1
|
Ding Y, Li B, Yi Y, Liu C, Wen J, Jian X, Li Y. Progress in the role of nanoparticles in the diagnosis and treatment of bone and joint tuberculosis. Front Med (Lausanne) 2025; 12:1536547. [PMID: 39926423 PMCID: PMC11804262 DOI: 10.3389/fmed.2025.1536547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Bone and joint tuberculosis (BJTB), caused by Mycobacterium tuberculosis (MTB), is a prevalent form of extrapulmonary tuberculosis that poses significant challenges to global public health due to difficulties in early diagnosis, prolonged treatment cycles, and drug resistance. Recent advancements in nanotechnology have introduced novel solutions for the early detection and precise treatment of BJTB, leveraging unique physicochemical properties such as high specific surface area, targeted delivery capabilities, sustained drug release, and excellent biocompatibility. In diagnostic applications, nanomaterials markedly enhance the sensitivity and accuracy of detection methods while reducing testing time. These technologies are adaptable to resource-limited settings, enabling earlier patient intervention and mitigating disease progression risk. In therapeutic applications, nanomaterials prolong drug retention in bone tissue through targeted delivery, thereby decreasing medication frequency and minimizing toxic side effects, which significantly improves treatment efficacy. Despite substantial progress, further research is required to address long-term safety concerns, broaden clinical applicability, and evaluate performance under complex pathological conditions. This review summarizes recent advancements in nanomaterials for diagnosing and treating BJTB and identifies key areas for future research, laying the groundwork for advancing precision medicine and personalized treatments.
Collapse
Affiliation(s)
- Yitong Ding
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Baiyun Li
- Department of Nursing, Hunan Normal University, Changsha, Hunan, China
| | - Yangfei Yi
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jie Wen
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xiaohong Jian
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yufei Li
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Kyung K, Lee H, Kim SK, Kim DE. Nucleic Acid Lateral Flow Assay Implemented with Isothermal Gene Amplification of SARS-CoV-2 RNA. BIOSENSORS 2024; 14:585. [PMID: 39727850 DOI: 10.3390/bios14120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
We developed a rapid and sensitive diagnostic platform that integrates isothermal viral gene amplification with a nucleic acid lateral flow assay (NALFA) to detect SARS-CoV-2 RNA. Isothermal gene amplification was performed by combining reverse transcription of viral RNA with recombinase polymerase amplification (RPA). In our diagnostic platform, DNA primers for the RPA reaction were modified by appending DNA tails, enabling the synthesis of tailed amplicon DNAs. These tailed amplicon DNAs were subsequently annealed to the complementary capture DNA probe affixed to the lateral flow strip during the NALFA of the reaction samples. The other side of each amplicon DNA tail was annealed to the reporter probe DNA conjugated with gold nanoparticles to visually detect the test line in the strip. This diagnostic platform reduces the time required to obtain readouts to within 1 h and can detect viral RNA concentrations as low as 3.1 cp/μL. Furthermore, when applied to nasopharyngeal clinical samples, our NALFA diagnostic platform yielded highly reliable molecular diagnostic readouts that were 100% consistent with the results of conventional RT-qPCR.
Collapse
Affiliation(s)
- Kangwuk Kyung
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyojin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo-Kyung Kim
- Department of Laboratory Medicine, Ewha Womans University Mokdong Hospital, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Uniwon PharmGene Inc., 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022; 8:2232-2257. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.
