of focused therapies.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
4
|
Gao C, Zhang C, Wen L, Zhang G, Liu X, Wang J, Cui L, Li R, Nie T, Duan J, Guo Y. Regulation of reactive oxygen species and the role of mitochondrial apoptotic-related genes in rheumatoid arthritis. Sci Rep 2025; 15:2165. [PMID: 39820483 PMCID: PMC11739689 DOI: 10.1038/s41598-025-85460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Previous research suggests mitochondrial apoptosis alleviates rheumatoid arthritis (RA), but the role of mitochondrial apoptosis-related genes (MARGs) is unclear. Urgent exploration of RA-related mitochondrial apoptosis biomarkers is needed. Gene Expression Ontology (GEO)-derived RA datasets were used to identify differentially expressed genes (DEGs) compared to normal controls, intersected with MARGs to obtain differentially expressed mitochondrial apoptosis-related genes (DE-MARGs). Three ML algorithms screened diagnostic biomarkers. A nomogram was built and validated by receiver operating characteristic (ROC) analysis. Gene Set Enrichment Analysis (GSEA), regulatory network, and drug prediction explored biomarker mechanisms. Finally, key cells analysis included clustering, type annotation, pseudo-temporal study, and interaction, focusing on validated biomarker expression in those cells. A total of 147 DE-MARGs linked to energy & ROS metabolism were identified. Four validated biomarkers (MRPS10, EEF2, HSPA9, TUFM) formed a new RA diagnostic model. Moreover, GSEA linked them to oxidative phosphorylation. YY1 regulates EEF2, HSPA9, MRPS10; FOXO3 regulates EEF2, TUFM. Drugs like Nonoxynol-9, Nedocromil, Gadobutrol target these biomarkers. In addition, biomarkers are expressed in plasmablasts, with CD74 as a key receptor binding multiple ligands. RA biomarkers (MRPS10, EEF2, HSPA9, TUFM) linked to energy & ROS, progression tied to AMPK/mTOR, CD74-MIF crucial. Study advances RA pathogenesis knowledge, supporting clinical diagnosis.
Collapse
Affiliation(s)
- Conghui Gao
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China.
| | - Chengqiang Zhang
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Lixing Wen
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Gailian Zhang
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Xiaoping Liu
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Jie Wang
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Luping Cui
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Rui Li
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Tingting Nie
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Jiaoniu Duan
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Yingying Guo
- Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| |
Collapse
|
5
|
Li P, Zhou M, Wang J, Tian J, Zhang L, Wei Y, Yang F, Xu Y, Wang G. Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis. J Inflamm Res 2024; 17:11631-11657. [PMID: 39741752 PMCID: PMC11687318 DOI: 10.2147/jir.s499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis. If the organism experiences hypoxia, genetic predisposition, and oxidative stress, it leads to mitochondrial dysfunction, which further affects immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling, causing the onset and progression of RA; and, mitochondrial regulation is becoming increasingly important in the treatment of RA.In this review, we examine the structure and function of mitochondria, analyze the potential causes of mitochondrial dysfunction in RA, and focus on the mechanisms by which mitochondrial dysfunction triggers chronic inflammation and immune disorders in RA. We also explore the effects of mitochondrial dysfunction on RA immune cells and osteoblasts, emphasizing its key role in the immune response and inflammatory processes in RA. Furthermore, we discuss potential biological processes that regulate mitochondrial homeostasis, which are of great importance for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Pingshun Li
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Mengru Zhou
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jia Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jiexiang Tian
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Lihuan Zhang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong Wei
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Yang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yali Xu
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Gang Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
6
|
De Benedittis G, Latini A, Morgante C, Perricone C, Ceccarelli F, Novelli G, Novelli L, Ciccacci C, Borgiani P. The dysregulation of mitochondrial homeostasis-related genes could be involved in the decrease of mtDNA copy number in systemic lupus erythematosus patients. Immunol Res 2024; 72:1384-1392. [PMID: 39230799 PMCID: PMC11618193 DOI: 10.1007/s12026-024-09535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease. It is now widely demonstrated that oxidative stress (OS) plays an important role in the modulation of the pathogenesis of this disease. Mitochondrial DNA (mtDNA) is highly vulnerable to OS and it is known a decrease of mtDNA copy number in SLE patients. However, to date, it has not been investigated if this decrease is associated with a dysregulation of mitochondrial homeostasis genes. Our aim is to evaluate the amount of mtDNA copy number and the expression of the genes more involved in the mitochondrial homeostasis pathways, in peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls. We analysed the amount of mtDNA in PBMCs of 72 SLE patients and 61 healthy controls by qPCR. Then, we investigated the expression variability of TFAM and SIRT1 (biogenesis), MFN1 and MFF (fusion/fission) and PRKN2 (mitophagy) genes in a subgroup of SLE patients and healthy controls. Interestingly, we have observed a highly significant decrease in mtDNA copies in SLE patients compared to healthy controls (P < 0.0001). In addition, we have shown that the expression levels of SIRT1, MFN1 and PRKN2 genes were significantly decreased in SLE patients with respect to healthy controls (P = 0.00001 for SIRT1, P = 0.0150 for MFN1 and P = 0.0009 for PRKN2). Lastly, we have reported a positive correlation between PRKN2 expression level and mtDNA copy number (P = 0.019, r = 0.475). In conclusion, our data confirm the impairment of mtDNA copy number in the disease and show for the first time a dysregulation of the mitochondrial homeostasis genes. These results could provide additional support to the important role of mitochondria in SLE development.
