1
|
Krakauer F, Pissiguelli R, Moranduzzo M, Tofaneto BM, da Costa SBC, Guzman MBM, Ramos GF, do Couto SB, da Silva RYR, Hiar LFB, Braz LZ. Chryseobacterium indologenes sepsis in a pediatric patient. EINSTEIN-SAO PAULO 2025; 23:eRC1200. [PMID: 40266042 PMCID: PMC12061444 DOI: 10.31744/einstein_journal/2025rc1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/23/2024] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Chryseobacterium indologenes is a Gram-negative aerobic bacillus commonly found in nosocomial environments, particularly in patients with prolonged hospital stays or those requiring long-term invasive devices. It primarily affects elderly and immunocompromised individuals. This microorganism is associated with multidrug resistance, which is a crucial factor in treatment decisions. Here, we report a case of C. indologenes infection in an infant following the ingestion of milk formula diluted with untreated water.
Collapse
Affiliation(s)
- Felipe Krakauer
- Hospital Israelita Albert EinsteinFaculdade Israelita de Ciências da Saúde Albert EinsteinSão PauloSPBrazilFaculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Raquel Pissiguelli
- Hospital Israelita Albert EinsteinFaculdade Israelita de Ciências da Saúde Albert EinsteinSão PauloSPBrazilFaculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Marina Moranduzzo
- Hospital Israelita Albert EinsteinFaculdade Israelita de Ciências da Saúde Albert EinsteinSão PauloSPBrazilFaculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Bruna Marques Tofaneto
- Hospital Israelita Albert EinsteinFaculdade Israelita de Ciências da Saúde Albert EinsteinSão PauloSPBrazilFaculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Sophia Bastos Correa da Costa
- Hospital Israelita Albert EinsteinFaculdade Israelita de Ciências da Saúde Albert EinsteinSão PauloSPBrazilFaculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Maryleen Brigitte Muñoz Guzman
- Hospital Israelita Albert EinsteinFaculdade Israelita de Ciências da Saúde Albert EinsteinSão PauloSPBrazilFaculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Gabriel Frizzo Ramos
- Hospital Israelita Albert EinsteinHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoSão PauloSPBrazilHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Saulo Brasil do Couto
- Hospital Israelita Albert EinsteinHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoSão PauloSPBrazilHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Rafael Yanes Rodrigues da Silva
- Hospital Israelita Albert EinsteinHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoSão PauloSPBrazilHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Luís Felipe Batista Hiar
- Hospital Israelita Albert EinsteinHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoSão PauloSPBrazilHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Luisa Zagne Braz
- Hospital Israelita Albert EinsteinHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de CarvalhoSão PauloSPBrazilHospital Municipal da Vila Santa Catarina Dr. Gilson de Cássia Marques de Carvalho; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Mankoti M, Pandit NK, Meena SS, Mohanty A. Investigating the genomic and metabolic abilities of PGPR Pseudomonas fluorescens in promoting plant growth and fire blight management. Mol Genet Genomics 2024; 299:110. [PMID: 39601883 DOI: 10.1007/s00438-024-02198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024]
Abstract
Pseudomonas fluorescens is commonly found in diverse environments and is well known for its metabolic and antagonistic properties. Despite its remarkable attributes, its potential role in promoting plant growth remains unexplored. This study examines these traits across 14 strains residing in diverse rhizosphere environments through pangenome and comparative genome analysis, alongside molecular docking studies against Erwinia amylovora to combat fire blight. Whole genome analysis revealed circular chromosome (6.01-7.07 Mb) with GC content averaging 59.95-63.39%. Predicted genes included 16S rRNA and protein-coding genes ranging from 4435 to 6393 bp and 1527 to 1541 bp, respectively. Pangenome analysis unveiled an open pangenome, shedding light on genetic factors influencing plant growth promotion and biocontrol, including nitrogen fixation, phosphorus solubilization, siderophore production, stress tolerance, flagella biosynthesis, and induced systemic resistance. Furthermore, pyrrolnitrin, phenazine-1-carboxylic acid, pyoluteorin, lokisin, 2,4-diacetylpholoroglucinol and pseudomonic acid were identified. Molecular docking against key proteins of E. amylovora highlighted the high binding affinities of 2,4-diacetylphloroglucinol, pseudomonic acid, and lokisin. These findings underscore the multifaceted role of P. fluorescens in plant growth promotion and biocontrol, with key biomolecules showing promising applications in plant growth and defense against pathogens.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | - Nisha Kumari Pandit
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India.
