1
|
Cameirão C, Pereira JA, Tavares R, Lino-Neto T, Baptista P. Bacterial dynamics and exchange in plant-insect interactions. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100110. [PMID: 40235528 PMCID: PMC11999086 DOI: 10.1016/j.cris.2025.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
In nature, plants and insects engage in intricate interactions. Despite the increasing knowledge of the microbiomes of plants and insects, the extent to which they exchange and alter each other's microbiomes remains unclear. In this work, the bacterial community associated with nymphs of Philaenus spumarius (Hemiptera: Aphrophoridae), the stems of Coleostephus myconis where the nymphs were feeding, and the foam produced by the nymphs, were studied by culture-dependent and -independent approaches, with an attempt to elucidate the exchange of bacteria between plants and insects. The results suggest that both approaches complement each other, as many bacterial genera identified by metabarcoding were not detected by culturing, and vice versa. Overall, stems and foam exhibited higher bacterial diversity than nymphs, with all the samples showing enrichment in bacteria known to provide diverse benefits to their host. Stems and foam were the most similar in bacterial composition, but Burkholderiaceae and Moraxellaceae dominated the stems, whereas Rhizobiaceae and Sphingobacteriaceae dominated the foam. Nymphs exhibit the most distinct bacterial composition, yet more similar to that found in the stem compared to the foam. Indeed, nymphs were enriched on endosymbiotic bacteria, mostly Candidatus Sulcia and Sodalis, not found in the stem and foam. Nevertheless, during feeding, nymphs appeared to exchange several bacteria genera with C. myconis, with a significant number being incorporated into the bacteriome of the nymph. The genera Curvibacter, Cutibacterium, Methylobacterium, Pseudomonas and Rhizobium are likely the most exchanged. Nymphs also appear to exchange bacteria to the foam, notably species from the Enhydrobacter, Pseudomonas, Rhizobium and Roseomonas genera. More studies to infer the functions of the shared bacteria between P. spumarius-C. myconis are needed.
Collapse
Affiliation(s)
- Cristina Cameirão
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia 5300-253 Bragança, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho 4710-057 Braga, Portugal
| | - José Alberto Pereira
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia 5300-253 Bragança, Portugal
| | - Rui Tavares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho 4710-057 Braga, Portugal
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho 4710-057 Braga, Portugal
| | - Paula Baptista
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Kowalska P, Mierzejewska J, Skrzeszewska P, Witkowska A, Oksejuk K, Sitkiewicz E, Krawczyk M, Świadek M, Głuchowska A, Marlicka K, Sobiepanek A, Milner-Krawczyk M. Extracellular vesicles of Janthinobacterium lividum as violacein carriers in melanoma cell treatment. Appl Microbiol Biotechnol 2024; 108:529. [PMID: 39636419 PMCID: PMC11621134 DOI: 10.1007/s00253-024-13358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Violacein is a natural indole-derived purple pigment of microbial origin that has attracted attention for its remarkable biological properties. Due to its poor solubility in aqueous media, most studies of this pigment use extracts of the compound obtained with common solvents. Violacein is also transported in bacterial extracellular vesicles (EVs) and transferred via this type of carrier remains stable in an aqueous environment. This paper is the first to present an in-depth study of Janthinobacterium lividum EVs as violacein carriers. J. lividum EVs were studied for their contribution to violacein translocation, size, morphology and protein composition. The production of violacein encapsulated in EVs was more efficient than the intracellular production of this compound. The average size of the violacein-containing EVs was 124.07 ± 3.74 nm. Liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) revealed 932 proteins common to three independent EVs isolations. The high proportion of proteins with intracellular localisation, which are involved in many fundamental cellular processes, suggests that J. lividum EVs could be generated in a cell lysis model, additionally stimulated by violacein production. Using human keratinocytes and melanoma cell lines, it was confirmed that J. lividum EVs are able to react with and deliver their cargo to mammalian cells. The EVs-delivered violacein was shown to retain its activity against melanoma cells, and the dose and timing of treatment can be selected to target only cancer cells. The characterisation of J. lividum EVs, described in the following paper, represents a milestone for their future potential anticancer application. KEY POINTS: • This report focuses on the investigation of Janthinobacterium lividum EVs as a new delivery vehicle for violacein, a compound with a previously demonstrated broad spectrum of activity. • EVs were characterised for size, morphology and protein composition. • Studies on human keratinocytes and a melanoma cell model confirmed that the activity of violacein applied in the encapsulated form of EVs is similar to that of its organic solvent extract, but their production is much more environmentally friendly.
Collapse
Affiliation(s)
- Patrycja Kowalska
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
- Doctoral School Warsaw University of Technology, Warsaw, Poland
| | - Jolanta Mierzejewska
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Paulina Skrzeszewska
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Aleksandra Witkowska
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Oksejuk
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Ewa Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | | | - Magdalena Świadek
- Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Agata Głuchowska
- Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Klaudia Marlicka
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
- Doctoral School Warsaw University of Technology, Warsaw, Poland
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
3
|
Kracmarova-Farren M, Alexova E, Kodatova A, Mercl F, Szakova J, Tlustos P, Demnerova K, Stiborova H. Biochar-induced changes in soil microbial communities: a comparison of two feedstocks and pyrolysis temperatures. ENVIRONMENTAL MICROBIOME 2024; 19:87. [PMID: 39516989 PMCID: PMC11549753 DOI: 10.1186/s40793-024-00631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The application of a biochar in agronomical soil offers a dual benefit of improving soil quality and sustainable waste recycling. However, utilizing new organic waste sources requires exploring the biochar's production conditions and application parameters. Woodchips (W) and bone-meat residues (BM) after mechanical deboning from a poultry slaughterhouse were subjected to pyrolysis at 300 °C and 500 °C and applied to cambisol and luvisol soils at ratios of 2% and 5% (w/w). RESULTS Initially, the impact of these biochar amendments on soil prokaryotes was studied over the course of one year. The influence of biochar variants was further studied on prokaryotes and fungi living in the soil, rhizosphere, and roots of Triticum aestivum L., as well as on soil enzymatic activity. Feedstock type, pyrolysis temperature, application dose, and soil type all played significant roles in shaping both soil and endophytic microbial communities. BM treated at a lower pyrolysis temperature of 300 °C increased the relative abundance of Pseudomonadota while causing a substantial decrease in soil microbial diversity. Conversely, BM prepared at 500 °C favored the growth of microbes known for their involvement in various nutrient cycles. The W biochar, especially when pyrolysed at 500 °C, notably affected microbial communities, particularly in acidic cambisol compared to luvisol. In cambisol, biochar treatments had a significant impact on prokaryotic root endophytes of T. aestivum L. Additionally, variations in prokaryotic community structure of the rhizosphere depended on the increasing distance from the root system (2, 4, and 6 mm). The BM biochar enhanced the activity of acid phosphatase, whereas the W biochar increased the activity of enzymes involved in the carbon cycle (β-glucosidase, β-xylosidase, and β-N-acetylglucosaminidase). CONCLUSIONS These results collectively suggest, that under appropriate production conditions, biochar can exert a positive influence on soil microorganisms, with their response closely tied to the biochar feedstock composition. Such insights are crucial for optimizing biochar application in agricultural practices to enhance soil health.
Collapse
Affiliation(s)
- Martina Kracmarova-Farren
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Eliska Alexova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Anezka Kodatova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
4
|
Unger K, Raza SAK, Mayer T, Reichelt M, Stuttmann J, Hielscher A, Wittstock U, Gershenzon J, Agler MT. Glucosinolate structural diversity shapes recruitment of a metabolic network of leaf-associated bacteria. Nat Commun 2024; 15:8496. [PMID: 39353951 PMCID: PMC11445407 DOI: 10.1038/s41467-024-52679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Host defenses can have broader ecological roles, but how they shape natural microbiome recruitment is poorly understood. Aliphatic glucosinolates (GLSs) are secondary defense metabolites in Brassicaceae plant leaves. Their genetically defined structure shapes interactions with pests in Arabidopsis thaliana leaves, and here we find that it also shapes bacterial recruitment. In model genotype Col-0, GLSs (mostly 4-methylsulfinylbutyl-GLS) have no clear effect on natural leaf bacterial recruitment. In a genotype from a wild population, however, GLSs (mostly allyl-GLS) enrich specific taxa, mostly Comamonadaceae and Oxalobacteraceae. Consistently, Comamonadaceae are also enriched in wild A. thaliana, and Oxalobacteraceae are enriched from wild plants on allyl-GLS as carbon source, but not on 4-methylsulfinylbutyl-GLS. Recruitment differences between GLS structures most likely arise from bacterial myrosinase specificity. Community recruitment is then defined by metabolic cross-feeding among bacteria. The link of genetically defined metabolites to recruitment could lead to new strategies to shape plant microbiome balance.
Collapse
Affiliation(s)
- Kerstin Unger
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
| | - Syed Ali Komail Raza
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
| | - Teresa Mayer
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany
- Schülerforschungszentrum Berchtesgaden, Didactics of Life Science, Technical University of Munich, Munich, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Johannes Stuttmann
- CEA, CNRS, BIAM, UMR7265, LEMiRE (Rhizosphère et Interactions sol-plante-microbiote), Aix Marseille University, 13115, Saint-Paul lez Durance, France
| | - Annika Hielscher
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Matthew T Agler
- Institute for Microbiology, Plant Microbiosis Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
5
|
Tamang A, Swarnkar M, Kumar P, Kumar D, Pandey SS, Hallan V. Endomicrobiome of in vitro and natural plants deciphering the endophytes-associated secondary metabolite biosynthesis in Picrorhiza kurrooa, a Himalayan medicinal herb. Microbiol Spectr 2023; 11:e0227923. [PMID: 37811959 PMCID: PMC10715050 DOI: 10.1128/spectrum.02279-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Picrorhiza kurrooa is a major source of picrosides, potent hepatoprotective molecules. Due to the ever-increasing demands, overexploitation has caused an extensive decline in its population in the wild and placed it in the endangered plants' category. At present plant in-vitro systems are widely used for the sustainable generation of P. kurrooa plants, and also for the conservation of other commercially important, rare, endangered, and threatened plant species. Furthermore, the in-vitro-generated plants had reduced content of therapeutic secondary metabolites compared to their wild counterparts, and the reason behind, not well-explored. Here, we revealed the loss of plant-associated endophytic communities during in-vitro propagation of P. kurrooa plants which also correlated to in-planta secondary metabolite biosynthesis. Therefore, this study emphasized to consider the essential role of plant-associated endophytic communities in in-vitro practices which may be the possible reason for reduced secondary metabolites in in-vitro plants.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
6
|
Thompson MEH, Shrestha A, Rinne J, Limay-Rios V, Reid L, Raizada MN. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens 2023; 12:1322. [PMID: 38003787 PMCID: PMC10675081 DOI: 10.3390/pathogens12111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Styles transmit pollen-derived sperm nuclei from pollen to ovules, but also transmit environmental pathogens. The microbiomes of styles are likely important for reproduction/disease, yet few studies exist. Whether style microbiome compositions are spatially responsive to pathogens is unknown. The maize pathogen Fusarium graminearum enters developing grain through the style (silk). We hypothesized that F. graminearum treatment shifts the cultured transmitting silk microbiome (TSM) compared to healthy silks in a distance-dependent manner. Another objective of the study was to culture microbes for future application. Bacteria were cultured from husk-covered silks of 14 F. graminearum-treated diverse maize genotypes, proximal (tip) and distal (base) to the F. graminearum inoculation site. Long-read 16S sequences from 398 isolates spanned 35 genera, 71 species, and 238 OTUs. More bacteria were cultured from F. graminearum-inoculated tips (271 isolates) versus base (127 isolates); healthy silks were balanced. F. graminearum caused a collapse in diversity of ~20-25% across multiple taxonomic levels. Some species were cultured exclusively or, more often, from F. graminearum-treated silks (e.g., Delftia acidovorans, Klebsiella aerogenes, K. grimontii, Pantoea ananatis, Stenotrophomonas pavanii). Overall, the results suggest that F. graminearum alters the TSM in a distance-dependent manner. Many isolates matched taxa that were previously identified using V4-MiSeq (core and F. graminearum-induced), but long-read sequencing clarified the taxonomy and uncovered greater diversity than was initially predicted (e.g., within Pantoea). These isolates represent the first comprehensive cultured collection from pathogen-treated maize silks to facilitate biocontrol efforts and microbial marker-assisted breeding.