Collapse
Affiliation(s)
- Survanshu Saxena
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kapil Punjabi
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasini Singh
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prachi Bendale
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
4
|
Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2022; 94:26-40. [PMID: 34802244 PMCID: PMC8756393 DOI: 10.1021/acs.analchem.1c03856] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sima Singh
- IES
Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano 49, 80131 Naples, Italy
- BAT
Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Napoli Federico
II, 80055 Naples, Italy
| |
Collapse
|
5
|
Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R. Environmentally Safe Biosynthesis of Gold Nanoparticles Using Plant Water Extracts. NANOMATERIALS 2021; 11:nano11082033. [PMID: 34443864 PMCID: PMC8400837 DOI: 10.3390/nano11082033] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022]
Abstract
Due to their simplicity of synthesis, stability, and functionalization, low toxicity, and ease of detection, gold nanoparticles (AuNPs) are a natural choice for biomedical applications. AuNPs’ unique optoelectronic features have subsequently been investigated and used in high-tech applications such as organic photovoltaics, sensory probes, therapeutic agents, the administration of drugs in biological and medical applications, electronic devices, catalysis, etc. Researchers have demonstrated the biosynthesis of AuNPs using plants. The present study evaluates 109 plant species used in the traditional medicine of Middle East countries as new sources of AuNPs in a wide variety of laboratory environments. In this study, dried samples of bark, bulb, flower, fruit, gum, leaf, petiole, rhizome, root, seed, stamen, and above-ground parts were evaluated in water extracts. About 117 plant parts were screened from 109 species in 54 plant families, with 102 extracts demonstrating a bioreduction of Au3+ to Au0, revealing 37 new plant species in this regard. The color change of biosynthesized AuNPs to gray, violet, or red was confirmed by UV-Visible spectroscopy, TEM, FSEM, DLS, and EDAX of six plants. In this study, AuNPs of various sizes were measured from 27 to 107 nm. This study also includes an evaluation of the potency of traditional East Asian medicinal plants used in this biosynthesis of AuNPs. An environmentally safe procedure such as this could act as a foundation for cosmetic industries whose quality assessment systems give a high priority to non-chemically synthesized products. It is crucial that future optimizations are adequately documented to scale up the described process.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Gholam Hosein Shahidi Bonjar
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Akbar Hosseinipour
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran;
| |
Collapse
|
6
|
Abdou Mohamed MA, Kozlowski HN, Kim J, Zagorovsky K, Kantor M, Feld JJ, Mubareka S, Mazzulli T, Chan WCW. Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. ACS NANO 2021; 15:9379-9390. [PMID: 33970612 DOI: 10.1021/acsnano.0c09902] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens.
Collapse
Affiliation(s)
- Mohamed A Abdou Mohamed
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Hannah N Kozlowski
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Jisung Kim
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Kyryl Zagorovsky
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Melinda Kantor
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
| | - Jordan J Feld
- Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Samira Mubareka
- Divisions of Microbiology and Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tony Mazzulli
- Department of Microbiology, Mount Sinai Hospital and University Health Network, Toronto, Ontario M5G 1X5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Bimolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Centre for Global Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering. University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
7
|
Zhang C, Zheng T, Wang H, Chen W, Huang X, Liang J, Qiu L, Han D, Tan W. Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Anal Chem 2021; 93:3325-3330. [PMID: 33570399 PMCID: PMC7885334 DOI: 10.1021/acs.analchem.0c05059] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 01/01/2023]
Abstract