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India.
| |
Collapse
|
3
|
Wang Z, Li H. The tigecycline resistance mechanisms in Gram-negative bacilli. Front Cell Infect Microbiol 2024; 14:1471469. [PMID: 39635040 PMCID: PMC11615727 DOI: 10.3389/fcimb.2024.1471469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Tigecycline, hailed as a pivotal agent in combating multidrug-resistant bacterial infections, confronts obstacles posed by the emergence of resistance mechanisms in Gram-negative bacilli. This study explores the complex mechanisms of tigecycline resistance in Gram-negative bacilli, with a particular focus on the role of efflux pumps and drug modification in resistance. By summarizing these mechanisms, our objective is to provide a comprehensive understanding of tigecycline resistance in Gram-negative bacilli, thereby illuminating the evolving landscape of antimicrobial resistance. This review contributes to the elucidation of current existing tigecycline resistance mechanisms and provides insights into the development of effective strategies to manage the control of antimicrobial resistance in the clinical setting, as well as potential new targets for the treatment of tigecycline-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiren Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
4
|
Chen HX, Chen FJ, Zhou QJ, Shang SL, Tang B, Xu ZJ, Duan LJ, Jin JL, Xu GZ, Yan MC, Chen J. Two colistin resistance-producing Aeromonas strains, isolated from coastal waters in Zhejiang, China: characteristics, multi-drug resistance and pathogenicity. Front Microbiol 2024; 15:1401802. [PMID: 39144207 PMCID: PMC11322120 DOI: 10.3389/fmicb.2024.1401802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Aeromonas spp. are ubiquitous inhabitants of ecosystems, and many species are opportunistically pathogenic to humans and animals. Multidrug-resistant (MDR) Aeromonas species have been widely detected in hospitals, urban rivers, livestock, and aquatic animals. Results In this study, we identified two Aeromonas isolates, namely Aeromonas veronii 0728Q8Av and Aeromonas caviae 1029Y16Ac, from coastal waters in Zhejiang, China. Both isolates exhibited typical biochemical characteristics and conferred MDR to 11 kinds of antibiotics, remaining susceptible to ceftazidime. Whole-genome sequencing revealed that both isolates harbored multiple antibiotic resistance genes (ARGs) and several mobile genetic elements (MGEs) on the chromosomes, each containing a resistance genomic island (GI), a typical class 1 integron, a transposon, and various insertion sequences (ISs). Most ARGs were situated within the multiple resistance GI, which contained a class 1 integron and a transposon in both Aeromonas isolates. Furthermore, a chromosomal mcr-3.16 gene was identified in A. veronii 0728Q8Av, while a chromosomal mcr-3.3 was found in A. caviae 1029Y16Ac. Both mcr-3 variants were not located within but were distanced from the multidrug resistance GI on the chromosome, flanking by multiple ISs. In addition, a mcr-3-like was found adjacent to mcr-3.16 to form a tandem mcr-3.16-mcr-3-like-dgkA structure; yet, Escherichia coli carrying the recombinants of mcr-3-like did not exhibit resistance to colistin. And an incomplete mcr-3-like was found adjacent to mcr-3.3 in A. caviae 1029Y16Ac, suggesting the possibility that mcr-3 variants originated from Aeromonas species. In vivo bacterial pathogenicity test indicated that A. veronii 0728Q8Av exhibited moderate pathogenicity towards infected ayu, while A. caviae 1029Y16Ac was non-virulent. Discussion Thus, both Aeromonas species deserve further attention regarding their antimicrobial resistance and pathogenicity.