Collapse
Affiliation(s)
- Michelle E. H. Thompson
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Jeffrey Rinne
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street E, Ridgetown, ON N0P 2C0, Canada
| | - Lana Reid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| |
Collapse
|
7
|
Behr JH, Kampouris ID, Babin D, Sommermann L, Francioli D, Kuhl-Nagel T, Chowdhury SP, Geistlinger J, Smalla K, Neumann G, Grosch R. Beneficial microbial consortium improves winter rye performance by modulating bacterial communities in the rhizosphere and enhancing plant nutrient acquisition. FRONTIERS IN PLANT SCIENCE 2023; 14:1232288. [PMID: 37711285 PMCID: PMC10498285 DOI: 10.3389/fpls.2023.1232288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The beneficial effect of microbial consortium application on plants is strongly affected by soil conditions, which are influenced by farming practices. The establishment of microbial inoculants in the rhizosphere is a prerequisite for successful plant-microorganism interactions. This study investigated whether a consortium of beneficial microorganisms establishes in the rhizosphere of a winter crop during the vegetation period, including the winter growing season. In addition, we aimed for a better understanding of its effect on plant performance under different farming practices. Winter rye plants grown in a long-time field trial under conventional or organic farming practices were inoculated after plant emergence in autumn with a microbial consortium containing Pseudomonas sp. (RU47), Bacillus atrophaeus (ABi03) and Trichoderma harzianum (OMG16). The density of the microbial inoculants in the rhizosphere and root-associated soil was quantified in autumn and the following spring. Furthermore, the influence of the consortium on plant performance and on the rhizosphere bacterial community assembly was investigated using a multidisciplinary approach. Selective plating showed a high colonization density of individual microorganisms of the consortium in the rhizosphere and root-associated soil of winter rye throughout its early growth cycle. 16S rRNA gene amplicon sequencing showed that the farming practice affected mainly the rhizosphere bacterial communities in autumn and spring. However, the microbial consortium inoculated altered also the bacterial community composition at each sampling time point, especially at the beginning of the new growing season in spring. Inoculation of winter rye with the microbial consortium significantly improved the plant nutrient status and performance especially under organic farming. In summary, the microbial consortium showed sufficient efficacy throughout vegetation dormancy when inoculated in autumn and contributed to better plant performance, indicating the potential of microbe-based solutions in organic farming where nutrient availability is limited.
Collapse
Affiliation(s)
- Jan Helge Behr
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| | - Ioannis D. Kampouris
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Doreen Babin
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Loreen Sommermann
- Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Davide Francioli
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Theresa Kuhl-Nagel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Günter Neumann
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| |
Collapse
|
8
|
Wax N, Walke JB, Haak DC, Belden LK. Comparative genomics of bacteria from amphibian skin associated with inhibition of an amphibian fungal pathogen, Batrachochytrium dendrobatidis. PeerJ 2023; 11:e15714. [PMID: 37637170 PMCID: PMC10452622 DOI: 10.7717/peerj.15714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/16/2023] [Indexed: 08/29/2023] Open
Abstract
Chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is a skin disease associated with worldwide amphibian declines. Symbiotic microbes living on amphibian skin interact with Bd and may alter infection outcomes. We completed whole genome sequencing of 40 bacterial isolates cultured from the skin of four amphibian species in the Eastern US. Each isolate was tested in vitro for the ability to inhibit Bd growth. The aim of this study was to identify genomic differences among the isolates and generate hypotheses about the genomic underpinnings of Bd growth inhibition. We identified sixty-five gene families that were present in all 40 isolates. Screening for common biosynthetic gene clusters revealed that this set of isolates contained a wide variety of clusters; the two most abundant clusters with potential antifungal activity were siderophores (N=17 isolates) and Type III polyketide synthases (N=22 isolates). We then examined various subsets of the 22 isolates in the phylum Proteobacteria for genes encoding specific compounds that may inhibit fungal growth, including chitinase and violacein. We identified differences in Agrobacterium and Sphingomonas isolates in the chitinase genes that showed some association with anti-Bd activity, as well as variation in the violacein genes in the Janthinobacterium isolates. Using a comparative genomics approach, we generated several testable hypotheses about differences among bacterial isolates from amphibian skin communities that could contribute to variation in the ability to inhibit Bd growth. Further work is necessary to explore and uncover the various mechanisms utilized by amphibian skin bacterial isolates to inhibit Bd.
Collapse
Affiliation(s)
- Noah Wax
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Jenifer B. Walke
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
- Department of Biology, Eastern Washington University, Cheney, WA, United States of America
| | - David C. Haak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
9
|
Xing Y, Bian C, Xue H, Song Y, Men W, Hou W, Yang Y, Cai Q, Xu L. The effect of plant compartment and geographical location on shaping microbiome of Pulsatilla chinensis. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12641-x. [PMID: 37436481 DOI: 10.1007/s00253-023-12641-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/09/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
The plant-associated microbiome has an effect on plant growth. Pulsatilla chinensis (Bge.) Regel is an important Chinese medicinal plant. Currently, there is little understanding of the P. chinensis-associated microbiome and its diversity and composition. Here, the core microbiome associated with the root, leaf, and rhizospheric soil compartments of P. chinensis from five geographical locations was analyzed by the metagenomics approach. The alpha and beta diversity analysis showed that the microbiome associated with P. chinensis was shaped by the compartment, especially in the bacterial community. The geographical location had little influence on microbial community diversity associated with root and leaf. Hierarchical clustering distinguished the microbial communities of rhizospheric soil based on their geographical location and among the soil properties, pH was showed the more stronger effect on the diversity of rhizospheric soil microbial communities. Proteobacteria was the most dominant bacterial phylum in the root, leaf, and rhizospheric soil. Ascomycota and Basidiomycota were the most dominant fungal phyla in different compartments. Rhizobacter, Anoxybacillus, and IMCC26256 were the most important marker bacterial species for root, leaf, and rhizospheric soil screened by random forest, respectively. The fungal marker species for root, leaf, and rhizospheric soil were not only different across the compartments but also the geographical locations. Functional analysis showed that P. chinensis-associated microbiome had the similar function which had no obvious relationship with geographical location and compartment. The associated microbiome indicated in this study can be used for identifying microorganisms related to the quality and growth of P. chinensis. KEY POINTS: • Microbiome associated with P. chinensis was shaped by the compartment • Microbiome composition and abundance associated with rhizospheric soil were affected by the geographical location • Compared with fungi, bacterial associated with P. chinensis composition and diversity were more stable in different geographical locations and compartments.
Collapse
Affiliation(s)
- Yanping Xing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Che Bian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hefei Xue
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Yueyue Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wenxiao Men
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wenjuan Hou
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Yanyun Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Qian Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Liang Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
10
|
Martín-Pinto P, Dejene T, Benucci GMN, Mediavilla O, Hernández-Rodríguez M, Geml J, Baldrian P, Sanz-Benito I, Olaizola J, Bonito G, Oria-de-Rueda JA. Co-responses of bacterial and fungal communities to fire management treatments in Mediterranean pyrophytic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162676. [PMID: 36894081 DOI: 10.1016/j.scitotenv.2023.162676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Cistus scrublands are pyrophytic ecosystems and occur widely across Mediterranean regions. Management of these scrublands is critical to prevent major disturbances, such as recurring wildfires. This is because management appears to compromise the synergies necessary for forest health and the provision of ecosystem services. Furthermore, it supports high microbial diversity, opening questions of how forest management practices impact belowground associated diversity as research related to this issue is scarce. This study aims to investigate the effects of different fire prevention treatments and site history on bacterial and fungi co-response and co-occurrence patterns over a fire-risky scrubland ecosystem. Two different site histories were studied by applying three different fire prevention treatments and samples were analyzed by amplification and sequencing of ITS2 and 16S rDNA for fungi and bacteria, respectively. The data revealed that site history, especially regarding fire occurrence, strongly influenced the microbial community. Young burnt areas tended to have a more homogeneous and lower microbial diversity, suggesting environmental filtering to a heat-resistant community. In comparison, young clearing history also showed a significant impact on the fungal community but not on the bacteria. Some bacteria genera were efficient predictors of fungal diversity and richness. For instance, Ktedonobacter and Desertibacter were a predictor of the presence of the edible mycorrhizal bolete Boletus edulis. These results demonstrate fungal and bacterial community co-response to fire prevention treatments and provide new tools for forecasting forest management impacts on microbial communities.
Collapse
Affiliation(s)
- Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain.
| | - Tatek Dejene
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain; Ethiopian Environment and Forest Research Institute (EEFRI), P. O. Box 30708 Code 1000, Addis Ababa, Ethiopia
| | - Gian Maria Niccolò Benucci
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824, United States of America.
| | - Olaya Mediavilla
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain; IDForest - Biotecnología Forestal Aplicada, Calle Curtidores, 17, 34004 Palencia, Spain.
| | - María Hernández-Rodríguez
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain; IDForest - Biotecnología Forestal Aplicada, Calle Curtidores, 17, 34004 Palencia, Spain.
| | - József Geml
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, Leányka u. 6, 3300 Eger, Hungary.
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14200 Praha 4, Czech Republic.
| | - Ignacio Sanz-Benito
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain.
| | - Jaime Olaizola
- IDForest - Biotecnología Forestal Aplicada, Calle Curtidores, 17, 34004 Palencia, Spain.
| | - Gregory Bonito
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824, United States of America.
| | - Juan Andrés Oria-de-Rueda
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071 Palencia, Spain.
| |
Collapse
|
11
|
Newberger DR, Minas IS, Manter DK, Vivanco JM. A Microbiological Approach to Alleviate Soil Replant Syndrome in Peaches. Microorganisms 2023; 11:1448. [PMID: 37374950 DOI: 10.3390/microorganisms11061448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Replant syndrome (RS) is a global problem characterized by reduced growth, production life, and yields of tree fruit/nut orchards. RS etiology is unclear, but repeated monoculture plantings are thought to develop a pathogenic soil microbiome. This study aimed to evaluate a biological approach that could reduce RS in peach (Prunus persica) orchards by developing a healthy soil bacteriome. Soil disinfection via autoclave followed by cover cropping and cover crop incorporation was found to distinctly alter the peach soil bacteriome but did not affect the RS etiology of RS-susceptible 'Lovell' peach seedlings. In contrast, non-autoclaved soil followed by cover cropping and incorporation altered the soil bacteriome to a lesser degree than autoclaving but induced significant peach growth. Non-autoclaved and autoclaved soil bacteriomes were compared to highlight bacterial taxa promoted by soil disinfection prior to growing peaches. Differential abundance shows a loss of potentially beneficial bacteria due to soil disinfection. The treatment with the highest peach biomass was non-autoclaved soil with a cover crop history of alfalfa, corn, and tomato. Beneficial bacterial species that were cultivated exclusively in the peach rhizosphere of non-autoclaved soils with a cover crop history were Paenibacillus castaneae and Bellilinea caldifistulae. In summary, the non-autoclaved soils show continuous enhancement of beneficial bacteria at each cropping phase, culminating in an enriched rhizosphere which may help alleviate RS in peaches.