Rapid tests for pathogen identification and spread assessment are critical for infectious disease control and prevention. The control of viral outbreaks requires a nucleic acid diagnostic test that is sensitive and simple and delivers fast and reliable results. Here, we report a one-pot direct reverse transcript loop-mediated isothermal amplification (RT-LAMP) assay of SARS-CoV-2 based on a lateral flow assay in clinical samples. The entire contiguous sample-to-answer workflow takes less than 40 min from a clinical swab sample to a diagnostic result without professional instruments and technicians. The assay achieved an accuracy of 100% in 12 synthetic and 12 clinical samples compared to the data from PCR-based assays. We anticipate that our method will provide a universal platform for rapid and point-of-care detection of emerging infectious diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Zheng
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hua Wang
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Xiaoye Huang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Jianqi Liang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Da Han
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weihong Tan
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute
of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy
of Sciences, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
8
|
Ghorbanzadeh N, Peymani A, Ahmadpour-Yazdi H. Colorimetric-based detection of Ureaplasma urealyticum using gold nanoparticles. IET Nanobiotechnol 2020; 14:19-24. [PMID: 31935673 DOI: 10.1049/iet-nbt.2019.0088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ureaplasma urealyticum (uu) is one of the most common agents of urogenital infections and is associated with complications such as infertility, spontaneous abortion and other sexually transmitted diseases. Here, a DNA sensor based on oligonucleotide target-specific gold nanoparticles (AuNPs) was developed, in which the dispersed and aggregated states of oligonucleotide-functionalised AuNPs were optimised for the colorimetric detection of a polymerase chain reaction (PCR) amplicon of U. urealyticum DNA. A non-cross-linking approach utilising a single Au-nanoprobe specific of the urease gene was utilised and the effect of a PCR product concentration gradient evaluated. Results from both visual and spectral analyses showed that target-Au-nanoprobe hybrids were stable against aggregation after adding the inducer. Furthermore, when a non-target PCR product was used, the peak position shifted and salt-induced aggregation occurred. The assay's limit of detection of the assay was 10 ng with a dynamic range of 10-60 ng. This procedure provides a rapid, facile and low-cost detection format, compared to methods currently used for the identification of U. urealyticum.
Collapse
Affiliation(s)
- Nahid Ghorbanzadeh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | |
Collapse
|
9
|
Khan T, Ullah N, Khan MA, Mashwani ZUR, Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci 2019; 272:102017. [PMID: 31437570 DOI: 10.1016/j.cis.2019.102017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
The worldwide focus on research in the field of green nanotechnology has resulted in the environmentally and biologically safe applications of a diversity of nanomaterials. Nanotechnology, in general, implies the production of nanoparticles having different but regular shapes, sizes, and properties. A lot of studies have been conducted on the synthesis of metal nanoparticles through biological, chemical, and physical methods. Owing to its safety, both environmental and in vivo, as well as the ease of synthesis, biogenic routes especially the plant-based synthesis of metal nanoparticles has been preferred as the best strategy. Among the metal nanoparticles, gold nanoparticles are recognized as the most potent, biocompatible and environment-friendly. A decade of research work has attempted the production of gold nanoparticles mediated by different parts of various plants. Further, these nanoparticles have been engineered through modification in the sizes and shapes for attaining enhanced activity and optimal performance in many different applications including biomedical, antimicrobial, diagnostics and environmental applications. This article reviews the fabrication strategies for gold nanoparticles via plant-based routes and highlights the diversity of the applications of these materials in bio-nanotechnology. The review article also highlights the recent developments in the synthesis and optical properties of gold nanoparticles.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand Chakdara Dir Lower, Pakistan
| | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan 23390, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan 23390, Pakistan
| | | | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Peshawar 25000, Pakistan.
