1
|
Chen Y, Chen C. The effect of inflammatory proteins on COVID-19 is mediated by blood metabolites: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41852. [PMID: 40101060 PMCID: PMC11922457 DOI: 10.1097/md.0000000000041852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Several studies have suggested that inflammatory proteins may be associated with Coronavirus disease 2019 (COVID-19). However, the specific causal relationship between the 2 and whether blood metabolites act as mediators remains unclear. Therefore, the purpose of the present study is to investigate the causal relationship between inflammatory proteins and COVID-19 and to identify and quantify the role of blood metabolites as potential mediators. Two-sample Mendelian randomization (MR) and 2-step mediated MR analyses were used to investigate the causal relationships between 91 inflammatory proteins, 486 blood metabolites and COVID-19. A random-effects inverse variance weighted (IVW) approach was used as the primary analytical method, supplemented by weighted medians, MR-Egger and MR multivariate residual sums, and outliers to test MR hypotheses. Our results showed that 2 inflammatory proteins (interleukin-10 and interleukin-18) were positively associated with COVID-19 risk, while 1 inflammatory protein (PD-L1) was negatively associated. Further validation was performed using sensitivity analysis. The results of mediated MR showed that Betaine was a mediator of PD-L1 to COVID-19 with a mediation ratio of 15.92%. Our study suggests a genetic causality between specific inflammatory proteins and COVID-19, highlights the potential mediating role of the blood metabolite betaine, and contributes to a deeper understanding of the mechanism of action of severe COVID-19.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Clinical Laboratory, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chang Chen
- Medical Department, Nanchong Guoning Mental Health Hospital, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Yokoyama Y, Ichiki T, Yamakawa T, Tsuji Y, Kuronuma K, Takahashi S, Narimatsu E, Katanuma A, Nakase H. Gut microbiota and metabolites in patients with COVID-19 are altered by the type of SARS-CoV-2 variant. Front Microbiol 2024; 15:1358530. [PMID: 38505560 PMCID: PMC10948395 DOI: 10.3389/fmicb.2024.1358530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Patients with COVID-19 have dysbiosis of the intestinal microbiota with altered metabolites in the stool. However, it remains unclear whether the differences among SARS-CoV-2 variants lead to differences in intestinal microbiota and metabolites. Thus, we compared the microbiome and metabolome changes for each SARS-CoV-2 variant in patients with COVID-19. Materials and methods We conducted a multicenter observational study of patients with COVID-19 and performed fecal microbiome, metabolome, and calprotectin analyses and compared the results among the different SARS-CoV-2 variants. Results Twenty-one patients with COVID-19 were enrolled and stratified according to the SARS-CoV-2 strain: six with the Alpha, 10 with the Delta, and five with the Omicron variant. Fecal microbiome analysis showed that α-diversity was reduced in the order of the Omicron, Delta, and Alpha variants (p = 0.07). Linear discriminant analysis revealed differences in the abundance of short-chain fatty acid-producing gut microbiota for each SARS-CoV-2 variant. Fecal metabolome analysis showed that the Omicron and Delta variants had markedly reduced propionic and lactic acid levels compared to the Alpha strain (p < 0.05). Conclusion The intestinal microbiota of patients with COVID-19 varies depending on the SARS-CoV-2 variant. Dysbiosis of the intestinal microbiota due to differences in SARS-CoV-2 variants causes a decrease in intestinal short-chain fatty acids.