Collapse
Affiliation(s)
- Giada De Benedittis
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Chiara Morgante
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Fulvia Ceccarelli
- Lupus Clinic, Rheumatology, Department of Internal Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, USA
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, 00131, Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, 00131, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
7
|
Liu X, Xia Z, Liu L, Ren D. WTAP promotes fibroblast-like synoviocyte pyroptosis in Rheumatoid arthritis by upregulating N6-methyladenosine modification of NLRP3. J Bioenerg Biomembr 2024; 56:563-571. [PMID: 39187680 DOI: 10.1007/s10863-024-10035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic condition characterized by inflammation and an abnormal immune response. N6-methyladenosine (m6A) methylation has altered nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) 3. This change is implicated in the regulation of cell pyroptosis and inflammation. WTAP has a crucial role in regulating NLRP3 m6A. In this work, we used a rat model of collagen-induced arthritis (CIA) to investigate the involvement of WTAP in the evolution of inflammation in RA. The purpose of silencing or overexpressing WTAP in RA-fibroblast-like synoviocytes (RA-FLSs) treated with TNF-α was to identify its impact on pyroptosis, NLRP3 inflammasome-related proteins, the secretion of pro-inflammatory cytokines and migration. Bioinformatics techniques were used to pinpoint the exact target controlled by WTAP. To assess WTAP and NLRP3's role in RA-FLSs, we used methylated RNA immunoprecipitation, LDH test, flow cytometry, RT-qPCR, Western blotting, and Transwell. Our results show that WTAP expression is upregulated in both RA rats and cell models. Cell pyroptosis, NLRP3-related pro-inflammatory cytokines, and migration were reduced in TNF-α-treated RA-FLSs when WTAP was knocked down, whereas overexpression of WTAP displayed the opposite effect in RA-FLSs. WTAP mediated m6A modification in the NLRP3 mRNA and enhanced its mRNA stability. These results suggested that WTAP promoted FLSs pyroptosis and related inflammatory response via NLRP3 and identified WTAP as a potential target for treating RA.
Collapse
Affiliation(s)
- Xiuchan Liu
- Department of Infection Immunology, Tianjin Hospital, No 406 South Jiefang Road, Hexi District, Tianjin, 300221, China.
| | - Zhenjuan Xia
- Department of Infection Immunology, Tianjin Hospital, No 406 South Jiefang Road, Hexi District, Tianjin, 300221, China
| | - Lei Liu
- Department of Infection Immunology, Tianjin Hospital, No 406 South Jiefang Road, Hexi District, Tianjin, 300221, China
| | - Dongyun Ren
- Department of Infection Immunology, Tianjin Hospital, No 406 South Jiefang Road, Hexi District, Tianjin, 300221, China
| |
Collapse
|
8
|
Li S, Huo C, Liu A, Zhu Y. Mitochondria: a breakthrough in combating rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1439182. [PMID: 39161412 PMCID: PMC11330793 DOI: 10.3389/fmed.2024.1439182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
As a chronic autoimmune disease with complex aetiology, rheumatoid arthritis (RA) has been demonstrated to be associated with mitochondrial dysfunction since mitochondrial dysfunction can affect the survival, activation, and differentiation of immune and non-immune cells involved in the pathogenesis of RA. Nevertheless, the mechanism behind mitochondrial dysfunction in RA remains uncertain. Accordingly, this review addresses the possible role and mechanisms of mitochondrial dysfunction in RA and discusses the potential and challenges of mitochondria as a potential therapeutic strategy for RA, thereby providing a breakthrough point in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuang Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenlu Huo
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anting Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
9
|
Tan M, Mao J, Zheng J, Meng Y, Li J, Hao J, Shen H. Mammalian STE20-like kinase 1 inhibits synoviocytes activation in rheumatoid arthritis through mitochondrial dysfunction mediated by SIRT3/mTOR axis. Inflamm Res 2024; 73:415-432. [PMID: 38265688 DOI: 10.1007/s00011-023-01846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Mammalian STE20-like kinase 1 (MST1) is involved in the occurrence of cancer and autoimmune diseases by regulating cell proliferation, differentiation, apoptosis and other functions. However, its role and downstream targets in rheumatoid arthritis (RA) remain unclear. METHODS The model of RA fibroblast-like synoviocytes (RA-FLSs) overexpressing MST1 was constructed by lentiviral transfection in vitro and analyzed the effects of MST1 on apoptosis, migration, invasion, and inflammation of RA-FLSs. The effect of MST1 on joint synovial membrane inflammation and bone destruction was observed in vivo by establishing a rat model of arthritis with complete Freund's adjuvant. RESULTS MST1 is down-regulated in RA-FLSs, and up-regulation of MST1 inhibits the survival, migration, invasion and inflammation of RA-FLSs. Mechanistically, MST1 inhibits SIRT3/mTOR-signaling pathway, inducing decreased mitochondrial autophagy and increased mitochondrial fission, resulting in mitochondrial morphological abnormalities and dysfunction, and ultimately increased apoptosis. We have observed that activation of MST1 alleviates synovial inflammation and bone erosion in vivo. CONCLUSIONS MST1 reduces the survival, migration, invasion and inflammation of FLSs by inhibiting the SIRT3/mTOR axis to reduce mitochondrial autophagy and promote mitochondrial division, thereby achieving the potential role of relieving rheumatoid arthritis.
