1
|
Aguilar-Romero I, De la Torre-Zúñiga J, Quesada JM, Haïdour A, O'Connell G, McAmmond BM, Van Hamme JD, Romero E, Wittich RM, van Dillewijn P. Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: Metabolic processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116536. [PMID: 33529903 DOI: 10.1016/j.envpol.2021.116536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The high global consumption of ibuprofen and its limited elimination by wastewater treatment plants (WWTPs), has led to the contamination of aquatic systems by this common analgesic and its metabolites. The potentially negative environmental and public health effects of this emerging contaminant have raised concerns, driving the demand for treatment technologies. The implementation of bacteria which mineralize organic contaminants in biopurification systems used to decontaminate water or directly in processes in WWTPs, is a cheap and sustainable means for complete elimination before release into the environment. In this work, an ibuprofen-mineralizing bacterial strain isolated from sediments of the River Elbe was characterized and assayed to remediate different ibuprofen-polluted media. Strain RW412, which was identified as Sphingopyxis granuli, has a 4.48 Mb genome which includes plasmid sequences which harbor the ipf genes that encode the first steps of ibuprofen mineralization. Here, we confirm that these genes encode enzymes which initiate CoA ligation to ibuprofen, followed by aromatic ring activation by a dioxygenase and retroaldol cleavage to unequivocally produce 4-isobutylcatechol and propionyl-CoA which then undergo further degradation. In liquid mineral salts medium, the strain eliminated more than 2 mM ibuprofen within 74 h with a generation time of 16 h. Upon inoculation into biopurification systems, it eliminated repeated doses of ibuprofen within a few days. Furthermore, in these systems the presence of RW412 avoided the accumulation of ibuprofen metabolites. In ibuprofen-spiked effluent from a municipal WWTP, ibuprofen removal by this strain was 7 times faster than by the indigenous microbiota. These results suggest that this strain can persist and remain active under environmentally relevant conditions, and may be a useful innovation to eliminate this emerging contaminant from urban wastewater treatment systems.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Jesús De la Torre-Zúñiga
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - José Miguel Quesada
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Ali Haïdour
- Unidad de Resonancia Magnética Nuclear, Centro de Instrumentación Científica, Universidad de Granada, Paseo Juan Osorio S/n, 18071, Granada, Spain
| | - Garret O'Connell
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Breanne M McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Esperanza Romero
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Regina-Michaela Wittich
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Pieter van Dillewijn
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
2
|
Garrido-Sanz D, Manzano J, Martín M, Redondo-Nieto M, Rivilla R. Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations. Front Microbiol 2018; 9:232. [PMID: 29497412 PMCID: PMC5818466 DOI: 10.3389/fmicb.2018.00232] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/30/2018] [Indexed: 01/09/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent pollutants that cause several adverse health effects. Aerobic bioremediation of PCBs involves the activity of either one bacterial species or a microbial consortium. Using multiple species will enhance the range of PCB congeners co-metabolized since different PCB-degrading microorganisms exhibit different substrate specificity. We have isolated a bacterial consortium by successive enrichment culture using biphenyl (analog of PCBs) as the sole carbon and energy source. This consortium is able to grow on biphenyl, benzoate, and protocatechuate. Whole-community DNA extracted from the consortium was used to analyze biodiversity by Illumina sequencing of a 16S rRNA gene amplicon library and to determine the metagenome by whole-genome shotgun Illumina sequencing. Biodiversity analysis shows that the consortium consists of 24 operational taxonomic units (≥97% identity). The consortium is dominated by strains belonging to the genus Pseudomonas, but also contains betaproteobacteria and Rhodococcus strains. whole-genome shotgun (WGS) analysis resulted in contigs containing 78.3 Mbp of sequenced DNA, representing around 65% of the expected DNA in the consortium. Bioinformatic analysis of this metagenome has identified the genes encoding the enzymes implicated in three pathways for the conversion of biphenyl to benzoate and five pathways from benzoate to tricarboxylic acid (TCA) cycle intermediates, allowing us to model the whole biodegradation network. By genus assignment of coding sequences, we have also been able to determine that the three biphenyl to benzoate pathways are carried out by Rhodococcus strains. In turn, strains belonging to Pseudomonas and Bordetella are the main responsible of three of the benzoate to TCA pathways while the benzoate conversion into TCA cycle intermediates via benzoyl-CoA and the catechol meta-cleavage pathways are carried out by beta proteobacteria belonging to genera such as Achromobacter and Variovorax. We have isolated a Rhodococcus strain WAY2 from the consortium which contains the genes encoding the three biphenyl to benzoate pathways indicating that this strain is responsible for all the biphenyl to benzoate transformations. The presented results show that metagenomic analysis of consortia allows the identification of bacteria active in biodegradation processes and the assignment of specific reactions and pathways to specific bacterial groups.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Thijs S, Sillen W, Weyens N, Vangronsveld J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:23-38. [PMID: 27484694 DOI: 10.1080/15226514.2016.1216076] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.
Collapse
Affiliation(s)
- Sofie Thijs
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Wouter Sillen
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
4
|
Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, Bonilla G, Kar A, Leiby N, Mehta P, Marx CJ, Segrè D. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep 2014; 7:1104-15. [PMID: 24794435 PMCID: PMC4097880 DOI: 10.1016/j.celrep.2014.03.070] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/01/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
The interspecies exchange of metabolites plays a key role in the spatiotemporal dynamics of microbial communities. This raises the question of whether ecosystem-level behavior of structured communities can be predicted using genome-scale metabolic models for multiple organisms. We developed a modeling framework that integrates dynamic flux balance analysis with diffusion on a lattice and applied it to engineered communities. First, we predicted and experimentally confirmed the species ratio to which a two-species mutualistic consortium converges and the equilibrium composition of a newly engineered three-member community. We next identified a specific spatial arrangement of colonies, which gives rise to what we term the "eclipse dilemma": does a competitor placed between a colony and its cross-feeding partner benefit or hurt growth of the original colony? Our experimentally validated finding that the net outcome is beneficial highlights the complex nature of metabolic interactions in microbial communities while at the same time demonstrating their predictability.
Collapse
Affiliation(s)
- William R Harcombe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - William J Riehl
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Ilija Dukovski
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Brian R Granger
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Alex Betts
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex H Lang
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Gracia Bonilla
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Amrita Kar
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Nicholas Leiby
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Systems Biology Graduate Program, Harvard University, Cambridge, MA 02138, USA
| | - Pankaj Mehta
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA; Department of Physics, Boston University, Boston, MA 02215, USA
| | - Christopher J Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Daniel Segrè
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA; Department of Biology and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|