1
|
Beaud Benyahia B, Taib N, Beloin C, Gribaldo S. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Nat Rev Microbiol 2025; 23:41-56. [PMID: 39198708 DOI: 10.1038/s41579-024-01088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
The bacterial envelope is one of the oldest and most essential cellular components and has been traditionally divided into Gram-positive (monoderm) and Gram-negative (diderm). Recent landmark studies have challenged a major paradigm in microbiology by inferring that the last bacterial common ancestor had a diderm envelope and that the outer membrane (OM) was lost repeatedly in evolution to give rise to monoderms. Intriguingly, OM losses appear to have occurred exclusively in the Terrabacteria, one of the two major clades of bacteria. In this Review, we present current knowledge about the Terrabacteria. We describe their diversity and phylogeny and then highlight the vast phenotypic diversity of the Terrabacteria cell envelopes, which display large deviations from the textbook examples of diderms and monoderms, challenging the classical Gram-positive-Gram-negative divide. We highlight the striking differences in the systems involved in OM biogenesis in Terrabacteria with respect to the classical diderm experimental models and how they provide novel insights into the diversity and biogenesis of the bacterial cell envelope. We also discuss the potential evolutionary steps that might have led to the multiple losses of the OM and speculate on how the very first OM might have emerged before the last bacterial common ancestor.
Collapse
Affiliation(s)
- Basile Beaud Benyahia
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Najwa Taib
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
DePoy AN, King GM. Distribution and diversity of anaerobic thermophiles and putative anaerobic nickel-dependent carbon monoxide-oxidizing thermophiles in mesothermal soils and sediments. Front Microbiol 2023; 13:1096186. [PMID: 36699584 PMCID: PMC9868602 DOI: 10.3389/fmicb.2022.1096186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Even though thermophiles are best known from geothermal and other heated systems, numerous studies have demonstrated that they occur ubiquitously in mesothermal and permanently cold soils and sediments. Cultivation based studies of the latter have revealed that the thermophiles within them are mostly spore-forming members of the Firmicutes. Since the geographic distribution of spores is presumably unconstrained by transport through the atmosphere, similar communities (composition and diversity) of thermophiles might be expected to emerge in mesothermal habitats after they are heated. Alternatively, thermophiles might experience environmental selection before or after heating leading to divergent communities. After demonstrating the ubiquity of anaerobic thermophiles and CO uptake in a variety of mesothermal habitats and two hot springs, we used high throughput sequencing of 16S rRNA genes to assess the composition and diversity of populations that emerged after incubation at 60°C with or without headspace CO concentrations of 25%. Anaerobic Firmicutes dominated relative abundances at most sites but anaerobic thermophilic members of the Acidobacteria and Proteobacteria were also common. Nonetheless, compositions at the amplicon sequence variant (ASV) level varied among the sites with no convergence resulting from heating or CO addition as indicated by beta diversity analyses. The distinctions among thermophilic communities paralleled patterns observed for unheated "time zero" mesothermal soils and sediments. Occupancy analyses showed that the number of ASVs occupying each of n sites decreased unimodally with increasing n; no ASV occupied all 14 sites and only one each occupied 11 and 12 sites, while 69.3% of 1873 ASVs occupied just one site. Nonetheless, considerations of distances among the sites occupied by individual ASVs along with details of their distributions indicated that taxa were not dispersal limited but rather were constrained by environmental selection. This conclusion was supported by βMNTD and βNTI analyses, which showed dispersal limitation was only a minor contributor to taxon distributions.
Collapse
|
3
|
Sahonero-Canavesi DX, Siliakus MF, Abdala Asbun A, Koenen M, von Meijenfeldt FAB, Boeren S, Bale NJ, Engelman JC, Fiege K, Strack van Schijndel L, Sinninghe Damsté JS, Villanueva L. Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria. SCIENCE ADVANCES 2022; 8:eabq8652. [PMID: 36525503 DOI: 10.1126/sciadv.abq8652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial membranes are composed of fatty acids (FAs) ester-linked to glycerol-3-phosphate, while archaea have membranes made of isoprenoid chains ether-linked to glycerol-1-phosphate. Many archaeal species organize their membrane as a monolayer of membrane-spanning lipids (MSLs). Exceptions to this "lipid divide" are the production by some bacterial species of (ether-bound) MSLs, formed by tail-to-tail condensation of FAs resulting in the formation of (iso) diabolic acids (DAs), which are the likely precursors of paleoclimatological relevant branched glycerol dialkyl glycerol tetraether molecules. However, the enzymes responsible for their production are unknown. Here, we report the discovery of bacterial enzymes responsible for the condensation reaction of FAs and for ether bond formation and confirm that the building blocks of iso-DA are branched iso-FAs. Phylogenomic analyses of the key biosynthetic genes reveal a much wider diversity of potential MSL (ether)-producing bacteria than previously thought, with importantt implications for our understanding of the evolution of lipid membranes.
Collapse
Affiliation(s)
- Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Melvin F Siliakus
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - F A Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Julia C Engelman
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Kerstin Fiege
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Lora Strack van Schijndel
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.021, Utrecht 3508 TA, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.021, Utrecht 3508 TA, Netherlands
| |
Collapse
|
4
|
Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022; 38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse
|
5
|
Gallo G, Puopolo R, Carbonaro M, Maresca E, Fiorentino G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5228. [PMID: 34069056 PMCID: PMC8157027 DOI: 10.3390/ijerph18105228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain extremophilic microorganisms, with a main focus on thermophiles, which make them attractive for biotechnological applications in the field of environmental remediation; moreover, it sheds light on updated genetic systems (also those based on the CRISPR-Cas tool), which expand the potentialities of these microorganisms to be genetically manipulated for various biotechnological purposes.