Collapse
Affiliation(s)
- Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoko Ichiki
- Department of General Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tsukasa Yamakawa
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihisa Tsuji
- Department of General Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eichi Narimatsu
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Marzano V, Mortera SL, Marangelo C, Piazzesi A, Rapisarda F, Pane S, Del Chierico F, Vernocchi P, Romani L, Campana A, Palma P, Putignani L, the CACTUS Study Team. The metaproteome of the gut microbiota in pediatric patients affected by COVID-19. Front Cell Infect Microbiol 2023; 13:1327889. [PMID: 38188629 PMCID: PMC10766818 DOI: 10.3389/fcimb.2023.1327889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM. Methods We performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software. Results A COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence. Discussion These findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonia Piazzesi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Rapisarda
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Romani
- Unit of Infectious Disease, Bambino Gesu’ Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
4
|
Hwang IC, Vasquez R, Song JH, Engstrand L, Valeriano VD, Kang DK. Alterations in the gut microbiome and its metabolites are associated with the immune response to mucosal immunization with Lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 spike epitopes in mice. Front Cell Infect Microbiol 2023; 13:1242681. [PMID: 37705931 PMCID: PMC10495993 DOI: 10.3389/fcimb.2023.1242681] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Lactic acid bacteria (LAB) expressing foreign antigens have great potential as mucosal vaccines. Our previous study reported that recombinant Lactiplantibacillus plantarum SK156 displaying SARS-CoV-2 spike S1 epitopes elicited humoral and cell-mediated immune responses in mice. Here, we further examined the effect of the LAB-based mucosal vaccine on gut microbiome composition and function, and gut microbiota-derived metabolites. Forty-nine (49) female BALB/c mice were orally administered L. plantarum SK156-displaying SARS-CoV-2 spike S1 epitopes thrice (at 14-day intervals). Mucosal immunization considerably altered the gut microbiome of mice by enriching the abundance of beneficial gut bacteria, such as Muribaculaceae, Mucispirillum, Ruminococcaceae, Alistipes, Roseburia, and Clostridia vadinBB60. Moreover, the predicted function of the gut microbiome showed increased metabolic pathways for amino acids, energy, carbohydrates, cofactors, and vitamins. The fecal concentration of short-chain fatty acids, especially butyrate, was also altered by mucosal immunization. Notably, alterations in gut microbiome composition, function, and butyrate levels were positively associated with the immune response to the vaccine. Our results suggest that the gut microbiome and its metabolites may have influenced the immunogenicity of the LAB-based SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Robie Vasquez
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Tong J, Chen Y, He M, Wang W, Wang Y, Li N, Xia Q. The triangle relationship between human genome, gut microbiome, and COVID-19: opening of a Pandora's box. Front Microbiol 2023; 14:1190939. [PMID: 37455722 PMCID: PMC10344606 DOI: 10.3389/fmicb.2023.1190939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Since the pandemic started, the coronavirus disease 2019 (COVID-19) has spread worldwide. In patients with COVID-19, the gut microbiome (GM) has been supposed to be closely related to the progress of the disease. The gut microbiota composition and human genetic variation are also connected in COVID-19 patients, assuming a triangular relationship between the genome, GM, and COVID-19. Here, we reviewed the recent developments in the study of the relationship between gut microbiota and COVID-19. The keywords "COVID-19," "microbiome," and "genome" were used to search the literature in the PubMed database. We first found that the composition of the GM in COVID-19 patients varies according to the severity of the illness. Most obviously, Candida albicans abnormally increased while the probiotic Bifidobacterium decreased in severe cases of COVID-19. Interestingly, clinical studies have consistently emphasized that the family Lachnospiraceae plays a critical role in patients with COVID-19. Additionally, we have demonstrated the impact of microbiome-related genes on COVID-19. Specially, we focused on angiotensin-converting enzyme 2's dual functions in SARS-CoV-2 infection and gut microbiota alternation. In summary, these studies showed that the diversity of GMs is closely connected to COVID-19. A triangular relationship exists between COVID-19, the human genome, and the gut flora, suggesting that human genetic variations may offer a chance for a precise diagnosis of COVID-19, and the important relationships between genetic makeup and microbiome regulation may affect the therapy of COVID-19.
Collapse
Affiliation(s)
- Jie Tong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yuran Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Mei He
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenjing Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yiyang Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Na Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
Durairajan SSK, Singh AK, Saravanan UB, Namachivayam M, Radhakrishnan M, Huang JD, Dhodapkar R, Zhang H. Gastrointestinal Manifestations of SARS-CoV-2: Transmission, Pathogenesis, Immunomodulation, Microflora Dysbiosis, and Clinical Implications. Viruses 2023; 15:1231. [PMID: 37376531 PMCID: PMC10304713 DOI: 10.3390/v15061231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
The clinical manifestation of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in the respiratory system of humans is widely recognized. There is increasing evidence suggesting that SARS-CoV-2 possesses the capability to invade the gastrointestinal (GI) system, leading to the manifestation of symptoms such as vomiting, diarrhea, abdominal pain, and GI lesions. These symptoms subsequently contribute to the development of gastroenteritis and inflammatory bowel disease (IBD). Nevertheless, the pathophysiological mechanisms linking these GI symptoms to SARS-CoV-2 infection remain unelucidated. During infection, SARS-CoV-2 binds to angiotensin-converting enzyme 2 and other host proteases in the GI tract during the infection, possibly causing GI symptoms by damaging the intestinal barrier and stimulating inflammatory factor production, respectively. The symptoms of COVID-19-induced GI infection and IBD include intestinal inflammation, mucosal hyperpermeability, bacterial overgrowth, dysbiosis, and changes in blood and fecal metabolomics. Deciphering the pathogenesis of COVID-19 and understanding its exacerbation may provide insights into disease prognosis and pave the way for the discovery of potential novel targets for disease prevention or treatment. Besides the usual transmission routes, SARS-CoV-2 can also be transmitted via the feces of an infected person. Hence, it is crucial to implement preventive and control measures in order to mitigate the fecal-to-oral transmission of SARS-CoV-2. Within this context, the identification and diagnosis of GI tract symptoms during these infections assume significance as they facilitate early detection of the disease and the development of targeted therapeutics. The present review discusses the receptors, pathogenesis, and transmission of SARS-CoV-2, with a particular focus on the induction of gut immune responses, the influence of gut microbes, and potential therapeutic targets against COVID-19-induced GI infection and IBD.
