1
|
Lyu Y, Pu J, Deng B, Wu C. Gut Metabolome in Companion Animal Nutrition-Linking Diets to Health. Animals (Basel) 2025; 15:651. [PMID: 40075934 PMCID: PMC11898145 DOI: 10.3390/ani15050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Tailoring diet to support a healthy gut microbiome is key for animal well-being. The gut metabolome, including all small molecules in the gut, is central to diet-microbiome-health interactions. While comprehension of the gut metabolome in companion animal nutrition is emerging, a substantial number of studies have been undertaken to elucidate the metabolomic shifts and identify specific marker metabolites influenced by diverse dietary interventions. By employing various metabolomic approaches, researchers have extensively documented the effects of different diet types, nutrient compositions, and dietary supplements on the gut metabolome in dogs and cats. Despite these advancements, there remains several notable limitations, including a lack of integrated microbiome analysis, incomplete understanding of specific marker metabolites, and an over-reliance on extrapolating findings from human studies. Therefore, this review aims to summarize the current understanding of the canine and feline gut metabolome, while exploring future possibilities and challenges for the field.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.)
| |
Collapse
|
2
|
Cabugao KGM, Gushgari-Doyle S, Chacon SS, Wu X, Bhattacharyya A, Bouskill N, Chakraborty R. Characterizing Natural Organic Matter Transformations by Microbial Communities in Terrestrial Subsurface Ecosystems: A Critical Review of Analytical Techniques and Challenges. Front Microbiol 2022; 13:864895. [PMID: 35602028 PMCID: PMC9114703 DOI: 10.3389/fmicb.2022.864895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Determining the mechanisms, traits, and pathways that regulate microbial transformation of natural organic matter (NOM) is critical to informing our understanding of the microbial impacts on the global carbon cycle. The capillary fringe of subsurface soils is a highly dynamic environment that remains poorly understood. Characterization of organo-mineral chemistry combined with a nuanced understanding of microbial community composition and function is necessary to understand microbial impacts on NOM speciation in the capillary fringe. We present a critical review of the popular analytical and omics techniques used for characterizing complex carbon transformation by microbial communities and focus on how complementary information obtained from the different techniques enable us to connect chemical signatures with microbial genes and pathways. This holistic approach offers a way forward for the comprehensive characterization of the formation, transformation, and mineralization of terrestrial NOM as influenced by microbial communities.
Collapse
Affiliation(s)
- Kristine Grace M Cabugao
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sara Gushgari-Doyle
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephany S Chacon
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Xiaoqin Wu
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Amrita Bhattacharyya
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nicholas Bouskill
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
3
|
Seyler L, Kujawinski EB, Azua-Bustos A, Lee MD, Marlow J, Perl SM, Cleaves II HJ. Metabolomics as an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers. ASTROBIOLOGY 2020; 20:1251-1261. [PMID: 32551936 PMCID: PMC7116171 DOI: 10.1089/ast.2019.2135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome.
Collapse
Affiliation(s)
- Lauren Seyler
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Address correspondence to: Lauren Seyler, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 86 Water Street, Woods Hole, MA 02543, USA
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Armando Azua-Bustos
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Michael D. Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - Jeffrey Marlow
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Scott M. Perl
- Geological and Planetary Sciences, California Institute of Technology/NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Mineral Sciences, Los Angeles Natural History Museum, Los Angeles, California, USA
| | - Henderson James Cleaves II
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, USA
- Geographical Research Laboratory, Carnegie Institution of Washington
| |
Collapse
|
4
|
Aguilar-Rangel EJ, Prado BL, Vásquez-Murrieta MS, Los Santos PED, Siebe C, Falcón LI, Santillán J, Alcántara-Hernández RJ. Temporal analysis of the microbial communities in a nitrate-contaminated aquifer and the co-occurrence of anammox, n-damo and nitrous-oxide reducing bacteria. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 234:103657. [PMID: 32777591 DOI: 10.1016/j.jconhyd.2020.103657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/13/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Groundwater-N pollution derives from agricultural and urban activities, and compromises water quality in shallow aquifers, putting human and environmental health at risk. Nonetheless, subsurface microbiota can transform dissolved inorganic nitrogen into N2. In this study, we surveyed the microbial community of a shallow aquifer by sampling one well, one piezometer and a spring within an agricultural area that receives N-inputs of more than 700 kg/ha per year through irrigation with wastewater. The survey was conducted during a year with a 16S rRNA next-gen approach. In parallel, we quantified the number of gene copies and transcripts related to anaerobic ammonium oxidation (anammox, hzo), nitrite-dependent anaerobic methane oxidation (n-damo, nod and pmoA) and nitrous oxide reduction (last step of denitrification, nosZ), during the dry and rainy seasons. Our results showed that the groundwater samples had 17.7 to 22.5 mg/L of NO3--N. The bacterial and archaeal community structure was distinctive at each site, and it remained relatively stable over time. We verified the co-occurrence of N-transforming bacteria, which was correlated with the concentration of NO2-/NO3- and ORP/DO values (DO: ~3.0 mg/L). Our analyses suggest that these conditions may allow the presence of nitrifying microorganisms which can couple with anammox, n-damo and denitrifying bacteria in interrelated biogeochemical pathways. Gene density (as the number of gene copies per litre) was lower in the rainy season than in the dry season, possibly due to dilution by rainwater infiltration. Yet, the numbers of hzo gene copies here found were similar to those reported in oceanic oxygen minimum zones and in a carbonate-rock aquifer. The transcript sequences showed that Candidatus Brocadia spp. (anammox), Candidatus Methylomirabilis spp. (n-damo) and autotrophic denitrifying Betaproteobacteria coexist in the groundwater environment, with the potential to attenuate the concentration of dissolved inorganic nitrogen by reducing it to N2 rather than N2O; delivering thus, an important ecosystem service to remove contaminants.
