1
|
Rodriguez L, Lee HW, Li J, Martin R, Han D, Xu S, Moshiri J, Peinovich N, Camus G, Perry JK, Hyland RH, Porter DP, Abdelghany M, Götte M, Hedskog C. SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants. Antimicrob Agents Chemother 2025; 69:e0123824. [PMID: 39699245 PMCID: PMC11823660 DOI: 10.1128/aac.01238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL). The SARS-CoV-2 genome was sequenced for all remdesivir participants and 50% of placebo participants (baseline, Days 3, 7, and 14) and for participants who progressed to COVID-19-related hospitalization or all-cause death (all time points). Emergent substitutions in Nsp12 and other replication complex proteins were phenotyped using site-directed mutagenesis in a SARS-CoV-2 subgenomic replicon system. Overall, emergent Nsp12 substitutions were detected in 8/115 (7.0%) remdesivir participants and 7/129 (5.4%) placebo participants (1 substitution overlap between groups). Based on a structural analysis, none of the emergent Nsp12 substitutions were in direct contact with the incoming nucleoside triphosphate substrate, the RNA, or the RNA template 5' overhang. One substitution (A376V) showed reduced susceptibility to remdesivir (12.6-fold change in remdesivir half-maximal concentration [EC50]); it also showed reduced fitness when introduced in the SARS-CoV-2 replicon and virus in vitro. Other substitutions had <1.1-fold change in remdesivir EC50. None of the emergent substitutions in Nsp8, Nsp10, Nsp13, or Nsp14 (remdesivir, 10/115 [8.7%]; placebo, 10/129 [7.8%]) showed reduced remdesivir susceptibility. In conclusion, emergent substitutions in the SARS-CoV-2 RdRp complex with reduced remdesivir susceptibility were uncommon, indicating a high barrier to remdesivir resistance.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT04501952.
Collapse
Affiliation(s)
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, California, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, California, USA
| | - Dong Han
- Gilead Sciences, Inc., Foster City, California, USA
| | - Simin Xu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | | | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
2
|
Yaghi R, Wylie DC, Andrews CL, Dickert OH, Ram A, Iverson BL. An Investigation of Nirmatrelvir (Paxlovid) Resistance in SARS-CoV-2 M pro. ACS BIO & MED CHEM AU 2024; 4:280-290. [PMID: 39712205 PMCID: PMC11659887 DOI: 10.1021/acsbiomedchemau.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 12/24/2024]
Abstract
The high throughput YESS 2.0 platform was used to screen a large library of SARS-CoV-2 Mpro variants in the presence of nirmatrelvir. Of the 100 individual most prevalent mutations identified in the screen and reported here, the most common were E166V, L27V, N142S, A173V, and Y154N, along with their various combinations. In vitro analysis revealed that resistance to nirmatrelvir for these individual mutations, as well as all of the combinations we analyzed, was accompanied by decreased catalytic activity with the native substrate. Importantly, the mutations we identified have not appeared as significantly enriched in SARS-CoV-2 Mpro sequences isolated from COVID-19 patients following the introduction of nirmatrelvir. We also analyzed three of the most common SARS-CoV-2 Mpro mutations that have been seen in patients recently, and only a measured increase in nirmatrelvir resistance was seen when the more recently appearing A285V is added to both P132H and K90R. Taken together, our results predict that resistance to nirmatrelvir will be slower to develop than expected based on experience with other viral protease inhibitors, perhaps due in part to the close structural correspondence between nirmatrelvir and SARS-CoV-2 Mpro's preferred substrates.