Collapse
Affiliation(s)
| | - Abhay Kumar Singh
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Udhaya Bharathy Saravanan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Mayurikaa Namachivayam
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Moorthi Radhakrishnan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Jian-Dong Huang
- Department of Biochemistry, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rahul Dhodapkar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Government of India, Puducherry 605006, India
| | - Hongjie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
7
|
Bourgin M, Durand S, Kroemer G. Diagnostic, Prognostic and Mechanistic Biomarkers of COVID-19 Identified by Mass Spectrometric Metabolomics. Metabolites 2023; 13:metabo13030342. [PMID: 36984782 PMCID: PMC10056171 DOI: 10.3390/metabo13030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
A number of studies have assessed the impact of SARS-CoV-2 infection and COVID-19 severity on the metabolome of exhaled air, saliva, plasma, and urine to identify diagnostic and prognostic biomarkers. In spite of the richness of the literature, there is no consensus about the utility of metabolomic analyses for the management of COVID-19, calling for a critical assessment of the literature. We identified mass spectrometric metabolomic studies on specimens from SARS-CoV2-infected patients and subjected them to a cross-study comparison. We compared the clinical design, technical aspects, and statistical analyses of published studies with the purpose to identify the most relevant biomarkers. Several among the metabolites that are under- or overrepresented in the plasma from patients with COVID-19 may directly contribute to excessive inflammatory reactions and deficient immune control of SARS-CoV2, hence unraveling important mechanistic connections between whole-body metabolism and the course of the disease. Altogether, it appears that mass spectrometric approaches have a high potential for biomarker discovery, especially if they are subjected to methodological standardization.
Collapse
Affiliation(s)
- Mélanie Bourgin
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
- Correspondence:
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75610 Paris, France
| |
Collapse
|
8
|
Turning Microbial AhR Agonists into Therapeutic Agents via Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15020506. [PMID: 36839828 PMCID: PMC9966334 DOI: 10.3390/pharmaceutics15020506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Developing therapeutics for inflammatory diseases is challenging due to physiological mucosal barriers, systemic side effects, and the local microbiota. In the search for novel methods to overcome some of these problems, drug delivery systems that improve tissue-targeted drug delivery and modulate the microbiota are highly desirable. Microbial metabolites are known to regulate immune responses, an observation that has resulted in important conceptual advances in areas such as metabolite pharmacology and metabolite therapeutics. Indeed, the doctrine of "one molecule, one target, one disease" that has dominated the pharmaceutical industry in the 20th century is being replaced by developing therapeutics which simultaneously manipulate multiple targets through novel formulation approaches, including the multitarget-directed ligands. Thus, metabolites may not only represent biomarkers for disease development, but also, being causally linked to human diseases, an unexploited source of therapeutics. We have shown the successful exploitation of this approach: by deciphering how signaling molecules, such as the microbial metabolite, indole-3-aldehyde, and the repurposed drug anakinra, interact with the aryl hydrocarbon receptor may pave the way for novel therapeutics in inflammatory human diseases, for the realization of which drug delivery platforms are instrumental.
Collapse
|
9
|
Khreefa Z, Barbier MT, Koksal AR, Love G, Del Valle L. Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Pancreas. Cells 2023; 12:cells12020262. [PMID: 36672197 PMCID: PMC9856332 DOI: 10.3390/cells12020262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The novel coronavirus, SARS-CoV-2, rapidly spread worldwide, causing an ongoing global pandemic. While the respiratory system is the most common site of infection, a significant number of reported cases indicate gastrointestinal (GI) involvement. GI symptoms include anorexia, abdominal pain, nausea, vomiting, and diarrhea. Although the mechanisms of GI pathogenesis are still being examined, viral components isolated from stool samples of infected patients suggest a potential fecal-oral transmission route. In addition, viral RNA has been detected in blood samples of infected patients, making hematologic dissemination of the virus a proposed route for GI involvement. Angiotensin-converting enzyme 2 (ACE2) receptors serve as the cellular entry mechanism for the virus, and these receptors are particularly abundant throughout the GI tract, making the intestine, liver, and pancreas potential extrapulmonary sites for infection and reservoirs sites for developing mutations and new variants that contribute to the uncontrolled spread of the disease and resistance to treatments. This transmission mechanism and the dysregulation of the immune system play a significant role in the profound inflammatory and coagulative cascades that contribute to the increased severity and risk of death in several COVID-19 patients. This article reviews various potential mechanisms of gastrointestinal, liver, and pancreatic injury.
Collapse
Affiliation(s)
- Zaid Khreefa
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
| | - Mallory T. Barbier
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gordon Love
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
| | - Luis Del Valle
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|