Collapse
Affiliation(s)
- Eduardo J Aguilar-Rangel
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico
| | - Blanca L Prado
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico
| | - María Soledad Vásquez-Murrieta
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Del. Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | - Paulina Estrada-de Los Santos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Del. Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico
| | - Luisa I Falcón
- Instituto de Ecología, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, 97302, Yucatán, Mexico
| | - Jazmín Santillán
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico
| | - Rocío J Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510 Ciudad de México, Mexico.
| |
Collapse
|
5
|
Mikan MP, Harvey HR, Timmins-Schiffman E, Riffle M, May DH, Salter I, Noble WS, Nunn BL. Metaproteomics reveal that rapid perturbations in organic matter prioritize functional restructuring over taxonomy in western Arctic Ocean microbiomes. THE ISME JOURNAL 2020; 14:39-52. [PMID: 31492961 PMCID: PMC6908719 DOI: 10.1038/s41396-019-0503-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
Abstract
We examined metaproteome profiles from two Arctic microbiomes during 10-day shipboard incubations to directly track early functional and taxonomic responses to a simulated algal bloom and an oligotrophic control. Using a novel peptide-based enrichment analysis, significant changes (p-value < 0.01) in biological and molecular functions associated with carbon and nitrogen recycling were observed. Within the first day under both organic matter conditions, Bering Strait surface microbiomes increased protein synthesis, carbohydrate degradation, and cellular redox processes while decreasing C1 metabolism. Taxonomic assignments revealed that the core microbiome collectively responded to algal substrates by assimilating carbon before select taxa utilize and metabolize nitrogen intracellularly. Incubations of Chukchi Sea bottom water microbiomes showed similar, but delayed functional responses to identical treatments. Although 24 functional terms were shared between experimental treatments, the timing, and degree of the remaining responses were highly variable, showing that organic matter perturbation directs community functionality prior to alterations to the taxonomic distribution at the microbiome class level. The dynamic responses of these two oceanic microbial communities have important implications for timing and magnitude of responses to organic perturbations within the Arctic Ocean and how community-level functions may forecast biogeochemical gradients in oceans.
Collapse
Affiliation(s)
- Molly P Mikan
- Ocean, Earth and Atmospheric Sciences, Old Dominion University, 406 Oceanography & Physical Sciences Building, Norfolk, VA, 23529, USA
| | - H Rodger Harvey
- Ocean, Earth and Atmospheric Sciences, Old Dominion University, 406 Oceanography & Physical Sciences Building, Norfolk, VA, 23529, USA
| | - Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, 1705 NE Pacific St., Seattle, WA, USA
| | - Damon H May
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Ian Salter
- Faroese Marine Research Institute, Nóatún 1, FO-100, Tórshavn, Faroe Islands
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - William S Noble
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Ave NE, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
An Iterative, Synthetic Approach To Engineer a High-Performance PhoB-Specific Reporter. Appl Environ Microbiol 2018; 84:AEM.00603-18. [PMID: 29752265 DOI: 10.1128/aem.00603-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022] Open
Abstract
Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal "on" expression when PhoB is active, minimal background in the "off" state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri, enabling us to identify bases at particular randomized positions that significantly correlated with high-level "on" or low-level "off" expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes, the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering.IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the "on" and "off" states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri This promoter design strategy will facilitate the engineering of other regulator-specific reporters.