| |
Collapse
|
10
|
Mohammed AS, Nagarjuna R, Khaja MN, Ganesan R, Ray Dutta J. Effects of free patchy ends in ssDNA and dsDNA on gold nanoparticles in a colorimetric gene sensor for Hepatitis C virus RNA. Mikrochim Acta 2019; 186:566. [DOI: 10.1007/s00604-019-3685-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022]
|
11
|
Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019; 13:327-343. [PMID: 30705582 PMCID: PMC6342214 DOI: 10.2147/dddt.s190577] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The worldwide misuse of antibiotics and the subsequent rise of multidrug-resistant pathogenic bacteria have prompted a paradigm shift in the established view of antibiotic and bacterial-human relations. The clinical failures of conventional antibiotic therapies are associated with lengthy detection methods, poor penetration at infection sites, disruption of indigenous microflora and high potential for mutational resistance. One of the most promising strategies to improve the efficacy of antibiotics is to complex them with micro or nano delivery materials. Such materials/vehicles can shield antibiotics from enzyme deactivation, increasing the therapeutic effectiveness of the drug. Alternatively, drug-free nanomaterials that do not kill the pathogen but target virulent factors such as adhesins, toxins, or secretory systems can be used to minimize resistance and infection severity. The main objective of this review is to examine the potential of the aforementioned materials in the detection and treatment of antibiotic-resistant pathogenic organisms.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| |
Collapse
|
12
|
Gamrad L, Mancini R, Werner D, Tiedemann D, Taylor U, Ziefuß A, Rehbock C, Klein S, Kues W, Barcikowski S, Rath D. Triplex-hybridizing bioconjugated gold nanoparticles for specific Y-chromosome sequence targeting of bull spermatozoa. Analyst 2018; 142:2020-2028. [PMID: 28487921 DOI: 10.1039/c6an02461k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gold nanoparticles (AuNPs) are widely used in biomedical applications for drug targeting and bioimaging. This often neccesitates their functionalization with biomolecules carrying a defined biological function, yielding gold nanoparticle bioconjugates. The utilization of triplex-forming oligonucleotides (TFOs) as ligands gives access to nanoconjugates as tools for specific DNA-related nanotargeting via triplex hybridization. Since triplex hybridization with nanobioconjugates has to date not been shown on biologically relevant samples, sex-specific sperm marking may be an appropriate model system to demonstrate the opportunities of this targeting method in vitro. In this study, we focused on specific labeling of repetitive target sites enriched on the bovine Y-chromosome using triplex forming oligonucleotides. First, the functionality of a specific locked nucleic acid (LNA) sequence was confirmed on bovine free DNA and on demembranated sperm heads. Thereafter, the influence of AuNPs on triplex hybridization was spectrophotometrically analyzed employing synthetic dsDNA, genomic DNA and demembranated sperm heads. Results from the SPR-peak shift indicate that TFO-AuNP hybridize to bovine gDNA in a qualitative and significant manner. These results confirm successful triplex hybridization on biologically relevant target sites as well as the establishment of a method to use gold nanoparticles as a suitable tool for sex-selective hybridization.
Collapse
Affiliation(s)
- L Gamrad
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaetsstr. 7, 45141 Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boby N, Ali SA, Preena P, Kaur G, Kumar S, Chaudhuri P. Detection of multiple organisms based on the distance-dependent optical properties of gold nanoparticle and dark-field microscopy. Talanta 2018; 188:325-331. [DOI: 10.1016/j.talanta.2018.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/27/2023]
|
14
|
Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron 2018; 113:124-135. [DOI: 10.1016/j.bios.2018.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
|
15
|
Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol 2018; 9:1441. [PMID: 30013539 PMCID: PMC6036605 DOI: 10.3389/fmicb.2018.01441] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.
Collapse
Affiliation(s)
- Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Matthew P. McCusker
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Andreia Carvalho
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Daniela A. Ferreira
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Niamh M. Mohan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Nuritas Limited, Dublin, Ireland
| | - Marta Martins
- Department of Microbiology, Moyne Institute of Preventive Medicine, Schools of Genetics and Microbiology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
16
|
Bokhari H. Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens. Crit Rev Microbiol 2018. [PMID: 29513060 DOI: 10.1080/1040841x.2018.1444013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging infectious diseases remain among the leading causes of global mortality. Traditional laboratory diagnostic approaches designed to detect and track infectious disease agents provide a framework for surveillance of bio threats. However, surveillance and outbreak investigations using such time-consuming approaches for early detection of pathogens remain the major pitfall. Hence, reasonable real-time surveillance systems to anticipate threats to public health and environment are critical for identifying specific aetiologies and preventing the global spread of infectious disease. The current review discusses the growing need for monitoring and surveillance of pathogens with the same zeal and approach as adopted by microbial forensics laboratories, and further strengthening it by integrating with the innovative nanotechnology for rapid detection of microbial pathogens. Such innovative diagnostics platforms will help to track pathogens from high risk areas and environment by pre-emptive approach that will minimize damages. The various scenarios with the examples are discussed where the high risk associated human pathogens in particular were successfully detected using various nanotechnology approaches with potential future prospects in the field of microbial forensics.