Collapse
Affiliation(s)
- Hong-Xian Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fang-Jie Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Shi-Lin Shang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Jie Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jun Duan
- School of Marine Sciences, Ningbo University, Ningbo, China
- Ningbo Haishu District Animal Husbandry and Veterinary Medicine Technical Management Service Station, Ningbo, China
| | - Jing-Lei Jin
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Gui-Zong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mao-Cang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Bhatt A, Pujari S, Mantri S, Kirdat K, Thakkar L, Poojary R, Kuyare S, Patil K, Yadav A. A rare urinary tract infection of multidrug-resistant Chryseobacterium urinae sp. nov. isolated from a diabetic, non-catheterized patient. Arch Microbiol 2024; 206:150. [PMID: 38466448 DOI: 10.1007/s00203-024-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Chryseobacterium demonstrates a diverse environmental presence and a significant pathogenic potential across various ecosystems. This clinical case showcases a rare instance of bacterial infection in a 75-year-old male with untreated diabetes and recurrent urinary tract infections (UTIs). The patient presented symptoms of abdominal pain, burning urination, fever, and an elevated eosinophil count. A subsequent urine culture identified a Chryseobacterium-related bacterium as the causative agent, exhibiting sensitivity to piperacillin/tazobactam, trimethoprim/sulfamethoxazole, and nitrofurantoin, which led to successful treatment using oral nitrofurantoin. Analysis of the 16S rRNA gene sequence of APV-1T revealed a close relationship of 98.2% similarity to Chryseobacterium gambrini strain 5-1St1aT (AM232810). Furthermore, comparative genome analysis, incorporating Average Nucleotide Identity (ANI), Digital DNA-DNA Hybridization (dDDH) values, and comprehensive phylogenetic assessments utilizing 16S rRNA gene sequences, core genes, and amino acid sequences of core proteins, highlighted the unique phylogenetic positioning of APV-1T within the Chryseobacterium genus. Distinct carbon utilization and assimilation patterns, along with major fatty acid content, set APV-1T apart from C. gambrini strain 5-1St1aT. These findings, encompassing phenotypic, genotypic, and chemotaxonomic characteristics, strongly support the proposal of a novel species named Chryseobacterium urinae sp. nov., with APV-1T designated as the type strain (= MCC 50690 = JCM 36476). Despite its successful treatment, the strain displayed resistance to multiple antibiotics. Genomic analysis further unveiled core-conserved genes, strain-specific clusters, and genes associated with antibiotic resistance and virulence. This report underscores the vital importance of elucidating susceptibility patterns of rare pathogens like Chryseobacterium, particularly in immunocompromised individuals. It advocates for further analyses to understand the functional significance of identified genes and their implications in treatment and pathogenesis.
Collapse
Affiliation(s)
- Agrima Bhatt
- Department of Biosciences and Technology, Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411038, India
| | - Sujata Pujari
- Sujata Clinic, Mulund Colony, Mulund West, Mumbai, 400082, India
| | - Shailesh Mantri
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, 411007, Pune, India
| | - Kiran Kirdat
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, 411007, Pune, India
| | - Lucky Thakkar
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, 411007, Pune, India
| | - Reshma Poojary
- Apoorva Diagnostic and Healthcare, Kandivali (East), Mumbai, 400101, India
| | - Sunil Kuyare
- Apoorva Diagnostic and Healthcare, Kandivali (East), Mumbai, 400101, India
| | - Kritika Patil
- Vedantaa Institute of Medical Sciences, Saswand, Palghar, 401606, India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, 411007, Pune, India.
| |
Collapse
|
6
|
Rodrigues SH, Nunes GD, Soares GG, Ferreira RL, Damas MSF, Laprega PM, Shilling RE, Campos LC, da Costa AS, Malavazi I, da Cunha AF, Pranchevicius MCDS. First report of coexistence of blaKPC-2 and blaNDM-1 in carbapenem-resistant clinical isolates of Klebsiella aerogenes in Brazil. Front Microbiol 2024; 15:1352851. [PMID: 38426065 PMCID: PMC10903355 DOI: 10.3389/fmicb.2024.1352851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Klebsiella aerogenes is an important opportunistic pathogen with the potential to develop resistance against last-line antibiotics, such as carbapenems, limiting the treatment options. Here, we investigated the antibiotic resistance profiles of 10 K. aerogenes strains isolated from patient samples in the intensive-care unit of a Brazilian tertiary hospital using conventional PCR and a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. All isolates were completely resistant to β-lactam antibiotics, including ertapenem, imipenem, and meropenem with differencing levels of resistance to aminoglycosides, quinolones, and tigecycline also observed. Half of the strains studied were classified as multidrug-resistant. The carbapenemase-producing isolates carried many genes of interest including: β-lactams (blaNDM-1, blaKPC-2, blaTEM-1, blaCTX-M-1 group, blaOXA-1 group and blaSHVvariants in 20-80% of the strains), aminoglycoside resistance genes [aac(6')-Ib and aph(3')-VI, 70 and 80%], a fluoroquinolone resistance gene (qnrS, 80%), a sulfonamide resistance gene (sul-2, 80%) and a multidrug efflux system transporter (mdtK, 70%) while all strains carried the efflux pumps Acr (subunit A) and tolC. Moreover, we performed a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. The draft genome assembly of the CRK317 had a total length of 5,462,831 bp and a GC content of 54.8%. The chromosome was found to contain many essential genes. In silico analysis identified many genes associated with resistance phenotypes, including β-lactamases (blaOXA-9, blaTEM-1, blaNDM-1, blaCTX-M-15, blaAmpC-1, blaAmpC-2), the bleomycin resistance gene (bleMBL), an erythromycin resistance methylase (ermC), aminoglycoside-modifying enzymes [aac(6')-Ib, aadA/ant(3")-Ia, aph(3')-VI], a sulfonamide resistance enzyme (sul-2), a chloramphenicol acetyltransferase (catA-like), a plasmid-mediated quinolone resistance protein (qnrS1), a glutathione transferase (fosA), PEtN transferases (eptA, eptB) and a glycosyltransferase (arnT). We also detected 22 genomic islands, eight families of insertion sequences, two putative integrative and conjugative elements with a type IV secretion system, and eight prophage regions. This suggests the significant involvement of these genetic structures in the dissemination of antibiotic resistance. The results of our study show that the emergence of carbapenemase-producing K. aerogenes, co-harboring blaKPC-2 and blaNDM-1, is a worrying phenomenon which highlights the importance of developing strategies to detect, prevent, and control the spread of these microorganisms.