Collapse
Affiliation(s)
- Min Tan
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jing Mao
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jianxiong Zheng
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yu Meng
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jun Li
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jiayao Hao
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China.
| |
Collapse
|
10
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Maiese K. Mitochondria, Mitophagy, Mitoptosis, and Programmed Cell Death: Implications from Aging to Cancer. Curr Neurovasc Res 2024; 21:1-5. [PMID: 38251666 DOI: 10.2174/1567202621999240118155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
|
12
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
13
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Promila L, Joshi A, Khan S, Aggarwal A, Lahiri A. Role of mitochondrial dysfunction in the pathogenesis of rheumatoid arthritis: Looking closely at fibroblast- like synoviocytes. Mitochondrion 2023; 73:62-71. [PMID: 38506094 DOI: 10.1016/j.mito.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/28/2023] [Accepted: 10/28/2023] [Indexed: 03/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune, and inflammatory disease that primarily targets the joints, leading to cartilage and bone destruction.Fibroblast-like synoviocytes (FLS) are specialized cells of the synovial lining in the joint that plays a fundamental role in the development of RA. Particularly, FLS of RA patients (RA-FLS) in the joint exhibit specific characteristics like higher invading and immunogenic properties, hyperproliferation, and reduced apoptotic capacity, suggesting a dysfunctional mitochondrial pool in these cells. Mitochondria are emerging as a potential organelle that can decide cellular immunometabolism, invasion properties, and cell death. Accordingly, multiplestudies established that mitochondria are crucial in establishing RA. However, the underlying mechanism of impaired mitochondrial function in RA remains poorly understood. This review will provide an overview of the mitochondrial role in the progression of RA, specifically in the context of FLS biology. We will also outline how mitochondria-centric therapeutics can be achieved that would yield novel avenues of research in pathological mediation and prevention.
Collapse
Affiliation(s)
- Lakra Promila
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anubha Joshi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shazia Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
16
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
17
|
Zhou Y, Li X, Ng L, Zhao Q, Guo W, Hu J, Zhong J, Su W, Liu C, Su S. Identification of copper death-associated molecular clusters and immunological profiles in rheumatoid arthritis. Front Immunol 2023; 14:1103509. [PMID: 36891318 PMCID: PMC9986609 DOI: 10.3389/fimmu.2023.1103509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Objective An analysis of the relationship between rheumatoid arthritis (RA) and copper death-related genes (CRG) was explored based on the GEO dataset. Methods Based on the differential gene expression profiles in the GSE93272 dataset, their relationship to CRG and immune signature were analysed. Using 232 RA samples, molecular clusters with CRG were delineated and analysed for expression and immune infiltration. Genes specific to the CRGcluster were identified by the WGCNA algorithm. Four machine learning models were then built and validated after selecting the optimal model to obtain the significant predicted genes, and validated by constructing RA rat models. Results The location of the 13 CRGs on the chromosome was determined and, except for GCSH. LIPT1, FDX1, DLD, DBT, LIAS and ATP7A were expressed at significantly higher levels in RA samples than in non-RA, and DLST was significantly lower. RA samples were significantly expressed in immune cells such as B cells memory and differentially expressed genes such as LIPT1 were also strongly associated with the presence of immune infiltration. Two copper death-related molecular clusters were identified in RA samples. A higher level of immune infiltration and expression of CRGcluster C2 was found in the RA population. There were 314 crossover genes between the 2 molecular clusters, which were further divided into two molecular clusters. A significant difference in immune infiltration and expression levels was found between the two. Based on the five genes obtained from the RF model (AUC = 0.843), the Nomogram model, calibration curve and DCA also demonstrated their accuracy in predicting RA subtypes. The expression levels of the five genes were significantly higher in RA samples than in non-RA, and the ROC curves demonstrated their better predictive effect. Identification of predictive genes by RA animal model experiments was also confirmed. Conclusion This study provides some insight into the correlation between rheumatoid arthritis and copper mortality, as well as a predictive model that is expected to support the development of targeted treatment options in the future.
Collapse
Affiliation(s)
- Yu Zhou
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Foot & Ankle Surgery, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xin Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liqi Ng
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Qing Zhao
- School of Health Management, Tianjin University of Chinese Medicine, Tianjin, China
| | - Wentao Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinhua Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenlong Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Songchuan Su
- Foot & Ankle Surgery, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|