Collapse
Affiliation(s)
- Habib Bokhari
- a Microbiology & Public Health Lab, Department of Biosciences , COMSATS Institute of Information Technology , Islamabad , Pakistan
| |
Collapse
|
17
|
Carlos FF, Veigas B, Matias AS, Doria G, Flores O, Baptista PV. Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms. ACTA ACUST UNITED AC 2017; 16:21-25. [PMID: 29124021 PMCID: PMC5671399 DOI: 10.1016/j.btre.2017.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022]
Abstract
Allele-specific isothermal amplification method (AS-LAMP) for SNP characterization. Use of ssDNA-functionalized gold nanoparticles (AuNPs) for SNP full discrimination. A simple and low-cost strategy to provide fast results in medium throughput settings. AS-LAMP amplification products can be easily interpreted in less than 15 min.
Due to their relevance as disease biomarkers and for diagnostics, screening of single nucleotide polymorphism (SNPs) requires simple and straightforward strategies capable to provide results in medium throughput settings. Suitable approaches relying on isothermal amplification techniques have been evolving to substitute the cumbersome and highly specialized PCR amplification detection schemes. Nonetheless, identification of an individual’s genotype still requires sophisticated equipment and laborious methods. Here, we present a low-cost and reliable approach based on the allele specific loop-mediated isothermal amplification (AS-LAMP) coupled to ssDNA functionalized gold nanoparticle (Au-nanoprobe) colorimetric sequence discrimination. The Au-nanoprobe integration allows for the colorimetric detection of AS-LAMP amplification product that can be easily interpreted in less than 15 min. We targeted a clinical relevant SNP responsible for lactose intolerance (-13910C/T dbSNP rs#: 4988235) to demonstrate its proof of concept and full potential of this novel approach.
Collapse
Affiliation(s)
- Fábio Ferreira Carlos
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Bruno Veigas
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- i3N/CENIMAT, Departamento de Ciências de Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana S. Matias
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Gonçalo Doria
- STABVIDA, Investigação e Serviços em Ciências Biológicas, Lda. Madan Parque, 2825-182 Caparica, Portugal
| | - Orfeu Flores
- STABVIDA, Investigação e Serviços em Ciências Biológicas, Lda. Madan Parque, 2825-182 Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- Corresponding author.
| |
Collapse
|
18
|
Torres-Sangiao E, Holban AM, Gestal MC. Advanced Nanobiomaterials: Vaccines, Diagnosis and Treatment of Infectious Diseases. Molecules 2016; 21:molecules21070867. [PMID: 27376260 PMCID: PMC6273484 DOI: 10.3390/molecules21070867] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 11/16/2022] Open
Abstract
The use of nanoparticles has contributed to many advances due to their important properties such as, size, shape or biocompatibility. The use of nanotechnology in medicine has great potential, especially in medical microbiology. Promising data show the possibility of shaping immune responses and fighting severe infections using synthetic materials. Different studies have suggested that the addition of synthetic nanoparticles in vaccines and immunotherapy will have a great impact on public health. On the other hand, antibiotic resistance is one of the major concerns worldwide; a recent report of the World Health Organization (WHO) states that antibiotic resistance could cause 300 million deaths by 2050. Nanomedicine offers an innovative tool for combating the high rates of resistance that we are fighting nowadays, by the development of both alternative therapeutic and prophylaxis approaches and also novel diagnosis methods. Early detection of infectious diseases is the key to a successful treatment and the new developed applications based on nanotechnology offer an increased sensibility and efficiency of the diagnosis. The aim of this review is to reveal and discuss the main advances made on the science of nanomaterials for the prevention, diagnosis and treatment of infectious diseases. Highlighting innovative approaches utilized to: (i) increasing the efficiency of vaccines; (ii) obtaining shuttle systems that require lower antibiotic concentrations; (iii) developing coating devices that inhibit microbial colonization and biofilm formation.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Department of Microbiology and Parasitology, University Santiago de Compostela, Galicia 15782, Spain.