Collapse
Affiliation(s)
- Saulo Henrique Rodrigues
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Dantas Nunes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gabriela Guerrera Soares
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
7
|
Soares GG, Campanini EB, Ferreira RL, Damas MSF, Rodrigues SH, Campos LC, Galvão JD, Fuentes ASDC, Freire CCDM, Malavazi I, Pitondo-Silva A, da Cunha AF, Pranchevicius MCDS. Brevundimonas brasiliensis sp. nov.: a New Multidrug-Resistant Species Isolated from a Patient in Brazil. Microbiol Spectr 2023; 11:e0441522. [PMID: 37067439 PMCID: PMC10269605 DOI: 10.1128/spectrum.04415-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/17/2023] [Indexed: 04/18/2023] Open
Abstract
To increase knowledge on Brevundimonas pathogens, we conducted in-depth genomic and phenotypic characterization of a Brevundimonas strain isolated from the cerebrospinal fluid of a patient admitted in a neonatal intensive care unit. The strain was identified as a member of the genus Brevundimonas based on Vitek 2 system results and 16S rRNA gene sequencing and presented a multidrug resistance profile (MDR). Several molecular and biochemical tests were used to characterize and identify the species for in-depth results. The draft genome assembly of the isolate has a total length of 3,261,074 bp and a G+C of 66.86%, similar to other species of the genus. Multilocus sequence analysis, Type (Strain) Genome Server, digital DNA-DNA hybridization, and average nucleotide identity confirmed that the Brevundimonas sp. studied represents a distinct species, for which we propose the name Brevundimonas brasiliensis sp. nov. In silico analysis detected antimicrobial resistance genes (AMRGs) mediating resistance to β-lactams (penP, blaTEM-16, and blaBKC-1) and aminoglycosides [strA, strB, aac(6')-Ib, and aac(6')-Il]. We also found AMRGs encoding the AcrAB efflux pump that confers resistance to a broad spectrum of antibiotics. Colistin and quinolone resistance can be attributed to mutation in qseC and/or phoP and GyrA/GyrB, respectively. The Brevundimonas brasiliensis sp. nov. genome contained copies of type IV secretion system (T4SS)-type integrative and conjugative elements (ICEs); integrative mobilizable elements (IME); and Tn3-type and IS3, IS6, IS5, and IS1380 families, suggesting an important role in the development and dissemination of antibiotic resistance. The isolate presented a range of virulence-associated genes related to biofilm formation, adhesion, and invasion that can be relevant for its pathogenicity. Our findings provide a wealth of data to hinder the transmission of MDR Brevundimonas and highlight the need for monitoring and identifying new bacterial species in hospital environments. IMPORTANCE Brevundimonas species is considered an opportunistic human pathogen that can cause multiple types of invasive and severe infections in patients with underlying pathologies. Treatment of these pathogens has become a major challenge because many isolates are resistant to most antibiotics used in clinical practice. Furthermore, there are no consistent therapeutic results demonstrating the efficacy of antibacterial agents. Although considered a rare pathogen, recent studies have provided evidence of the emergence of Brevundimonas in clinical settings. Hence, we identified a novel pathogenic bacterium, Brevundimonas brasiliensis sp. nov., that presented a multidrug resistance (MDR) profile and carried diverse genes related to drug resistance, virulence, and mobile genetic elements. Such data can serve as a baseline for understanding the genomic diversity, adaptation, evolution, and pathogenicity of MDR Brevundimonas.