Collapse
Affiliation(s)
- Derek R Newberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel K Manter
- Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO 80526, USA
| | - Jorge M Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Dai C, Qu Y, Wu W, Li S, Chen Z, Lian S, Jing J. QSP: An open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. WATER RESEARCH 2023; 235:119814. [PMID: 36934538 DOI: 10.1016/j.watres.2023.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Quorum sensing (QS) has attracted great attention due to its important role in the bacterial interactions and its relevance to water management. With the development of high-throughput sequencing technology, a specific database for QS-related sequence annotation is urgently needed. Here, Hidden Markov Model (HMM) profiles for 38 types of QS-related proteins were built using a total of 4024 collected seed sequences. Based on both homolog search and keywords confirmation against the non-redundant database, we established a QS-related protein (QSP) database, that includes 809,721 protein sequences and 186,133 nucleotide sequences, downloaded available at: https://github.com/chunxiao-dcx/QSP. The entries were classified into 38 types and 315 subtypes among 91 bacterial phyla. Furthermore, an automatic annotation pipeline, named QSAP, was developed for rapid annotation, classification and abundance quantification of QSP-like sequences from sequencing data. This pipeline provided the two homolog alignment strategies offered by Diamond (Blastp) or HMMER (Hmmscan), as well as a data cleansing function for a subset or union set of the hits. The pipeline was tested using 14 metagenomic samples from various water environments, including activated sludge, deep-sea sediments, estuary water, and reservoir water. The QSAP pipeline is freely available for academic use in the code repository at: https://github.com/chunxiao-dcx/QSAP. The establishment of this database and pipeline, provides a useful tool for QS-related sequence annotation in a wide range of projects, and will increase our understanding of QS communication in aquatic environments.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Chernogor L, Eliseikina M, Petrushin I, Chernogor E, Khanaev I, Belikov SI. Janthinobacterium sp. Strain SLB01 as Pathogenic Bacteria for Sponge Lubomirskia baikalensis. Pathogens 2022; 12:pathogens12010008. [PMID: 36678355 PMCID: PMC9860564 DOI: 10.3390/pathogens12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sponges (phylum Porifera) are ancient, marine and inland water, filter feeding metazoans. In recent years, diseased sponges have been increasingly occurring in marine and freshwater environments. Endemic freshwater sponges of the Lubomirskiidae family are widely distributed in the coastal zone of Lake Baikal. The strain Janthinobacterium sp. SLB01 was isolated previously from the diseased sponge Lubomirskia baikalensis (Pallas, 1776), although its pathogenicity is still unknown. The aim of this study was to confirm whether the Janthinobacterium sp. strain SLB01 is the pathogen found in Baikal sponge. To address this aim, we infected the cell culture of primmorphs of the sponge L. baikalensis with strain SLB01 and subsequently reisolated and sequenced the strain Janthinobacterium sp. PLB02. The results showed that the isolated strain has more than 99% homology with strain SLB01. The genomes of both strains contain genes vioABCDE of violacein biosynthesis and floc formation, for strong biofilm, in addition to the type VI secretion system (T6SS) as the main virulence factor. Based on a comparison of complete genomes, we showed the similarity of the studied bacterial strains of Janthinobacterium spp. with the described strain of Janthinobacterium lividum MTR. This study will help expand our understanding of microbial interactions and determine one of the causes in the development of diseases and death in Baikal sponges.
Collapse
Affiliation(s)
- Lubov Chernogor
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
- Correspondence: (L.C.); (S.I.B.)
| | - Marina Eliseikina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Petrushin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Ekaterina Chernogor
- Faculty of Business Communication and Informatics, Irkutsk State University, 664033 Irkutsk, Russia
| | - Igor Khanaev
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Sergei I. Belikov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
- Correspondence: (L.C.); (S.I.B.)
| |
Collapse
|
14
|
Uroz S, Geisler O, Fauchery L, Lami R, Rodrigues AMS, Morin E, Leveau JHJ, Oger P. Genomic and transcriptomic characterization of the Collimonas quorum sensing genes and regulon. FEMS Microbiol Ecol 2022; 98:6679101. [PMID: 36040340 DOI: 10.1093/femsec/fiac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Collimonads are well-adapted to nutrient-poor environments. They are known to hydrolyse chitin, produce antifungal metabolites, weather minerals, and are effective biocontrol agents protecting plants from fungal diseases. The production of N-acyl homoserine lactones (AHLs) was suggested to be a conserved trait of collimonads, but little is known about the genes that underlie this production or the genes that are controlled by AHLs. To improve our understanding of the role of AHLs in the ecology of collimonads, we carried out transcriptomic analyses, combined with chemical and functional assays, on strain Collimonas pratensis PMB3(1). The main AHLs produced by this strain were identified as 3-hydroxy-hexa- and octa-noyl-homoserine lactone. Genome analysis permitted to identify putative genes coding for the autoinducer synthase (colI) and cognate transcriptional regulator (colR). The ability to produce AHLs was lost in ΔcolI and ΔcolR mutants. Functional assays revealed that the two mutants metabolized glucose, formate, oxalate, and leucine better than the wild-type (WT) strain. Transcriptome sequencing analyses revealed an up-regulation of different metabolic pathways and of motility in the QS-mutants compared to the WT strain. Overall, our results provide insights into the role of the AHL-dependent regulation system of Collimonas in environment colonization, metabolism readjustment, and microbial interactions.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France.,INRAE, UR1138 "Biogéochimie des écosystèmes forestiers", F-54280 Champenoux, France
| | - Océane Geisler
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Laure Fauchery
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Johan H J Leveau
- Department of Plant Pathology, University of California - Davis, Davis, CA 95616, United States
| | - Philippe Oger
- Université Lyon, INSA de Lyon, CNRS UMR 5240, F-69622 Villeurbanne, France
| |
Collapse
|
15
|
Investigation of potential inhibitor properties of violacein against HIV-1 RT and CoV-2 Spike RBD:ACE-2. World J Microbiol Biotechnol 2022; 38:161. [PMID: 35834025 PMCID: PMC9281270 DOI: 10.1007/s11274-022-03350-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
A violacein-producing bacterium was isolated from a mud sample collected near a hot spring on Kümbet Plateau in Giresun Province and named the GK strain. According to the phylogenetic tree constructed using 16S rRNA gene sequence analysis, the GK strain was identified and named Janthinobacterium sp. GK. The crude violacein pigments were separated into three different bands on a TLC sheet. Then violacein and deoxyviolacein were purified by vacuum liquid column chromatography and identified by NMR spectroscopy. According to the inhibition studies, the HIV-1 RT inhibition rate of 1 mM violacein from the GK strain was 94.28% and the CoV-2 spike RBD:ACE2 inhibition rate of 2 mM violacein was 53%. In silico studies were conducted to investigate the possible interactions between violacein and deoxyviolacein and three reference molecules with the target proteins: angiotensin-converting enzyme 2 (ACE2), HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain. Ligand violacein binds strongly to the receptor ACE2, HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain with a binding energy of −9.94 kcal/mol, −9.32 kcal/mol, and −8.27 kcal/mol, respectively. Deoxyviolacein strongly binds to the ACE2, HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain with a binding energy of −10.38 kcal/mol, -9.50 kcal/mol, and −8.06 kcal/mol, respectively. According to these data, violacein and deoxyviolacein bind to all the receptors quite effectively. SARS-CoV-2 spike protein and HIV-1-RT inhibition studies with violacein and deoxyviolacein were performed for the first time in the literature.
Collapse
|
16
|
Isolation and Properties of the Bacterial Strain Janthinobacterium sp. SLB01. Microorganisms 2022; 10:microorganisms10051071. [PMID: 35630513 PMCID: PMC9147652 DOI: 10.3390/microorganisms10051071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Bacteria of the genus Janthinobacterium are widespread in soils and freshwater ecosystems and belong to the phylum Proteobacteria. The Janthinobacterium sp. SLB01 strain was isolated from diseased freshwater Lubomirskia baicalensis (Pallas, 1776) sponge, and the draft genome was published previously. However, the properties of the SLB01 strain are not known. The aim of the study is to describe some properties of the Janthinobacterium sp. SLB01 strain, isolated from L. baicalensis sponge. The identification of the SLB01 strain was established as Gram-negative, motile, rod-shaped, and psychrotolerant, with growth at 3 and 22 °C. We found that the SLB01 strain has proteolytic, lipolytic, and saccharolytic activity and can use citrates and reduce nitrates. The bacteria Janthinobacterium sp. SLB01 strain can grow, form biofilms, and produce the violet pigment violacein. We identified the pigments violacein and deoxyviolacein by chromatography and mass spectrometry. These metabolites may be of interest to biotechnology in the future. The studied characteristics of the Janthinobacterium sp. SLB01 strain are an important addition to previous studies of the genome of this strain. This study will help us to understand the relationship between the microbial communities of Lake Baikal and sponges.
Collapse
|
17
|
Cobo-Díaz JF, Legrand F, Le Floch G, Picot A. Influence of Maize Residues in Shaping Soil Microbiota and Fusarium spp. Communities. MICROBIAL ECOLOGY 2022; 83:702-713. [PMID: 34169333 DOI: 10.1007/s00248-021-01797-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease of small grain cereals including wheat. Causal fungal agents colonize various components of the field during their life cycle including previous crop residues, soil, and grains. Although soil and residues constitute the main inoculum source, these components have received much less attention than grains. This study aimed at disentangling the role of previous crop residues in shaping soil microbiota, including Fusarium spp. communities, in fields under wheat-maize rotation. Such knowledge may contribute to better understand the complex interactions between Fusarium spp. and soil microbiota. Dynamics of bacterial and fungal communities, with a special focus on Fusarium spp., were monitored in soils at 3 time points: during wheat cultivation (April 2015 and 2017) and after maize harvest (November 2016) and in maize residues taken from fields after harvest. Shifts in microbiota were also evaluated under mesocosm experiments using soils amended with maize residues. Fusarium graminearum and F. avenaceum were predominant on maize residues but did not remain in soils during wheat cultivation. Differences in soil bacterial diversity and compositions among years were much lower than variation between fields, suggesting that bacterial communities are field-specific and more conserved over time. In contrast, soil fungal diversity and compositions were more influenced by sampling time. Maize residues, left after harvest, led to a soil enrichment with several fungal genera, including Epicoccum, Fusarium, Vishniacozyma, Papiliotrema, Sarocladium, Xenobotryosphaeria, Ramularia, Cladosporium, Cryptococcus, and Bullera, but not with bacterial genera. Likewise, under mesocosm conditions, the addition of maize residues had a stronger influence on fungal communities than on bacterial communities. In particular, addition of maize significantly increased soil fungal richness, while bacteria were much less prone to changes. Based on co-occurrence networks, OTUs negatively correlated to Fusarium spp. were identified, such as those assigned to Epicoccum and Vishniacozyma. Altogether, our results allowed to gain a deeper insight into the complex microbiota interactions in soils, with bacteria and fungi responding differently to environmental disturbances.