Collapse
Affiliation(s)
- Rasha
M. Yaghi
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| | - Dennis C. Wylie
- Center
of Biomedical Research Support, The University
of Texas at Austin, Austin, Texas 78712, The United States of America
| | - Collin L. Andrews
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| | - Olivia H. Dickert
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| | - Anjana Ram
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| | - Brent L. Iverson
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, The United States of America
| |
Collapse
|
3
|
Parigger L, Krassnigg A, Hetmann M, Hofmann A, Gruber K, Steinkellner G, Gruber CC. CavitOmiX Drug Discovery: Engineering Antivirals with Enhanced Spectrum and Reduced Side Effects for Arboviral Diseases. Viruses 2024; 16:1186. [PMID: 39205160 PMCID: PMC11360613 DOI: 10.3390/v16081186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Advancing climate change increases the risk of future infectious disease outbreaks, particularly of zoonotic diseases, by affecting the abundance and spread of viral vectors. Concerningly, there are currently no approved drugs for some relevant diseases, such as the arboviral diseases chikungunya, dengue or zika. The development of novel inhibitors takes 10-15 years to reach the market and faces critical challenges in preclinical and clinical trials, with approximately 30% of trials failing due to side effects. As an early response to emerging infectious diseases, CavitOmiX allows for a rapid computational screening of databases containing 3D point-clouds representing binding sites of approved drugs to identify candidates for off-label use. This process, known as drug repurposing, reduces the time and cost of regulatory approval. Here, we present potential approved drug candidates for off-label use, targeting the ADP-ribose binding site of Alphavirus chikungunya non-structural protein 3. Additionally, we demonstrate a novel in silico drug design approach, considering potential side effects at the earliest stages of drug development. We use a genetic algorithm to iteratively refine potential inhibitors for (i) reduced off-target activity and (ii) improved binding to different viral variants or across related viral species, to provide broad-spectrum and safe antivirals for the future.
Collapse
Affiliation(s)
- Lena Parigger
- Innophore GmbH, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | | | - Anna Hofmann
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Karl Gruber
- Innophore GmbH, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Georg Steinkellner
- Innophore GmbH, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christian C. Gruber
- Innophore GmbH, 8010 Graz, Austria
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Yaghi R, Andrews CL, Wylie DC, Iverson BL. High-Resolution Substrate Specificity Profiling of SARS-CoV-2 M pro; Comparison to SARS-CoV M pro. ACS Chem Biol 2024; 19:1474-1483. [PMID: 38865301 PMCID: PMC11267570 DOI: 10.1021/acschembio.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
The SARS-CoV-2 Mpro protease from COVID-19 cleaves the pp1a and pp2b polyproteins at 11 sites during viral maturation and is the target of Nirmatrelvir, one of the two components of the frontline treatment sold as Paxlovid. We used the YESS 2.0 platform, combining protease and substrate expression in the yeast endoplasmic reticulum with fluorescence-activated cell sorting and next-generation sequencing, to carry out the high-resolution substrate specificity profiling of SARS-CoV-2 Mpro as well as the related SARS-CoV Mpro from SARS 2003. Even at such a high level of resolution, the substrate specificity profiles of both enzymes are essentially identical. The population of cleaved substrates isolated in our sorts is so deep, the relative catalytic efficiencies of the different cleavage sites on the SARS-CoV-2 polyproteins pp1a and pp2b are qualitatively predicted. These results not only demonstrated the precise and reproducible nature of the YESS 2.0/NGS approach to protease substrate specificity profiling but also should be useful in the design of next generation SARS-CoV-2 Mpro inhibitors, and by analogy, SARS-CoV Mpro inhibitors as well.
Collapse
Affiliation(s)
- Rasha
M. Yaghi
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| | - Collin L. Andrews
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| | - Dennis C. Wylie
- Center
of Biomedical Research Support, University
of Texas at Austin, Austin, Texas 78712, United States of America
| | - Brent L. Iverson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| |
Collapse
|
5
|
Parigger L, Krassnigg A, Grabuschnig S, Gruber K, Steinkellner G, Gruber CC. AI-assisted structural consensus-proteome prediction of human monkeypox viruses isolated within a year after the 2022 multi-country outbreak. Microbiol Spectr 2023; 11:e0231523. [PMID: 37874150 PMCID: PMC10714838 DOI: 10.1128/spectrum.02315-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/09/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The 2022 outbreak of the monkeypox virus already involves, by April 2023, 110 countries with 86,956 confirmed cases and 119 deaths. Understanding an emerging disease on a molecular level is essential to study infection processes and eventually guide drug discovery at an early stage. To support this, we provide the so far most comprehensive structural proteome of the monkeypox virus, which includes 210 structural models, each computed with three state-of-the-art structure prediction methods. Instead of building on a single-genome sequence, we generated our models from a consensus of 3,713 high-quality genome sequences sampled from patients within 1 year of the outbreak. Therefore, we present an average structural proteome of the currently isolated viruses, including mutational analyses with a special focus on drug-binding sites. Continuing dynamic mutation monitoring within the structural proteome presented here is essential to timely predict possible physiological changes in the evolving virus.