Collapse
Affiliation(s)
- Giovanni Gallo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Rosanna Puopolo
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Miriam Carbonaro
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Emanuela Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; (G.G.); (R.P.); (M.C.); (E.M.)
- Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
6
|
Reichart NJ, Bowers RM, Woyke T, Hatzenpichler R. High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics. Front Microbiol 2021; 12:668238. [PMID: 33968004 PMCID: PMC8098120 DOI: 10.3389/fmicb.2021.668238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Enzyme stability and activity at elevated temperatures are important aspects in biotechnological industries, such as the conversion of plant biomass into biofuels. In order to reduce the costs and increase the efficiency of biomass conversion, better enzymatic processing must be developed. Hot springs represent a treasure trove of underexplored microbiological and protein chemistry diversity. Herein, we conduct an exploratory study into the diversity of hot spring biomass-degrading potential. We describe the taxonomic diversity and carbohydrate active enzyme (CAZyme) coding potential in 71 publicly available metagenomic datasets from 58 globally distributed terrestrial geothermal features. Through taxonomic profiling, we detected a wide diversity of microbes unique to varying temperature and pH ranges. Biomass-degrading enzyme potential included all five classes of CAZymes and we described the presence or absence of genes encoding 19 glycosyl hydrolases hypothesized to be involved with cellulose, hemicellulose, and oligosaccharide degradation. Our results highlight hot springs as a promising system for the further discovery and development of thermo-stable biomass-degrading enzymes that can be applied toward generation of renewable biofuels. This study lays a foundation for future research to further investigate the functional diversity of hot spring biomass-degrading enzymes and their potential utility in biotechnological processing.
Collapse
Affiliation(s)
- Nicholas J Reichart
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.,Thermal Biology Institute, Montana State University, Bozeman, MT, United States.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Robert M Bowers
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.,Thermal Biology Institute, Montana State University, Bozeman, MT, United States.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
7
|
Catchpole RJ, Forterre P. The Evolution of Reverse Gyrase Suggests a Nonhyperthermophilic Last Universal Common Ancestor. Mol Biol Evol 2020; 36:2737-2747. [PMID: 31504731 PMCID: PMC6878951 DOI: 10.1093/molbev/msz180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reverse gyrase (RG) is the only protein found ubiquitously in hyperthermophilic organisms, but absent from mesophiles. As such, its simple presence or absence allows us to deduce information about the optimal growth temperature of long-extinct organisms, even as far as the last universal common ancestor of extant life (LUCA). The growth environment and gene content of the LUCA has long been a source of debate in which RG often features. In an attempt to settle this debate, we carried out an exhaustive search for RG proteins, generating the largest RG data set to date. Comprising 376 sequences, our data set allows for phylogenetic reconstructions of RG with unprecedented size and detail. These RG phylogenies are strikingly different from those of universal proteins inferred to be present in the LUCA, even when using the same set of species. Unlike such proteins, RG does not form monophyletic archaeal and bacterial clades, suggesting RG emergence after the formation of these domains, and/or significant horizontal gene transfer. Additionally, the branch lengths separating archaeal and bacterial groups are very short, inconsistent with the tempo of evolution from the time of the LUCA. Despite this, phylogenies limited to archaeal RG resolve most archaeal phyla, suggesting predominantly vertical evolution since the time of the last archaeal ancestor. In contrast, bacterial RG indicates emergence after the last bacterial ancestor followed by significant horizontal transfer. Taken together, these results suggest a nonhyperthermophilic LUCA and bacterial ancestor, with hyperthermophily emerging early in the evolution of the archaeal and bacterial domains.
Collapse
Affiliation(s)
- Ryan J Catchpole
- Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Forterre
- Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, University of Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Zamorano-López N, Greses S, Aguado D, Seco A, Borrás L. Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Liew KJ, Teo SC, Shamsir MS, Sani RK, Chong CS, Chan KG, Goh KM. Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities. 3 Biotech 2018; 8:376. [PMID: 30105201 PMCID: PMC6087703 DOI: 10.1007/s13205-018-1391-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022] Open
Abstract
Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, β-glucosidase, and β-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.
Collapse
Affiliation(s)
- Kok Jun Liew
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| | - Seng Chong Teo
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, USA
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| |
Collapse
|
10
|
Draft Genome Sequence of a Dictyoglomus sp. from an Enrichment Culture of a New Zealand Geothermal Spring. GENOME ANNOUNCEMENTS 2018; 6:6/11/e00150-18. [PMID: 29545298 PMCID: PMC5854780 DOI: 10.1128/genomea.00150-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
A draft genome of a novel
Dictyoglomus
sp., NZ13-RE01, was obtained from a New Zealand hot spring enrichment culture. The 1,927,012-bp genome is similar in both size and G+C content to other
Dictyoglomus
spp. Like its relatives,
Dictyoglomus
sp. NZ13-RE01 encodes many genes involved in complex carbohydrate metabolism.
Collapse
|