Collapse
Affiliation(s)
- José F Cobo-Díaz
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Bretagne Occidentale, 29280, Plouzané, France.
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain.
- Institute of Food Science and Technology, Universidad de León, León, Spain.
| | - Fabienne Legrand
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Bretagne Occidentale, 29280, Plouzané, France
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail (ANSES), 94701, Maisons-Alfort, France
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Bretagne Occidentale, 29280, Plouzané, France
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Université de Bretagne Occidentale, 29280, Plouzané, France
| |
Collapse
|
18
|
Screening of Antimicrobial Activities and Lipopeptide Production of Endophytic Bacteria Isolated from Vetiver Roots. Microorganisms 2022; 10:microorganisms10020209. [PMID: 35208667 PMCID: PMC8876289 DOI: 10.3390/microorganisms10020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium were previously isolated from vetiver (Chrysopogon zizanioides (L.) Roberty) roots. These endophytes showed antifungal activity against Fusarium graminearum and could be a source of antimicrobial metabolites. In this study, in particular, using high-throughput screening, we analyzed their antagonistic activities and those of their cell-free culture supernatants against three species of Fusarium plant pathogens, a bacterial strain of Escherichia coli, and a yeast strain of Saccharomyces cerevisiae, as well as their capacity to produce lipopeptides. The results showed that the culture supernatants of four strains close to B. subtilis species exhibited antimicrobial activities against Fusarium species and E. coli. Using mass spectrometry analyses, we identified two groups of lipopeptides (surfactins and plipastatins) in their culture supernatants. Whole-genome sequencing confirmed that these bacteria possess NRPS gene clusters for surfactin and plipastatin. In vitro tests confirmed the inhibitory effect of plipastatin alone or in combination with surfactin against the three Fusarium species.
Collapse
|
19
|
Hang ST, Zeng LZ, Han JR, Zhang ZQ, Zhou Q, Meng X, Gu Q, Li P. Lactobacillus plantarum ZJ316 improves the quality of Stachys sieboldii Miq. pickle by inhibiting harmful bacteria growth and degrading nitrite, promoting the gut microbiota health in vitro. Food Funct 2022; 13:1551-1562. [DOI: 10.1039/d1fo03025f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial contamination and nitrite accumulation are two major concerns on the quality control of fermented vegetables. In the present study, a lactic acid bacteria strain Lactobacillus plantarum ZJ316 (ZJ316) was...
Collapse
|
20
|
Comparative Genomics Reveals Insights into Induction of Violacein Biosynthesis and Adaptive Evolution in Janthinobacterium. Microbiol Spectr 2021; 9:e0141421. [PMID: 34908429 PMCID: PMC8672880 DOI: 10.1128/spectrum.01414-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Violacein has different bioactive properties conferring distinct selective advantages, such as defense from predation and interspecific competition. Adaptation of Janthinobacterium to diverse habitats likely leads to variation in violacein production among phylogenetically closely related species inhabiting different environments, yet genomic mechanisms and the influence of adaptive evolution underpinning violacein biosynthesis in Janthinobacterium are not clear. In this study, we performed genome sequencing, comparative genomic analysis, and phenotypic characterization to investigate genomic factors regulating violacein production in nine Janthinobacterium strains, including a type strain from soil and eight strains we isolated from terrestrial subsurface sediment and groundwater. Results show that although all nine Janthinobacterium strains are phylogenetically closely related and contain genes essential for violacein biosynthesis, they vary in carbon usage and violacein production. Sediment and groundwater strains are weak violacein producers and possess far fewer secondary metabolite biosynthesis genes, indicating genome adaptation compared to soil strains. Further examination suggests that quorum sensing (QS) may play an important role in regulating violacein in Janthinobacterium: the strains exhibiting strong potential in violacein production possess both N-acyl-homoserine lactone (AHL) QS and Janthinobacterium QS (JQS) systems in their genomes, while weaker violacein-producing strains harbor only the JQS system. Preliminary tests of spent media of two Janthinobacterium strains possessing both AHL QS and JQS systems support the potential role of AHLs in inducing violacein production in Janthinobacterium. Overall, results from this study reveal potential genomic mechanisms involved in violacein biosynthesis in Janthinobacterium and provide insights into evolution of Janthinobacterium for adaptation to oligotrophic terrestrial subsurface environment. IMPORTANCE Phylogenetically closely related bacteria can thrive in diverse environmental habitats due to adaptive evolution. Genomic changes resulting from adaptive evolution lead to variations in cellular function, metabolism, and secondary metabolite biosynthesis. The most well-known secondary metabolite produced by Janthinobacterium is the purple-violet pigment violacein. To date, the mechanisms of induction of violacein biosynthesis in Janthinobacterium is not clear. Comparative genome analysis of closely related Janthinobacterium strains isolated from different environmental habitats not only reveals potential mechanisms involved in induction of violacein production by Janthinobacterium but also provides insights into the survival strategy of Janthinobacterium for adaptation to oligotrophic terrestrial subsurface environment.
Collapse
|
21
|
Belikov SI, Petrushin IS, Chernogor LI. Genome Analysis of the Janthinobacterium sp. Strain SLB01 from the Diseased Sponge of the Lubomirskia baicalensis. Curr Issues Mol Biol 2021; 43:2220-2237. [PMID: 34940130 PMCID: PMC8929069 DOI: 10.3390/cimb43030156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
The strain Janthinobacterium sp. SLB01 was isolated from the diseased freshwater sponge Lubomirskia baicalensis (Pallas, 1776) and the draft genome was published previously. The aim of this work is to analyze the genome of the Janthinobacterium sp. SLB01 to search for pathogenicity factors for Baikal sponges. We performed genomic analysis to determine virulence factors, comparing the genome of the strain SLB01 with genomes of other related J. lividum strains from the environment. The strain Janthinobacterium sp. SLB01 contained genes encoding violacein, alpha-amylases, phospholipases, chitinases, collagenases, hemolysin, and a type VI secretion system. In addition, the presence of conservative clusters of genes for the biosynthesis of secondary metabolites of tropodithietic acid and marinocine was found. We present genes for antibiotic resistance, including five genes encoding various lactamases and eight genes for penicillin-binding proteins, which are conserved in all analyzed strains. Major differences were found between the Janthinobacterium sp. SLB01 and J. lividum strains in the spectra of genes for glycosyltransferases and glycoside hydrolases, serine hydrolases, and trypsin-like peptidase, as well as some TonB-dependent siderophore receptors. Thus, the study of the analysis of the genome of the strain SLB01 allows us to conclude that the strain may be one of the pathogens of freshwater sponges.
Collapse
|
22
|
Plant ecological genomics at the limits of life in the Atacama Desert. Proc Natl Acad Sci U S A 2021; 118:2101177118. [PMID: 34725254 DOI: 10.1073/pnas.2101177118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.
Collapse
|
23
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
24
|
Wiernasz N, Gigout F, Cardinal M, Cornet J, Rohloff J, Courcoux P, Vigneau E, Skírnisdottír S, Passerini D, Pilet MF, Leroi F. Effect of the Manufacturing Process on the Microbiota, Organoleptic Properties and Volatilome of Three Salmon-Based Products. Foods 2021; 10:foods10112517. [PMID: 34828798 PMCID: PMC8623285 DOI: 10.3390/foods10112517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Lightly preserved seafood products, such as cold-smoked fish and fish gravlax, are traditionally consumed in Europe and are of considerable economic importance. This work aimed to compare three products that were obtained from the same batch of fish: cold-smoked salmon (CSS) stored under vacuum packaging (VP) or a modified atmosphere packaging (MAP) and VP salmon dill gravlax (SG). Classical microbiological analyses and 16S rRNA metabarcoding, biochemical analyses (trimethylamine, total volatile basic nitrogen (TVBN), biogenic amines, pH, volatile organic compounds (VOCs)) and sensory analyses (quantitative descriptive analysis) were performed on each product throughout their storage at a chilled temperature. The three products shared the same initial microbiota, which were mainly dominated by Photobacterium, Lactococcus and Lactobacillus genera. On day 28, the VP CSS ecosystem was mainly composed of Photobacterium and, to a lesser extent, Lactococcus and Lactobacillus genera, while Lactobacillus was dominant in the MAP CSS. The diversity was higher in the SG, which was mainly dominated by Enterobacteriaceae, Photobacterium, Lactobacillus and Lactococcus. Although the sensory spoilage was generally weak, gravlax was the most perishable product (slight increase in amine and acidic off-odors and flavors, fatty appearance, slight discoloration and drop in firmness), followed by the VP CSS, while the MAP CSS did not spoil. Spoilage was associated with an increase in the TVBN, biogenic amines and spoilage associated VOCs, such as decanal, nonanal, hexadecanal, benzaldehyde, benzeneacetaldehyde, ethanol, 3-methyl-1-butanol, 2,3-butanediol, 1-octen-3-ol, 2-butanone and 1-octen-3-one. This study showed that the processing and packaging conditions both had an effect on the microbial composition and the quality of the final product.
Collapse
Affiliation(s)
- Norman Wiernasz
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
- UMR 1014, Secalim, INRAE, Oniris, 44307 Nantes, France;
| | - Frédérique Gigout
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Mireille Cardinal
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Josiane Cornet
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Jens Rohloff
- NTNU, Department of Biology, 7491 Trondheim, Norway;
| | | | | | - Sigurlaug Skírnisdottír
- Matıs, Research and Innovation, Exploitation and Utilization of Genetic Resources, 101-155 Reykjavik, Iceland;
| | - Delphine Passerini
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | | | - Françoise Leroi
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
- Correspondence:
| |
Collapse
|
25
|
Ramdass AC, Rampersad SN. Molecular signatures of Janthinobacterium lividum from Trinidad support high potential for crude oil metabolism. BMC Microbiol 2021; 21:287. [PMID: 34670489 PMCID: PMC8527658 DOI: 10.1186/s12866-021-02346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Janthinobacterium lividum is considered to be a psychrotrophic bacterial species. For the first time in the literature, J. lividum strains were isolated from Trinidad presenting with atypical features - hydrocarbonoclastic and able to survive in a tropical environment. Methods Identification of the Trinidad strains was carried out through 16S rRNA phylogenetic analysis. Gene-specific primers were designed to target the VioA which encodes violacein pigment and the EstA/B gene which encodes secreted extracellular lipase. Bioinformatics analyses were carried out on the nucleotide and amino acid sequences of VioA and EstA/B genes of the Trinidad Janthinobacterium strains to assess functionality and phylogenetic relatedness to other Janthinobacterium sequences specifically and more broadly, to other members of the Oxalobacteraceae family of betaproteobacteria. Results 16S rRNA confirmed the identity of the Trinidad strains as J. lividum and resolved three of the Trinidad strains at the intra-specific level. Typical motility patterns of this species were recorded. VioAp sequences were highly conserved, however, synonymous substitutions located outside of the critical sites for enzyme function were detected for the Trinidad strains. Comparisons with PDB 6g2p model from aa231 to aa406 further indicated no functional disruption of the VioA gene of the Trinidad strains. Phylogeny of the VioA protein sequences inferred placement of all J. lividum taxa into a highly supported species-specific clade (bs = 98%). EstA/Bp sequences were highly conserved, however, synonymous substitutions were detected that were unique to the Trinidad strains. Phylogenetic inference positioned the Trinidad consensus VioA and EstA protein sequences in a clearly distinct branch. Conclusions The findings showed that the primary sequence of VioAp and EstA/Bp were unique to the Trinidad strains and these molecular signatures were reflected in phylogenetic inference. Our results supported chemotaxis, possible elective inactivation of VioA gene expression and secreted lipase activity as survival mechanisms of the Trinidad strains in petrogenic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02346-4.