Collapse
Affiliation(s)
- Gabriela Guerrera Soares
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Saulo Henrique Rodrigues
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Caio César de Melo Freire
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - André Pitondo-Silva
- Programas de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | | | - Maria-Cristina da Silva Pranchevicius
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Centro de Ciências Biológicas e da Saúde, Biodiversidade Tropical - BIOTROP, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Farfour E, Roux A, Sage E, Revillet H, Vasse M, Vallée A. Rarely Encountered Gram-Negative Rods and Lung Transplant Recipients: A Narrative Review. Microorganisms 2023; 11:1468. [PMID: 37374970 DOI: 10.3390/microorganisms11061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The respiratory tract of lung transplant recipients (LTR) is likely to be colonized with non-fermentative Gram-negative rods. As a consequence of the improvements in molecular sequencing and taxonomy, an increasing number of bacterial species have been described. We performed a review of the literature of bacterial infections in LTR involving non-fermentative Gram-negative rods with exclusion of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp. and Burkholderia spp. Overall, non-fermenting GNR were recovered from 17 LTR involving the following genera: Acetobacter, Bordetella, Chryseobacterium, Elizabethkinga, Inquilinus, and Pandoraea. We then discuss the issues raised by these bacteria, including detection and identification, antimicrobial resistance, pathogenesis, and cross-transmission.
Collapse
Affiliation(s)
- Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
| | - Antoine Roux
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Edouard Sage
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène Hospitalière, CHU de Toulouse, 31300 Toulouse, France
- Observatoire National Burkholderia cepacia, 31403 Toulouse, France
| | - Marc Vasse
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
- INSERM Hémostase Inflammation Thrombose HITH U1176, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Alexandre Vallée
- Service d'Epidémiologie-Data-Biostatistiques, Délégation à la Recherche Clinique et à l'Innovation, Hôpital Foch, 92150 Suresnes, France
| |
Collapse
|
9
|
Nixon SL, Plominsky AM, Hernandez-Becerra N, Boothman C, Bartlett DH. Microbial communities in freshwater used for hydraulic fracturing are unable to withstand the high temperatures and pressures characteristic of fractured shales. Access Microbiol 2023; 5:000515.v3. [PMID: 37223063 PMCID: PMC10202394 DOI: 10.1099/acmi.0.000515.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 05/25/2023] Open
Abstract
Natural gas is recovered from shale formations by hydraulic fracturing, a process known to create microbial ecosystems in the deep subsurface. Microbial communities that emerge in fractured shales include organisms known to degrade fracturing fluid additives and contribute to corrosion of well infrastructure. In order to limit these negative microbial processes, it is essential to constrain the source of the responsible micro-organisms. Previous studies have identified a number of potential sources, including fracturing fluids and drilling muds, yet these sources remain largely untested. Here, we apply high-pressure experimental approaches to assess whether the microbial community in synthetic fracturing fluid made from freshwater reservoir water can withstand the temperature and pressure conditions of hydraulic fracturing and the fractured shale environment. Using cell enumerations, DNA extraction and culturing, we show that the community can withstand high pressure or high temperature alone, but the combination of both is fatal. These results suggest that initial freshwater-based fracturing fluids are an unlikely source of micro-organisms in fractured shales. These findings indicate that potentially problematic lineages, such as sulfidogenic strains of Halanaerobium that have been found to dominate fractured shale microbial communities, likely derive from other input sources into the downwell environment, such as drilling muds.
Collapse
Affiliation(s)
- Sophie L. Nixon
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | | | - Christopher Boothman
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Douglas H. Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
10
|
Klimkaitė L, Ragaišis I, Krasauskas R, Ružauskas M, Sužiedėlienė E, Armalytė J. Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin. Int J Mol Sci 2023; 24:ijms24076037. [PMID: 37047008 PMCID: PMC10094639 DOI: 10.3390/ijms24076037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
As one of the most diverse habitats of microorganisms, soil has been recognised as a reservoir of both antibiotics and the antibiotic resistance genes (ARGs). Bacteria naturally inhabiting soil or water often possess innate ARGs to counteract the chemical compounds produced by competitors living in the same environment. When such bacteria are able to cause infections in immunocompromised patients, their strong innate antibiotic resistance mechanisms make treatment difficult. We generated functional gene libraries using antibiotic-resistant Stenotrophomonas maltophilia and Chryseobacterium spp. bacteria isolated from agricultural soils in Lithuania to select for the genetic determinants responsible for their resistance. We were able to find novel variants of aminoglycoside and β-lactam resistance genes, with β-lactamases isolated from the Chryseobacterium spp. functional gene library, one of which is a variant of IND-like metallo-β-lactamase (MBL) IND-17 and the other of which is a previously uncharacterised MBL we named CHM (Chryseobacterium metallo β-lactamase). Our results indicate that soil microorganisms possess a diversity of ARG variants, which could potentially be transferred to the clinical setting.
Collapse
Affiliation(s)
- Laurita Klimkaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Ignas Ragaišis
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Modestas Ružauskas
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| |
Collapse
|