Collapse
Affiliation(s)
- Lena Parigger
- Innophore, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Karl Gruber
- Innophore, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Georg Steinkellner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- Innophore, San Francisco, California, USA
| | - Christian C. Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- Innophore, San Francisco, California, USA
| |
Collapse
|
6
|
Hetmann M, Langner C, Durmaz V, Cespugli M, Köchl K, Krassnigg A, Blaschitz K, Groiss S, Loibner M, Ruau D, Zatloukal K, Gruber K, Steinkellner G, Gruber CC. Identification and validation of fusidic acid and flufenamic acid as inhibitors of SARS-CoV-2 replication using DrugSolver CavitomiX. Sci Rep 2023; 13:11783. [PMID: 37479788 PMCID: PMC10362000 DOI: 10.1038/s41598-023-39071-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
In this work, we present DrugSolver CavitomiX, a novel computational pipeline for drug repurposing and identifying ligands and inhibitors of target enzymes. The pipeline is based on cavity point clouds representing physico-chemical properties of the cavity induced solely by the protein. To test the pipeline's ability to identify inhibitors, we chose enzymes essential for SARS-CoV-2 replication as a test system. The active-site cavities of the viral enzymes main protease (Mpro) and papain-like protease (Plpro), as well as of the human transmembrane serine protease 2 (TMPRSS2), were selected as target cavities. Using active-site point-cloud comparisons, it was possible to identify two compounds-flufenamic acid and fusidic acid-which show strong inhibition of viral replication. The complexes from which fusidic acid and flufenamic acid were derived would not have been identified using classical sequence- and structure-based methods as they show very little structural (TM-score: 0.1 and 0.09, respectively) and very low sequence (~ 5%) identity to Mpro and TMPRSS2, respectively. Furthermore, a cavity-based off-target screening was performed using acetylcholinesterase (AChE) as an example. Using cavity comparisons, the human carboxylesterase was successfully identified, which is a described off-target for AChE inhibitors.
Collapse
Affiliation(s)
- M Hetmann
- Innophore, San Francisco, CA, USA
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - C Langner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - V Durmaz
- Innophore, San Francisco, CA, USA
| | | | - K Köchl
- Innophore, San Francisco, CA, USA
| | | | | | - S Groiss
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - M Loibner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - D Ruau
- NVIDIA, Santa Clara, CA, USA
| | - K Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - K Gruber
- Innophore, San Francisco, CA, USA
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - G Steinkellner
- Innophore, San Francisco, CA, USA
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - C C Gruber
- Innophore, San Francisco, CA, USA.
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
7
|
Hassan AHE, El-Sayed SM, Yamamoto M, Gohda J, Matsumoto T, Shirouzu M, Inoue JI, Kawaguchi Y, Mansour RMA, Anvari A, Farahat AA. In Silico and In Vitro Evaluation of Some Amidine Derivatives as Hit Compounds towards Development of Inhibitors against Coronavirus Diseases. Viruses 2023; 15:1171. [PMID: 37243257 PMCID: PMC10223987 DOI: 10.3390/v15051171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Coronaviruses, including SARS-CoV-2, SARS-CoV, MERS-CoV and influenza A virus, require the host proteases to mediate viral entry into cells. Rather than targeting the continuously mutating viral proteins, targeting the conserved host-based entry mechanism could offer advantages. Nafamostat and camostat were discovered as covalent inhibitors of TMPRSS2 protease involved in viral entry. To circumvent their limitations, a reversible inhibitor might be required. Considering nafamostat structure and using pentamidine as a starting point, a small set of structurally diverse rigid analogues were designed and evaluated in silico to guide selection of compounds to be prepared for biological evaluation. Based on the results of in silico study, six compounds were prepared and evaluated in vitro. At the enzyme level, compounds 10-12 triggered potential TMPRSS2 inhibition with low micromolar IC50 concentrations, but they were less effective in cellular assays. Meanwhile, compound 14 did not trigger potential TMPRSS2 inhibition at the enzyme level, but it showed potential cellular activity regarding inhibition of membrane fusion with a low micromolar IC50 value of 10.87 µM, suggesting its action could be mediated by another molecular target. Furthermore, in vitro evaluation showed that compound 14 inhibited pseudovirus entry as well as thrombin and factor Xa. Together, this study presents compound 14 as a hit compound that might serve as a starting point for developing potential viral entry inhibitors with possible application against coronaviruses.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takehisa Matsumoto
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- Drug Discovery Structural Biology Platform Unit, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Jun-Ichiro Inoue
- Infection and Advanced Research Center (UTOPIA), The University of Tokyo Pandemic Preparedness, Tokyo 108-8639, Japan
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Reem M A Mansour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abtin Anvari
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
| | - Abdelbasset A Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|