Collapse
Affiliation(s)
- Amanda C Ramdass
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sephra N Rampersad
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
26
|
Hummerick ME, Khodadad CLM, Dixit AR, Spencer LE, Maldonado-Vasquez GJ, Gooden JL, Spern CJ, Fischer JA, Dufour N, Wheeler RM, Romeyn MW, Smith TM, Massa GD, Zhang Y. Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station. Life (Basel) 2021; 11:life11101060. [PMID: 34685431 PMCID: PMC8537831 DOI: 10.3390/life11101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The establishment of steady-state continuous crop production during long-term deep space missions is critical for providing consistent nutritional and psychological benefits for the crew, potentially improving their health and performance. Three technology demonstrations were completed achieving simultaneous multi-species plant growth and the concurrent use of two Veggie units on the International Space Station (ISS). Microbiological characterization using molecular and culture-based methods was performed on leaves and roots from two harvests of three leafy greens, red romaine lettuce (Lactuca sativa cv. ‘Outredgeous’); mizuna mustard, (Brassica rapa var japonica); and green leaf lettuce, (Lactuca sativa cv. Waldmann’s) and associated rooting pillow components and Veggie chamber surfaces. Culture based enumeration and pathogen screening indicated the leafy greens were safe for consumption. Surface samples of the Veggie facility and plant pillows revealed low counts of bacteria and fungi and are commonly isolated on ISS. Community analysis was completed with 16S rRNA amplicon sequencing. Comparisons between pillow components, and plant tissue types from VEG-03D, E, and F revealed higher diversity in roots and rooting substrate than the leaves and wick. This work provides valuable information for food production-related research on the ISS and the impact of the plant microbiome on this unique closed environment.
Collapse
Affiliation(s)
- Mary E. Hummerick
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
- Correspondence: (M.E.H.); (Y.Z.)
| | - Christina L. M. Khodadad
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Anirudha R. Dixit
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Lashelle E. Spencer
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Gretchen J. Maldonado-Vasquez
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Jennifer L. Gooden
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Cory J. Spern
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Jason A. Fischer
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Nicole Dufour
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Raymond M. Wheeler
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Matthew W. Romeyn
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Trent M. Smith
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Gioia D. Massa
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Ye Zhang
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
- Correspondence: (M.E.H.); (Y.Z.)
| |
Collapse
|
27
|
You C, Qin D, Wang Y, Lan W, Li Y, Yu B, Peng Y, Xu J, Dong J. Plant Triterpenoids Regulate Endophyte Community to Promote Medicinal Plant Schisandra sphenanthera Growth and Metabolites Accumulation. J Fungi (Basel) 2021; 7:jof7100788. [PMID: 34682210 PMCID: PMC8539763 DOI: 10.3390/jof7100788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Beneficial interactions between endophytes and plants are critical for plant growth and metabolite accumulation. Nevertheless, the secondary metabolites controlling the feedback between the host plant and the endophytic microbial community remain elusive in medicinal plants. In this report, we demonstrate that plant-derived triterpenoids predominantly promote the growth of endophytic bacteria and fungi, which in turn promote host plant growth and secondary metabolite productions. From culturable bacterial and fungal microbial strains isolated from the medicinal plant Schisandra sphenanthera, through triterpenoid-mediated screens, we constructed six synthetic communities (SynComs). By using a binary interaction method in plates, we revealed that triterpenoid-promoted bacterial and fungal strains (TPB and TPF) played more positive roles in the microbial community. The functional screening of representative strains suggested that TPB and TPF provide more beneficial abilities to the host. Moreover, pot experiments in a sterilized system further demonstrated that TPB and TPF play important roles in host growth and metabolite accumulation. In summary, these experiments revealed a role of triterpenoids in endophytic microbiome assembly and indicated a strategy for constructing SynComs on the basis of the screening of secondary metabolites, in which bacteria and fungi join forces to promote plant health. These findings may open new avenues towards the breeding of high yielding and high metabolite-accumulating medicinal plants by exploiting their interaction with beneficial endophytes.
Collapse
Affiliation(s)
- Chuan You
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
| | - Dan Qin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing 400015, China
| | - Yumeng Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
| | - Wenyi Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
| | - Yehong Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
| | - Baohong Yu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
| | - Yajun Peng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
| | - Jieru Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
| | - Jinyan Dong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (C.Y.); (D.Q.); (Y.W.); (W.L.); (Y.L.); (B.Y.); (Y.P.); (J.X.)
- Correspondence:
| |
Collapse
|
28
|
Sedláček I, Holochová P, Sobotka R, Busse HJ, Švec P, Králová S, Šedo O, Pilný J, Staňková E, Koublová V, Sedlář K. Classification of a Violacein-Producing Psychrophilic Group of Isolates Associated with Freshwater in Antarctica and Description of Rugamonas violacea sp. nov. Microbiol Spectr 2021; 9:e0045221. [PMID: 34378950 PMCID: PMC8552646 DOI: 10.1128/spectrum.00452-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
A group of 11 bacterial strains was isolated from streams and lakes located in a deglaciated northern part of James Ross Island, Antarctica. They were rod-shaped, Gram-stain-negative, motile, and catalase-positive and produced blue-violet-pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, automated ribotyping, repetitive element sequence-based PCR (rep-PCR), MALDI-TOF MS, fatty acid profile, chemotaxonomy analyses, and extensive biotyping was applied in order to clarify the taxonomic position of these isolates. Phylogenetic analysis based on the 16S rRNA gene indicated that all the isolates constituted a coherent group belonging to the genus Rugamonas. The closest relatives to the representative isolate P5900T were Rugamonas rubra CCM 3730T, Rugamonas rivuli FT103WT, and Rugamonas aquatica FT29WT, exhibiting 99.2%, 99.1%, and 98.6% 16S rRNA pairwise similarity, respectively. The average nucleotide identity and digital DNA-DNA hybridization values calculated from the whole-genome sequencing data clearly proved that P5900T represents a distinct Rugamonas species. The G+C content of genomic DNAs was 66.1 mol%. The major components in fatty acid profiles were summed feature 3 (C16:1ω7c/C16:1ω6c), C 16:0, and C12:0. The cellular quinone content contained exclusively ubiquinone Q-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The polyamine pattern was composed of putrescine, 2-hydroxputrescine, and spermidine. IMPORTANCE Our polyphasic approach provides a new understanding of the taxonomy of novel pigmented Rugamonas species isolated from freshwater samples in Antarctica. The isolates showed considerable extracellular bactericidal secretions. The antagonistic activity of studied isolates against selected pathogens was proved by this study and implied the importance of such compounds' production among aquatic bacteria. The psychrophilic and violacein-producing species Roseomonas violacea may play a role in the diverse consortium among pigmented bacteria in the Antarctic water environment. Based on all the obtained results, we propose a novel species for which the name Rugamonas violacea sp. nov. is suggested, with the type strain P5900T (CCM 8940T; LMG 32105T). Isolates of R. violacea were obtained from different aquatic localities, and they represent the autochthonous part of the water microbiome in Antarctica.
Collapse
Affiliation(s)
- Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Holochová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Vienna, Austria
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Pilný
- Centrum Algatech, MBÚ AV ČR, Třeboň, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vendula Koublová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
29
|
Orlofsky E, Zabari L, Bonito G, Masaphy S. Changes in soil bacteria functional ecology associated with Morchella rufobrunnea fruiting in a natural habitat. Environ Microbiol 2021; 23:6651-6662. [PMID: 34327796 DOI: 10.1111/1462-2920.15692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023]
Abstract
Morchella rufobrunnea is a saprobic edible mushroom, found in a range of ecological niches, indicating nutritional adjustment to different habitats and possible interaction with soil prokaryotic microbiome (SPM). Using the 16S rRNA gene, we examined the SPM of M. rufobrunnea that appeared in a natural habitat in Northern Israel. Three sample types were included: bare soil without mushroom, soil beneath young mushroom initials and soil beneath the mature fruiting body. Morchella rufobrunnea developmental stage was significantly associated with changes in bacterial populations (PERMANOVA, p < 0.0005). Indicator analysis with point-biserial correlation coefficient found 180 operational taxonomic units (OTU) uniquely associated with distinct stages of development. The Functional Annotation of Prokaryotic Taxonomy (FAPROTAX) database helped to infer ecological roles for indicator OTU. The functional ecological progression begins with establishment of a photoautotrophic N-fixing bacterial mat on bare soil. Pioneer heterotrophs including oligotrophs, acidifying nutrient mobilizers and nitrifiers are congruent with appearance of young M. rufobrunnea initials. Under the mature fruiting body, the population changed to saprobes, organic-N degraders, denitrifiers, insect endosymbionts and fungal antagonists. Based on this work, M. rufobrunnea may be able to influence SPM and change the soil nutritional profile.
Collapse
Affiliation(s)
- Ezra Orlofsky
- Applied Mycology and Microbiology, Migal, Kiryat Shemona, 11016, Israel
| | - Limor Zabari
- Applied Mycology and Microbiology, Migal, Kiryat Shemona, 11016, Israel
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Segula Masaphy
- Applied Mycology and Microbiology, Migal, Kiryat Shemona, 11016, Israel.,Tel Hai Academic College, Kiryat Shemona, 12210, Israel
| |
Collapse
|
30
|
Bertani I, Zampieri E, Bez C, Volante A, Venturi V, Monaco S. Isolation and Characterization of Pseudomonas chlororaphis Strain ST9; Rhizomicrobiota and in Planta Studies. PLANTS 2021; 10:plants10071466. [PMID: 34371669 PMCID: PMC8309335 DOI: 10.3390/plants10071466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The development of biotechnologies based on beneficial microorganisms for improving soil fertility and crop yields could help to address many current agriculture challenges, such as food security, climate change, pest control, soil depletion while decreasing the use of chemical fertilizers and pesticides. Plant growth-promoting (PGP) microbes can be used as probiotics in order to increase plant tolerance/resistance to abiotic/biotic stresses and in this context strains belonging to the Pseudomonas chlororaphis group have shown to have potential as PGP candidates. In this study a new P. chlororaphis isolate is reported and tested for (i) in vitro PGP features, (ii) whole-genome sequence analysis, and (iii) its effects on the rhizosphere microbiota composition, plant growth, and different plant genes expression levels in greenhouse experiments. Results showed that P. chlororaphis ST9 is an efficient rice root colonizer which integrates into the plant resident-microbiota and affects the expression of several plant genes. The potential use of this P. chlororaphis strain as a plant probiotic is discussed.
Collapse
Affiliation(s)
- Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (I.B.); (C.B.)
| | - Elisa Zampieri
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy; (E.Z.); (A.V.)
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (I.B.); (C.B.)
| | - Andrea Volante
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy; (E.Z.); (A.V.)
- Council for Agricultural Research and Economics-Research Centre for Vegetable and Ornamental Crops, Corso Inglesi 508, 18038 Sanremo, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (I.B.); (C.B.)
- Correspondence: (V.V.); (S.M.)
| | - Stefano Monaco
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy; (E.Z.); (A.V.)