Collapse
|
7
|
Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front Microbiol 2018; 9:1132. [PMID: 29915565 PMCID: PMC5994547 DOI: 10.3389/fmicb.2018.01132] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Rapid industrialization and population explosion has resulted in the generation and dumping of various contaminants into the environment. These harmful compounds deteriorate the human health as well as the surrounding environments. Current research aims to harness and enhance the natural ability of different microbes to metabolize these toxic compounds. Microbial-mediated bioremediation offers great potential to reinstate the contaminated environments in an ecologically acceptable approach. However, the lack of the knowledge regarding the factors controlling and regulating the growth, metabolism, and dynamics of diverse microbial communities in the contaminated environments often limits its execution. In recent years the importance of advanced tools such as genomics, proteomics, transcriptomics, metabolomics, and fluxomics has increased to design the strategies to treat these contaminants in ecofriendly manner. Previously researchers has largely focused on the environmental remediation using single omics-approach, however the present review specifically addresses the integrative role of the multi-omics approaches in microbial-mediated bioremediation. Additionally, we discussed how the multi-omics approaches help to comprehend and explore the structural and functional aspects of the microbial consortia in response to the different environmental pollutants and presented some success stories by using these approaches.
Collapse
Affiliation(s)
- Muneer A Malla
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Czaplicki LM, Gunsch CK. Reflection on Molecular Approaches Influencing State-of-the-Art Bioremediation Design: Culturing to Microbial Community Fingerprinting to Omics. JOURNAL OF ENVIRONMENTAL ENGINEERING (NEW YORK, N.Y.) 2016; 142:10.1061/(ASCE)EE.1943-7870.0001141. [PMID: 28348455 PMCID: PMC5364726 DOI: 10.1061/(asce)ee.1943-7870.0001141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/31/2016] [Indexed: 05/30/2023]
Abstract
Bioremediation is generally viewed as a cost effective and sustainable technology because it relies on microbes to transform pollutants into benign compounds. Advances in molecular biological analyses allow unprecedented microbial detection and are increasingly incorporated into bioremediation. Throughout history, state-of-the-art techniques have informed bioremediation strategies. However, the insights those techniques provided were not as in depth as those provided by recently developed omics tools. Advances in next generation sequencing (NGS) have now placed metagenomics and metatranscriptomics within reach of environmental engineers. As NGS costs decrease, metagenomics and metatranscriptomics have become increasingly feasible options to rapidly scan sites for specific degradative functions and identify microorganisms important in pollutant degradation. These omic techniques are capable of revolutionizing biological treatment in environmental engineering by allowing highly sensitive characterization of previously uncultured microorganisms. Omics enables the discovery of novel microorganisms for use in bioaugmentation and supports systematic optimization of biostimulation strategies. This review describes the omics journey from roots in biology and medicine to its current status in environmental engineering including potential future directions in commercial application.
Collapse
Affiliation(s)
- Lauren M. Czaplicki
- Ph.D. Candidate, Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708-0287 USA
| | - Claudia K. Gunsch
- Associate Professor, Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708-0287 USA
| |
Collapse
|
9
|
Francis Pan TC, Applebaum SL, Manahan DT. Genetically Determined Variation in Developmental Physiology of Bivalve Larvae (Crassostrea gigas). Physiol Biochem Zool 2015; 88:128-36. [DOI: 10.1086/679656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Ratcliff WC, Hawthorne P, Libby E. Courting disaster: How diversification rate affects fitness under risk. Evolution 2014; 69:126-35. [PMID: 25410817 PMCID: PMC4312886 DOI: 10.1111/evo.12568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 10/26/2014] [Indexed: 01/21/2023]
Abstract
Life is full of risk. To deal with this uncertainty, many organisms have evolved bet-hedging strategies that spread risk through phenotypic diversification. These rates of diversification can vary by orders of magnitude in different species. Here we examine how key characteristics of risk and organismal ecology affect the fitness consequences of variation in diversification rate. We find that rapid diversification is strongly favored when the risk faced has a wide spatial extent, with a single disaster affecting a large fraction of the population. This advantage is especially great in small populations subject to frequent disaster. In contrast, when risk is correlated through time, slow diversification is favored because it allows adaptive tracking of disasters that tend to occur in series. Naturally evolved diversification mechanisms in diverse organisms facing a broad array of environmental risks largely support these results. The theory presented in this article provides a testable ecological hypothesis to explain the prevalence of slow stochastic switching among microbes and rapid, within-clutch diversification strategies among plants and animals.