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest 060101, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 060042, Romania.
| | - Monica Cartelle Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens (UGA), GA 30602, USA.
| |
Collapse
|
19
|
Recent tuberculosis diagnosis toward the end TB strategy. J Microbiol Methods 2016; 123:51-61. [DOI: 10.1016/j.mimet.2016.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/30/2022]
|
20
|
Molecular Diagnostics and the Changing Face of Point-of-Care. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool? NANOMATERIALS 2015; 5:1853-1879. [PMID: 28347100 PMCID: PMC5304792 DOI: 10.3390/nano5041853] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/04/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022]
Abstract
Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial—nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.
Collapse
Affiliation(s)
- Pedro Pedrosa
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Raquel Vinhas
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Alexandra Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
22
|
Veigas B, Portugal C, Valério R, Fortunato E, Crespo JG, Baptista PV. Scalable approach for the production of functional DNA based gold nanoprobes. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Larguinho M, Canto R, Cordeiro M, Pedrosa P, Fortuna A, Vinhas R, Baptista PV. Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics. Expert Rev Mol Diagn 2015; 15:1355-68. [DOI: 10.1586/14737159.2015.1077704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Veigas B, Pedrosa P, Carlos FF, Mancio-Silva L, Grosso AR, Fortunato E, Mota MM, Baptista PV. One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care. J Nanobiotechnology 2015; 13:48. [PMID: 26250828 PMCID: PMC4527100 DOI: 10.1186/s12951-015-0109-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Background Gold nanoparticles have been widely employed for biosensing purposes with remarkable efficacy for DNA detection. Amongst the proposed systems, colorimetric strategies based on the remarkable optical properties have provided for simple yet effective sequence discrimination with potential for molecular diagnostics at point of need. These systems may also been used for parallel detection of several targets to provide additional information on diagnostics of pathogens. Results For the first time, we demonstrate that a single Au-nanoprobe may provide for detection of two distinct targets (pathogens) allowing colorimetric multi-target detection. We demonstrate this concept by using one single gold-nanoprobe capable to detect members of the Mycobacterium tuberculosis complex and Plasmodium sp., the etiologic agents of tuberculosis and malaria, respectively. Following characterisation, the developed gold-nanoprobe allowed detection of either target in individual samples or in samples containing both DNA species with the same efficacy. Conclusions Using one single probe via the non-cross-linking colorimetric methodology it is possible to identify multiple targets in one sample in one reaction. This proof-of-concept approach may easily be integrated into sensing platforms allowing for fast and simple multiplexing of Au-nanoprobe based detection at point-of-need. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0109-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno Veigas
- Nanomedicine@FCT, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, CIGMH, UCIBIO, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal. .,Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, CENIMAT/I3N, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Pedro Pedrosa
- Nanomedicine@FCT, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, CIGMH, UCIBIO, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - Fábio F Carlos
- Nanomedicine@FCT, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, CIGMH, UCIBIO, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal. .,STABVIDA, Investigação e Serviços em Ciências Biológicas, Lda. Madan Parque, 2825-182, Caparica, Portugal.
| | - Liliana Mancio-Silva
- Instituto de Medicina Molecular, Universidade de Lisboa. Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Ana Rita Grosso
- Instituto de Medicina Molecular, Universidade de Lisboa. Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Elvira Fortunato
- Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, CENIMAT/I3N, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Maria M Mota
- Instituto de Medicina Molecular, Universidade de Lisboa. Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Pedro V Baptista
- Nanomedicine@FCT, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, CIGMH, UCIBIO, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|