- Correspondence: (V.V.); (S.M.)
| |
Collapse
|
31
|
Schlosser N, Espino-Martínez J, Kloss F, Meyer F, Bardl B, Rosenbaum MA, Regestein L. Host nutrition-based approach for biotechnological production of the antifungal cyclic lipopeptide jagaricin. J Biotechnol 2021; 336:1-9. [PMID: 34118330 DOI: 10.1016/j.jbiotec.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
In today's, society multi-resistant pathogens have become an emerging threat, which makes the search for novel anti-infectives more urgent than ever. A promising class of substances are cyclic lipopeptides like the antifungal jagaricin. Jagaricin is formed by the bacterial mushroom pathogen Janthinobacterium agaricidamnosum. It has shown antifungal activity against human pathogenic fungi like Candida albicans and Aspergillus fumigatus. In addition, jagaricin is nearly non-toxic for plants, which makes it a promising agent for agricultural applications. Cyclic lipopeptides formed by microorganisms originate from their secondary metabolism. This makes it very challenging to determine the inducing factor for product formation, especially for unknown microbial systems like J. agaricidamnosum. In the presented study, a biotechnological process for jagaricin formation was developed, investigating impact factors like the medium, oxygen availability, and phosphate. For this reason, experiments were conducted on microtiter plate, shake flask, and stirred tank bioreactor level. Ultimately, a final maximum jagaricin concentration of 251 mg L-1 (15.5 mgJagaricin∙gCDW-1) could be achieved, which is an increase of approximately 458 % in comparison to previous results in standard glucose medium. This concentration allows the production of significantly higher amounts of jagaricin and enables further experiments to investigate the potential of this substance.
Collapse
Affiliation(s)
- Nicolas Schlosser
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Jordi Espino-Martínez
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Florian Meyer
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Bettina Bardl
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany.
| |
Collapse
|
32
|
Balázs HE, Schmid CAO, Cruzeiro C, Podar D, Szatmari PM, Buegger F, Hufnagel G, Radl V, Schröder P. Post-reclamation microbial diversity and functions in hexachlorocyclohexane (HCH) contaminated soil in relation to spontaneous HCH tolerant vegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144653. [PMID: 33550064 DOI: 10.1016/j.scitotenv.2020.144653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The toxicity, volatility and persistence of the obsolete organochlorine pesticide hexachlorocyclohexane (HCH), makes reclamation of contaminated areas a priority for the health and welfare of neighboring human communities. Microbial diversity and functions and their relation to spontaneous vegetation in post-excavation situations, are essential indicators to consider in bioaugmentation or microbe-assisted phytoremediation strategies at field scale. Our study aimed to evaluate the effects of long-term HCH contamination on soil and plant-associated microbial communities, and whether contaminated soil has the potential to act as a bacterial inoculum in post-excavation bioremediation strategies. To scrutinize the role of vegetation, the potential nitrogen fixation of free-living and symbiotic diazotrophs of the legume Lotus tenuis was assessed as a measure of nutrient cycling functions in soil under HCH contamination. Potential nitrogen fixation was generally not affected by HCH, with the exception of lower nifH gene counts in excavated contaminated rhizospheres, most probably a short-term HCH effect on early bacterial succession in this compartment. HCH shaped microbial communities in long-term contaminated bulk soil, where we identified possible HCH tolerants such as Sphingomonas and Altererythrobacter. In L. tenuis rhizosphere, microbial community composition was additionally influenced by plant growth stage. Sphingobium and Massilia were the bacterial genera characteristic for HCH contaminated rhizospheres. Long-term HCH contamination negatively affected L. tenuis growth and development. However, root-associated bacterial community composition was driven solely by plant age, with negligible HCH effect. Results showed that L. tenuis acquired possible HCH tolerant bacteria such as the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade, Sphingomonas, Massilia or Pantoea which could simultaneously offer plant growth promoting (PGP) benefits for the host. Finally, we identified an inoculum with possibly HCH tolerant, PGP bacteria transferred from the contaminated bulk soil to L. tenuis roots through the rhizosphere compartment, consisting of Mesorhizobium loti, Neorhizobium galegae, Novosphingobium lindaniclasticum, Pantoea agglomerans and Lysobacter bugurensis.
Collapse
Affiliation(s)
- Helga E Balázs
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Babeş-Bolyai University, Department of Taxonomy and Ecology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania
| | - Christoph A O Schmid
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Catarina Cruzeiro
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Dorina Podar
- Babeş-Bolyai University, Department of Molecular Biology and Biotechnology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania.
| | - Paul-Marian Szatmari
- Babeş-Bolyai University, Department of Taxonomy and Ecology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; Biological Research Center, Botanical Garden "Vasile Fati", 16 Wesselényi Miklós St., 455200 Jibou, Romania
| | - Franz Buegger
- Helmholtz Zentrum München GmbH, Research Unit for Biochemical Plant Pathology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Gudrun Hufnagel
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Viviane Radl
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Peter Schröder
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
33
|
Yin C, Casa Vargas JM, Schlatter DC, Hagerty CH, Hulbert SH, Paulitz TC. Rhizosphere community selection reveals bacteria associated with reduced root disease. MICROBIOME 2021; 9:86. [PMID: 33836842 PMCID: PMC8035742 DOI: 10.1186/s40168-020-00997-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities. RESULTS In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil. CONCLUSIONS Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity. Video Abstract.
Collapse
Affiliation(s)
- Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Juan M Casa Vargas
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Daniel C Schlatter
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, 99164-6430, USA
| | - Christina H Hagerty
- Columbia Basin Agricultural Research Center, Oregon State University, Adams, OR, 97810, USA
| | - Scot H Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Timothy C Paulitz
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, 99164-6430, USA.
| |
Collapse
|
34
|
Raths R, Peta V, Bücking H. Duganella callida sp. nov., a novel addition to the Duganella genus, isolated from the soil of a cultivated maize field. Int J Syst Evol Microbiol 2020; 71. [PMID: 33269999 DOI: 10.1099/ijsem.0.004599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, rod-shaped bacterium, strain Duganella callida DN04T, was isolated from the soil of a maize field in North Carolina, USA. Based on the 16S rRNA gene sequence, the most similar Duganella species are D. sacchari Sac-22T, D. ginsengisoli DCY83T, and D. radicis Sac-41T with a 97.8, 97.6, or 96.9 % sequence similarity, respectively. We compared the biochemical phenotype of DN04T to D. sacchari Sac-22T and D. zoogloeoides 115T and other reference strains from different genera within the Oxalobacteraceae and while the biochemical profile of DN04T is most similar to D. sacchari Sac-22T and other Duganella and Massilia strains, there are also distinct differences. DN04T can for example utilize turanose, N-acetyl-d-glucosamine, inosine, and l-pyroglutamic acid. The four fatty acids found in the highest percentages were C15 : 0 iso (24.6 %), C15 : 1 isoG (19.4 %), C17 : 0 iso3-OH (16.8 %), and summed feature 3 (C16:1 ⍵7c and/or C16:1 ⍵6c) (12.5 %). We also applied whole genome sequencing to determine if DN04T is a novel species. The most similar AAI (average amino acid identity) score was 70.8 % (Massilia plicata NZ CP038026T), and the most similar ANI (average nucleotide identity) score was 84.8 % (D. radicis KCTC 22382T), which indicates that DN04T is a novel species. The genome-to-genome-distance calculation (GGDC) revealed a DDH of 28.3 % to D. radicis KCTC 22382T, which is much lower than the new species threshold. Based on the morphological, phenotypic, and genomic differences, we propose Duganella callida sp. nov. as a novel species within the Duganella genus (type strain DN04T=NRRL B-65552T=LMG 31736T).
Collapse
Affiliation(s)
- Rachel Raths
- South Dakota State University, Biology and Microbiology Department, Brookings SD 57007, USA
| | - Vincent Peta
- South Dakota State University, Biology and Microbiology Department, Brookings SD 57007, USA
| | - Heike Bücking
- South Dakota State University, Biology and Microbiology Department, Brookings SD 57007, USA
| |
Collapse
|
35
|
Munakata Y, Gavira C, Genestier J, Bourgaud F, Hehn A, Slezack-Deschaumes S. Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiol Res 2020; 243:126650. [PMID: 33302220 DOI: 10.1016/j.micres.2020.126650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Given the current trend towards reducing the use of chemical controls in agriculture, microbial resources such as plant endophytes are being intensively investigated for traits that are conducive to plant protection. Among the various important target pathogens, Fusarium graminearum is a fungal pathogen of cereal crops that is responsible for severe yield losses and mycotoxin contamination in grains. In the present study, we investigated the bacterial endophytic communities from vetiver (Chrysopogon zizanioides (L.) Roberty) roots originating from 5 different geographic locations across Europe and Africa. This study relies on a global 16S metabarcoding approach and the isolation/functional characterization of bacterial isolates. The results we obtained showed that geographical location is a factor that influences the composition and relative abundance of root endophyte communities in vetiver. Three hundred eighty-one bacterial endophytes were isolated and assessed for their in vitro antagonistic activities towards F. graminearum mycelium growth. In total, 46 % of the isolates showed at least 50 % inhibitory activity against F. graminearum. The taxonomic identification of the bioactive isolates revealed that the composition of these functional culturable endophytic communities was influenced by the geographic origins of the roots. The selected communities consisted of 15 genera. Some endophytes in Bacillus, Janthinobacterium, Kosakonia, Microbacterium, Pseudomonas, and Serratia showed strong growth inhibition activity (≥70 %) against F. graminearum and could be candidates for further development as biocontrol agents.
Collapse
Affiliation(s)
- Yuka Munakata
- Université de Lorraine - INRAE, LAE, F-54000, Nancy, France
| | - Carole Gavira
- Plant Advanced Technologies, F54500, Vandoeuvre-lès-Nancy, France
| | | | | | - Alain Hehn
- Université de Lorraine - INRAE, LAE, F-54000, Nancy, France
| | | |
Collapse
|
36
|
Hu D, Li S, Li Y, Peng J, Wei X, Ma J, Zhang C, Jia N, Wang E, Wang Z. Streptomyces sp. strain TOR3209: a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Sci Rep 2020; 10:20132. [PMID: 33208762 PMCID: PMC7675979 DOI: 10.1038/s41598-020-76887-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022] Open
Abstract
Aiming at revealing the possible mechanism of its growth promoting effect on tomato, the correlations among Streptomyces sp. TOR3209 inoculation, rhizobacteriome, and tomato growth/production traits were investigated in this study. By analyses of Illumina sequencing and plate coating, differences in rhizosphere microbial communities were found in different growth stages and distinct inoculation treatments. The plant biomass/fruit yields and relative abundances of families Flavobacteriaceae, Sphingobacteriaceae, Polyangiaceae and Enterobacteriaceae in treatments T (tomato inoculated with TOR3209) and TF (tomato inoculated with TOR3209 + organic fertilizer) were higher than that in the controls (CK and CK+ organic fertilizer), respectively. The analysis of Metastats and LEfSe revealed that the genera Flavobacterium and Sorangium in seedling stage, Klebsiella in flowering stage, Collimonas in early fruit setting stage, and genera Micrococcaceae, Pontibacte and Adhaeribacter in late fruit setting stage were the most representative rhizobacteria that positively responded to TOR3209 inoculation. By cultivation method, five bacterial strains positively correlated to TOR3209 inoculation were isolated from rhizosphere and root endosphere, which were identified as tomato growth promoters affiliated to Enterobacter sp., Arthrobacter sp., Bacillus subtilis, Rhizobium sp. and Bacillus velezensis. In pot experiment, TOR3209 and B. velezensis WSW007 showed joint promotion to tomato production, while the abundance of inoculated TOR3209 was dramatically decreased in rhizosphere along the growth of tomato. Conclusively, TOR3209 might promote the tomato production via changing of microbial community in rhizosphere. These findings provide a better understanding of the interactions among PGPR in plant promotion.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Shuhong Li
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ying Li
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jieli Peng
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiaoyan Wei
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jia Ma
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cuimian Zhang
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Nan Jia
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Mexico City, Mexico
| | - Zhanwu Wang
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
37
|
Cooperative Interaction of Janthinobacterium sp. SLB01 and Flavobacterium sp. SLB02 in the Diseased Sponge Lubomirskia baicalensis. Int J Mol Sci 2020; 21:ijms21218128. [PMID: 33143227 PMCID: PMC7662799 DOI: 10.3390/ijms21218128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 11/17/2022] Open
Abstract
Endemic freshwater sponges (demosponges, Lubomirskiidae) dominate in Lake Baikal, Central Siberia, Russia. These sponges are multicellular filter-feeding animals that represent a complex consortium of many species of eukaryotes and prokaryotes. In recent years, mass disease and death of Lubomirskia baicalensis has been a significant problem in Lake Baikal. The etiology and ecology of these events remain unknown. Bacteria from the families Flavobacteriaceae and Oxalobacteraceae dominate the microbiomes of diseased sponges. Both species are opportunistic pathogens common in freshwater ecosystems. The aim of our study was to analyze the genomes of strains Janthinobacterium sp. SLB01 and Flavobacterium sp. SLB02, isolated from diseased sponges to identify the reasons for their joint dominance. Janthinobacterium sp. SLB01 attacks other cells using a type VI secretion system and suppresses gram-positive bacteria with violacein, and regulates its own activity via quorum sensing. It produces floc and strong biofilm by exopolysaccharide biosynthesis and PEP-CTERM/XrtA protein expression. Flavobacterium sp. SLB02 utilizes the fragments of cell walls produced by polysaccharides. These two strains have a marked difference in carbohydrate acquisition. We described a possible means of joint occupation of the ecological niche in the freshwater sponge microbial community. This study expands the understanding of the symbiotic relationship of microorganisms with freshwater Baikal sponges.