Collapse
Affiliation(s)
- William C Ratcliff
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332.
| | | | | |
Collapse
|
11
|
Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME JOURNAL 2014; 9:1488-95. [PMID: 25526370 DOI: 10.1038/ismej.2014.251] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/20/2014] [Accepted: 11/16/2014] [Indexed: 01/16/2023]
Abstract
Diversity begets higher-order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions and it is this 'system' that is the basis for higher-order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions.
Collapse
|
12
|
Nunn BL, Faux JF, Hippmann AA, Maldonado MT, Harvey HR, Goodlett DR, Boyd PW, Strzepek RF. Diatom proteomics reveals unique acclimation strategies to mitigate Fe limitation. PLoS One 2013; 8:e75653. [PMID: 24146769 PMCID: PMC3797725 DOI: 10.1371/journal.pone.0075653] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/17/2013] [Indexed: 11/19/2022] Open
Abstract
Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (Fv/Fm). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i.e., nitrate and nitrite transporters, Photosystem II and Photosystem I complexes). Acclimation of the diatom to the desired Fe conditions and the comprehensive proteomic approach provides a more robust interpretation of this dynamic proteome than previous studies.
Collapse
Affiliation(s)
- Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medicinal Chemistry Department, University of Washington, Seattle, Washington, United States of America
| | - Jessica F. Faux
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, United States of America
| | - Anna A. Hippmann
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria T. Maldonado
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - H. Rodger Harvey
- Department of Ocean, Earth and Atmospheric Science, Old Dominion University, Norfolk, Virginia, United States of America
| | - David R. Goodlett
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Philip W. Boyd
- NIWA Centre for Chemical and Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Robert F. Strzepek
- Research School of Earth Sciences, The Australian National University, Canberra, Australia
| |
Collapse
|
13
|
Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl Environ Microbiol 2013; 79:2397-404. [PMID: 23377933 DOI: 10.1128/aem.03837-12] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the electron-accepting partner for either Geobacter metallireducens, which performs DIET, or Pelobacter carbinolicus, which relies on HIT. Transcript abundance for G. sulfurreducens uptake hydrogenase genes was 7-fold lower in cocultures with G. metallireducens than in cocultures with P. carbinolicus, consistent with DIET and HIT, respectively, in the two cocultures. Transcript abundance for the pilus-associated cytochrome OmcS, which is essential for DIET but not for HIT, was 240-fold higher in the cocultures with G. metallireducens than in cocultures with P. carbinolicus. The pilin gene pilA was moderately expressed despite a mutation that might be expected to repress pilA expression. Lower transcript abundance for G. sulfurreducens genes associated with acetate metabolism in the cocultures with P. carbinolicus was consistent with the repression of these genes by H2 during HIT. Genes for the biogenesis of pili and flagella and several c-type cytochrome genes were among the most highly expressed in G. metallireducens. Mutant strains that lacked the ability to produce pili, flagella, or the outer surface c-type cytochrome encoded by Gmet_2896 were not able to form cocultures with G. sulfurreducens. These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments.
Collapse
|
14
|
Leis B, Angelov A, Liebl W. Screening and expression of genes from metagenomes. ADVANCES IN APPLIED MICROBIOLOGY 2013; 83:1-68. [PMID: 23651593 DOI: 10.1016/b978-0-12-407678-5.00001-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microorganisms are the most abundant and widely spread organisms on earth. They colonize a huge variety of natural and anthropogenic environments, including very specialized ecological niches and even extreme habitats, which are made possible by the immense metabolic diversity and genetic adaptability of microbes. As most of the organisms from environmental samples defy cultivation, cultivation-independent metagenomics approaches have been applied since more than one decade to access and characterize the phylogenetic diversity in microbial communities as well as their metabolic potential and ecological functions. Thereby, metagenomics has fully emerged as an own scientific field for mining new biocatalysts for many industrially relevant processes in biotechnology and pharmaceutics. This review summarizes common metagenomic approaches ranging from sampling, isolation of nucleic acids, construction of metagenomic libraries and their evaluation. Sequence-based screenings implement next-generation sequencing platforms, microarrays or PCR-based methods, while function-based analysis covers heterologous expression of metagenomic libraries in diverse screening setups. Major constraints and advantages of each strategy are described. The importance of alternative host-vector systems is discussed, and in order to underline the role of phylogenetic and physiological distance from the gene donor and the expression host employed, a case study is presented that describes the screening of a genomic library from an extreme thermophilic bacterium in both Escherichia coli and Thermus thermophilus. Metatranscriptomics, metaproteomics and single-cell-based methods are expected to complement metagenomic screening efforts to identify novel biocatalysts from environmental samples.
Collapse
Affiliation(s)
- Benedikt Leis
- Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Bavaria, Germany
| | | | | |
Collapse
|