Collapse
|
38
|
Rich Repertoire of Quorum Sensing Protein Coding Sequences in CPR and DPANN Associated with Interspecies and Interkingdom Communication. mSystems 2020; 5:5/5/e00414-20. [PMID: 33051376 PMCID: PMC7567580 DOI: 10.1128/msystems.00414-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The selection of predicted genes for interspecies communication within the CPR and DPANN genomes sheds some light onto the underlying mechanisms supporting their inferred symbiotic lifestyle. Also, considering the lack of core pathways such as the de novo synthesis of nucleotides or amino acids in the CPR and DPANN lineages, the persistence of these genes highlights how determinant social traits can be for the survival of some microorganisms. Finally, the considerable number of variants of QS proteins identified among the 69 CPR and DPANN phyla substantially expands our knowledge of prokaryotic communication across the tree of life and suggests that the multiplicity of “dialects” in the microbial world is probably larger than previously appreciated. The bacterial candidate phyla radiation (CPR) and the archaeal DPANN superphylum are two novel lineages that have substantially expanded the tree of life due to their large phylogenetic diversity. Because of their ultrasmall size, reduced genome, and lack of core biosynthetic capabilities, most CPR and DPANN members are predicted to be sustained through their interactions with other species. How the few characterized CPR and DPANN symbionts achieve these critical interactions is, however, poorly understood. Here, we conducted an in silico analysis on 2,597 CPR/DPANN genomes to test whether these ultrasmall microorganisms might encode homologs of reference proteins involved in the synthesis and/or the detection of 26 different types of communication molecules (quorum sensing [QS] signals), since QS signals are well-known mediators of intra- and interorganismic relationships. We report the discovery of 5,693 variants of QS proteins distributed across 63 CPR and 6 DPANN phyla and associated with 14 distinct types of communication molecules, most of which were characterized as interspecies QS signals. IMPORTANCE The selection of predicted genes for interspecies communication within the CPR and DPANN genomes sheds some light onto the underlying mechanisms supporting their inferred symbiotic lifestyle. Also, considering the lack of core pathways such as the de novo synthesis of nucleotides or amino acids in the CPR and DPANN lineages, the persistence of these genes highlights how determinant social traits can be for the survival of some microorganisms. Finally, the considerable number of variants of QS proteins identified among the 69 CPR and DPANN phyla substantially expands our knowledge of prokaryotic communication across the tree of life and suggests that the multiplicity of “dialects” in the microbial world is probably larger than previously appreciated.
Collapse
|
39
|
Fan K, Delgado-Baquerizo M, Guo X, Wang D, Zhu YG, Chu H. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME JOURNAL 2020; 15:550-561. [PMID: 33028975 DOI: 10.1038/s41396-020-00796-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
Cropping systems have fertilized soils for decades with undetermined consequences for the productivity and functioning of terrestrial ecosystems. One of the critical unknowns is the role of soil biodiversity in controlling crop production after decades of fertilization. This knowledge gap limits our capacity to assess how changes in soil biodiversity could alter crop production and soil health in changing environments. Here, we used multitrophic ecological networks to investigate the importance of soil biodiversity, in particular, the biodiversity of key-stone taxa in controlling soil functioning and wheat production in a 35-year field fertilization experiment. We found strong and positive associations between soil functional genes, crop production and the biodiversity of key-stone phylotypes; soils supporting a larger number of key-stone nematode, bacteria and fungi phylotypes yielded the highest wheat production. These key-stone phylotypes were also positively associated with plant growth (phototrophic bacteria, nitrogen fixers) and multiple functional genes related to nutrient cycling. The retrieved information on the genomes clustered with key-stone bacterial phylotypes indicated that the key-stone taxa had higher gene copies of oxidoreductases (participating most biogeochemical cycles of ecosystems and linking to microbial energetics) and 71 essential functional genes associated with carbon, nitrogen, phosphorus, and sulfur cycling. Altogether, our work highlights the fundamental role of the biodiversity of key-stone phylotypes in maintaining soil functioning and crop production after several decades of fertilization, and provides a list of key-stone phylotypes linking to crop production and soil nutrient cycling, which could give science-based guidance for sustainable food production.
Collapse
Affiliation(s)
- Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Xisheng Guo
- Institute of Soil and Fertilizer Research, Anhui Academy of Agricultural Sciences, South Nongke Road 40, Hefei, 230031, China
| | - Daozhong Wang
- Institute of Soil and Fertilizer Research, Anhui Academy of Agricultural Sciences, South Nongke Road 40, Hefei, 230031, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
40
|
Friedrich I, Hollensteiner J, Schneider D, Poehlein A, Hertel R, Daniel R. First Complete Genome Sequences of Janthinobacterium lividum EIF1 and EIF2 and Their Comparative Genome Analysis. Genome Biol Evol 2020; 12:1782-1788. [PMID: 32658247 PMCID: PMC7549134 DOI: 10.1093/gbe/evaa148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 01/14/2023] Open
Abstract
We present the first two complete genomes of the Janthinobacterium lividum species, namely strains EIF1 and EIF2, which both possess the ability to synthesize violacein. The violet pigment violacein is a secondary metabolite with antibacterial, antifungal, antiviral, and antitumoral properties. Both strains were isolated from environmental oligotrophic water ponds in Göttingen. The strains were phylogenetically classified by average nucleotide identity (ANI) analysis and showed a species assignment to J. lividum with 97.72% (EIF1) and 97.66% (EIF2) identity. These are the first complete genome sequences of strains belonging to the species J. lividum. The genome of strain EIF1 consists of one circular chromosome (6,373,589 bp) with a GC-content of 61.98%. The genome contains 5,551 coding sequences, 122 rRNAs, 93 tRNAs, and 1 tm-RNA. The genome of EIF2 comprises one circular chromosome (6,399,352 bp) with a GC-content of 61.63% and a circular plasmid p356839 (356,839 bp) with a GC-content of 57.21%. The chromosome encodes 5,691 coding sequences, 122 rRNAs, 93 tRNAs, and 1 tm-RNA and the plasmid harbors 245 coding sequences. In addition to the highly conserved chromosomally encoded violacein operon, the plasmid comprises a nonribosomal peptide synthetase cluster with similarity to xenoamicin, which is a bioactive compound effective against protozoan parasites.
Collapse
Affiliation(s)
- Ines Friedrich
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| | - Jacqueline Hollensteiner
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute of Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Germany
| |
Collapse
|
41
|
Chen Q, Meyer WA, Zhang Q, White JF. 16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates. PeerJ 2020; 8:e8417. [PMID: 31942261 PMCID: PMC6956778 DOI: 10.7717/peerj.8417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Turfgrass investigators have observed that plantings of grass seeds produced in moist climates produce seedling stands that show greater stand evenness with reduced disease compared to those grown from seeds produced in dry climates. Grass seeds carry microbes on their surfaces that become endophytic in seedlings and promote seedling growth. We hypothesize that incomplete development of the microbiome associated with the surface of seeds produced in dry climates reduces the performance of seeds. Little is known about the influence of moisture on the structure of this microbial community. We conducted metagenomic analysis of the bacterial communities associated with seeds of three turf species (Festuca rubra, Lolium arundinacea, and Lolium perenne) from low moisture (LM) and high moisture (HM) climates. The bacterial communities were characterized by Illumina high-throughput sequencing of 16S rRNA V3–V4 regions. We performed seed germination tests and analyzed the correlations between the abundance of different bacterial groups and seed germination at different taxonomy ranks. Climate appeared to structure the bacterial communities associated with seeds. LM seeds vectored mainly Proteobacteria (89%). HM seeds vectored a denser and more diverse bacterial community that included Proteobacteria (50%) and Bacteroides (39%). At the genus level, Pedobacter (20%), Sphingomonas (13%), Massilia (12%), Pantoea (12%) and Pseudomonas (11%) were the major genera in the bacterial communities regardless of climate conditions. Massilia, Pantoea and Pseudomonas dominated LM seeds, while Pedobacter and Sphingomonas dominated HM seeds. The species of turf seeds did not appear to influence bacterial community composition. The seeds of the three turf species showed a core microbiome consisting of 27 genera from phyla Actinobacteria, Bacteroidetes, Patescibacteria and Proteobacteria. Differences in seed-vectored microbes, in terms of diversity and density between high and LM climates, may result from effects of moisture level on the colonization of microbes and the development of microbe community on seed surface tissues (adherent paleas and lemmas). The greater diversity and density of seed vectored microbes in HM climates may benefit seedlings by helping them tolerate stress and fight disease organisms, but this dense microbial community may also compete with seedlings for nutrients, slowing or modulating seed germination and seedling growth.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - William A Meyer
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Qiuwei Zhang
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - James F White
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
42
|
Saccà ML, Manici LM, Caputo F, Frisullo S. Changes in rhizosphere bacterial communities associated with tree decline: grapevine esca syndrome case study. Can J Microbiol 2019; 65:930-943. [DOI: 10.1139/cjm-2019-0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An investigation was carried out on rhizosphere bacteria to determine if they may be associated with perennial crops affected by nonspecific decline, a phenomenon that is difficult to diagnose and prevent. Esca disease of grapevine was chosen for this case study because of its easy foliar symptom identification. Ribosomal DNA fingerprint analysis by polymerase chain reaction – denaturing gradient gel electrophoresis (PCR–DGGE), quantitative PCR (qPCR), and rDNA amplicon sequencing by next-generation sequencing (NGS) were adopted to investigate the bacterial communities associated with grapevines, which were selected for the presence and absence of external foliar symptoms in 11 vineyards. According to PCR–DGGE and qPCR, bacterial communities differed in site of origin (vineyards), but not between symptomatic and asymptomatic plants, whereas qPCR gave a significantly higher presence of total bacteria and Pseudomonas spp. in asymptomatic plants. NGS confirmed no difference between symptomatic and asymptomatic plants, apart from a few minor genera (<0.5%) such as Salinibacterium, Flavobacterium, Nocardia, and Janthinobacterium, which were, in all cases, higher in asymptomatic plants and whose functional role should be the object of further investigation. The fact that total bacteria and Pseudomonas were more abundant in the rhizosphere of asymptomatic grapevines and that some bacterial genera were associated with the latter, represents a new element when investigating the multiple-origin phenomenon such as esca disease of grapevine.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Council for Agricultural Research and Economics, Agriculture and Environment Research Center, Bologna, Italy
| | - Luisa Maria Manici
- Council for Agricultural Research and Economics, Agriculture and Environment Research Center, Bologna, Italy
| | - Francesco Caputo
- Council for Agricultural Research and Economics, Agriculture and Environment Research Center, Bologna, Italy
| | - Salvatore Frisullo
- University of Foggia, Department of the Sciences of Agriculture, Food and Environment, Foggia, Italy
| |
Collapse
|
43
|
Draft Genome Sequence of Duganella sp. Strain DN04, Isolated from Cultivated Soil. Microbiol Resour Announc 2019; 8:8/32/e00848-19. [PMID: 31395651 PMCID: PMC6687938 DOI: 10.1128/mra.00848-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we sequenced Duganella sp. strain DN04, a novel species within the genus Duganella that was isolated from a maize field in North Carolina. The assembled draft genome size is 6,562,230 bp, with a total of 6,039 protein coding sequences and 3,889 functionally assigned genes, including genes putatively involved in the colonization of plants. Here, we sequenced Duganella sp. strain DN04, a novel species within the genus Duganella that was isolated from a maize field in North Carolina. The assembled draft genome size is 6,562,230 bp, with a total of 6,039 protein coding sequences and 3,889 functionally assigned genes, including genes putatively involved in the colonization of plants.
Collapse
|
44
|
Shi S, Tian L, Xu S, Ji L, Nasir F, Li X, Song Z, Tian C. The rhizomicrobiomes of wild and cultivated crops react differently to fungicides. Arch Microbiol 2019; 201:477-486. [PMID: 30361816 DOI: 10.1007/s00203-018-1586-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
Abstract
The fungicides used to control diseases in cereal production can have adverse effects on non-target microbial communities, with possible consequences for plant health and productivity. Although we know that fungicides affect microbial community structure and soil activities, it is unclear how crop cultivars have altered the impact of fungicides on rhizomicrobiomes. In this study, the rhizosphere bacterial and fungal communities and structures of cultivated crops and their wild relatives were studied by Illumina MiSeq sequencing analysis. The results indicated that the rhizomicrobiome communities of wild crops reacted more strongly to fungicides than that of their cultivated relatives. Furthermore, fungal community composition was more affected by fungicides than bacterial community composition. Remarkably, the same trend was observed in both soybean and rice with regard to the influence of crop cultivar on the response of the rhizomicrobiome to fungicide application, although the level of the response was not similar. We report for the first time that the rhizomicrobiomes of wild crops reacted more strongly to fungicides than the rhizomicrobiomes of cultivated crops.
Collapse
Affiliation(s)
- Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangqi Xu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Li Ji
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Xiujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200433, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| |
Collapse
|
45
|
Draft Genome Sequences of Violacein-Producing Duganella sp. Isolates from a Waterway in Eastern Pennsylvania. Microbiol Resour Announc 2018; 7:MRA01196-18. [PMID: 30533678 PMCID: PMC6256701 DOI: 10.1128/mra.01196-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/03/2022] Open
Abstract
Five Duganella sp. bacterial isolates that synthesize violacein were cultured from a central Pennsylvania waterway. Five Duganella sp. bacterial isolates that synthesize violacein were cultured from a central Pennsylvania waterway. Violacein has antimicrobial potential, including chytrid-killing effects, relevant to amphibian declines worldwide. Whole-genome analysis of these five microbial isolates may provide insights to better protect amphibian communities from fungal infections using bioremediation.
Collapse
|
46
|
Comparative Genomic Analysis of Members of the Genera Methanosphaera and Methanobrevibacter Reveals Distinct Clades with Specific Potential Metabolic Functions. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:7609847. [PMID: 30210264 PMCID: PMC6120340 DOI: 10.1155/2018/7609847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Methanobrevibacter and Methanosphaera species represent some of the most prevalent methanogenic archaea in the gastrointestinal tract of animals and humans and play an important role in this environment. The aim of this study was to identify genomic features that are shared or specific for members of each genus with a special emphasis of the analysis on the assimilation of nitrogen and acetate and the utilization of methanol and ethanol for methanogenesis. Here, draft genome sequences of Methanobrevibacter thaueri strain DSM 11995T, Methanobrevibacter woesei strain DSM 11979T, and Methanosphaera cuniculi strain 4103T are reported and compared to those of 16 other Methanobrevibacter and Methanosphaera genomes, including genomes of the 13 currently available types of strains of the two genera. The comparative genome analyses indicate that among other genes, the absence of molybdopterin cofactor biosynthesis is conserved in Methanosphaera species but reveals also that the three species share a core set of more than 300 genes that distinguishes the genus Methanosphaera from the genus Methanobrevibacter. Multilocus sequence analysis shows that the genus Methanobrevibacter can be subdivided into clades, potentially new genera, which may display characteristic specific metabolic features. These features include not only the potential ability of nitrogen fixation and acetate assimilation in a clade comprised of Methanobrevibacter species from the termite gut and Methanobrevibacter arboriphilus strains but also the potential capability to utilize ethanol and methanol in a clade comprising Methanobrevibacter wolinii strain DSM 11976T, Mbb. sp. AbM4, and Mbb. boviskoreani strain DSM 25824T.
Collapse
|
47
|
Schlemper TR, van Veen JA, Kuramae EE. Co-Variation of Bacterial and Fungal Communities in Different Sorghum Cultivars and Growth Stages is Soil Dependent. MICROBIAL ECOLOGY 2018; 76:205-214. [PMID: 29147973 PMCID: PMC6061463 DOI: 10.1007/s00248-017-1108-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 05/29/2023]
Abstract
Rhizosphere microbial community composition can be influenced by different biotic and abiotic factors. We investigated the composition and co-variation of rhizosphere bacterial and fungal communities from two sorghum genotypes (BRS330 and SRN-39) in three different plant growth stages (emergence of the second leaf, (day10), vegetative to reproductive differentiation point (day 35), and at the last visible emerged leaf (day 50)) in two different soil types, Clue field (CF) and Vredepeel (VD). We observed that either bacterial or fungal community had its composition stronger influenced by soil followed by plant growth stage and cultivar. However, the influence of plant growth stage was higher on fungal community composition than on the bacterial community composition. Furthermore, we showed that sorghum rhizosphere bacterial and fungal communities can affect each other's composition and structure. The decrease in relative abundance of the fungus genus Gibberella over plant growth stages was followed by decrease of the bacterial families Oxalobacteracea and Sphingobacteriacea. Although cultivar effect was not the major responsible for bacterial and fungal community composition, cultivar SRN-39 showed to promote a stronger co-variance between bacterial and fungal communities.
Collapse
Affiliation(s)
- Thiago R Schlemper
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Biology, Leiden University, Leiden, The Netherlands
| | - Johannes A van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| |
Collapse
|
48
|
Silveira MC, Catanho M, Miranda ABD. Genomic analysis of bifunctional Class C-Class D β-lactamases in environmental bacteria. Mem Inst Oswaldo Cruz 2018; 113:e180098. [PMID: 29846396 PMCID: PMC5967600 DOI: 10.1590/0074-02760180098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/20/2018] [Indexed: 11/22/2022] Open
Abstract
β-lactamases, which are found in several bacterial species and environments, are the main cause of resistance to β-lactams in Gram-negative bacteria. In 2009, a protein (LRA-13) with two β-lactamase domains (one class C domain and one class D domain) was experimentally characterised, and an extended action spectrum against β-lactams consistent with two functional domains was found. Here, we present the results of searches in the non-redundant NCBI protein database that revealed the existence of a group of homologous bifunctional β-lactamases in the genomes of environmental bacteria. These findings suggest that bifunctional β-lactamases are widespread in nature; these findings also raise concern that bifunctional β-lactamases may be transferred to bacteria of clinical importance through lateral gene transfer mechanisms.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Marcos Catanho
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Antônio Basílio de Miranda
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
49
|
Kumar R, Acharya V, Singh D, Kumar S. Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01. Stand Genomic Sci 2018; 13:11. [PMID: 29721151 PMCID: PMC5909252 DOI: 10.1186/s40793-018-0313-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum. The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.
Collapse
Affiliation(s)
- Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post BoxNo.06, Palampur, Himachal Pradesh 176 061 India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post BoxNo.06, Palampur, Himachal Pradesh 176 061 India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post BoxNo.06, Palampur, Himachal Pradesh 176 061 India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post BoxNo.06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|
50
|
Selvarajan R, Sibanda T, Tekere M. Thermophilic bacterial communities inhabiting the microbial mats of "indifferent" and chalybeate (iron-rich) thermal springs: Diversity and biotechnological analysis. Microbiologyopen 2018; 7:e00560. [PMID: 29243409 PMCID: PMC5911995 DOI: 10.1002/mbo3.560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 11/08/2022] Open
Abstract
Microbial mats are occasionally reported in thermal springs and information on such mats is very scarce. In this study, microbial mats were collected from two hot springs (Brandvlei (BV) and Calitzdorp (CA)), South Africa and subjected to scanning electron microscopy (SEM) and targeted 16S rRNA gene amplicon analysis using Next Generation Sequencing (NGS). Spring water temperature was 55°C for Brandvlei and 58°C for Calitzdorp while the pH of both springs was slightly acidic, with an almost identical pH range (6.2-6.3). NGS analysis resulted in a total of 4943 reads, 517 and 736 OTUs for BV and CA at, respectively, a combined total of 14 different phyla in both samples, 88 genera in CA compared to 45 in BV and 37.64% unclassified sequences in CA compared to 27.32% recorded in BV. Dominant bacterial genera in CA microbial mat were Proteobacteria (29.19%), Bacteroidetes (9.41%), Firmicutes (9.01%), Cyanobacteria (6.89%), Actinobacteria (2.65%), Deinococcus-Thermus (2.57%), and Planctomycetes (1.94%) while the BV microbial mat was dominated by Bacteroidetes (47.3%), Deinococcus-Thermus (12.35%), Proteobacteria (7.98%), and Planctomycetes (2.97%). Scanning electron microscopy results showed the presence of microbial filaments possibly resembling cyanobacteria, coccids, rod-shaped bacteria and diatoms in both microbial mats. Dominant genera that were detected in this study have been linked to different biotechnological applications including hydrocarbon degradation, glycerol fermentation, anoxic-fermentation, dehalogenation, and biomining processes. Overall, the results of this study exhibited thermophilic bacterial community structures with high diversity in microbial mats, which have a potential for biotechnological exploitation.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| | - Timothy Sibanda
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| | - Memory Tekere
- Department of Environmental SciencesCollege of Agriculture and Environmental SciencesUNISA Science CampusFloridaSouth Africa
| |
Collapse
|