1
|
Bouchali R, Mandon C, Danty-Berger E, Géloën A, Marjolet L, Youenou B, Pozzi ACM, Vareilles S, Galia W, Kouyi GL, Toussaint JY, Cournoyer B. Runoff microbiome quality assessment of a city center rainwater harvesting zone shows a differentiation of pathogen loads according to human mobility patterns. Int J Hyg Environ Health 2024; 260:114391. [PMID: 38781750 DOI: 10.1016/j.ijheh.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.
Collapse
Affiliation(s)
- Rayan Bouchali
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Claire Mandon
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Emmanuelle Danty-Berger
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Alain Géloën
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Laurence Marjolet
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Benjamin Youenou
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Adrien C M Pozzi
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Sophie Vareilles
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Wessam Galia
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | | | - Jean-Yves Toussaint
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France.
| |
Collapse
|
2
|
Pozzi ACM, Petit S, Marjolet L, Youenou B, Lagouy M, Namour P, Schmitt L, Navratil O, Breil P, Branger F, Cournoyer B. Ecological assessment of combined sewer overflow management practices through the analysis of benthic and hyporheic sediment bacterial assemblages from an intermittent stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167854. [PMID: 37848137 DOI: 10.1016/j.scitotenv.2023.167854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Combined sewer overflows (CSO) are used to avoid overloading unitary sewers and wastewater treatment plants. Following the European Council Directive on Urban Wastewater Treatment (UWT), CSO discharges are regulated using guidelines that aim to reduce their ecological impact on aquatic systems. A model CSO, which is part of a long-term experimental field observatory, was modified according to these guidelines and used to evaluate the benefits of compliance through analyses of the bacteriological and chemical states of the receiving intermittent stream. The benthic and hyporheic sediments of similar geomorphic units located upstream and downstream of a monitored CSO outlet were compared before and after changes in CSO regimes. Hydrological, pollutants (Metal Trace Elements, MTE; Polycyclic Aromatic Hydrocarbons, PAH; fecal indicator bacteria, FIB), and tpm-based DNA meta-barcoding datasets resolving the occurrences of >700 bacterial species of nearly 200 genera were studied. The frequency of overflow was confirmed to have significantly decreased following the application of the UWT guidelines. Overflows became almost limited to periods of heavy summer thunderstorm events. These changes were not associated with a significant decrease in most of the surveyed MTE, PAH, and FIB among stream sediments, except for chromium. Ecological benefits were highlighted by significant changes in tpm-based meta-barcoding community patterns between the UWT compliant sampling period and the previous one. Bacterial community change point analyses confirmed this segregation in the meta-barcoding dataset according to hydrological indices such as the number of CSO events and discharged volumes. A significant decline in CSO bacterial taxa in the benthic and hyporheic sediments was observed. Thirty-four CSO indicator species were identified, including Aeromonas caviae, Aeromonas media, and Pseudomonas oleovorans. These indicators, often documented as opportunistic pathogens (to humans, animals or plants) and/or pollutant degraders, were proposed as ecological sentinels for the assessment of CSO impacts.
Collapse
Affiliation(s)
- Adrien C M Pozzi
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France.
| | - Stéphanie Petit
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Laurence Marjolet
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Benjamin Youenou
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France
| | - Mickaël Lagouy
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Philippe Namour
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Laurent Schmitt
- Université de Strasbourg, UMR 7362 Unistra-CNRS-ENGEES, Faculté de Géographie et d'Aménagement, 67000 Strasbourg, France
| | - Oldrich Navratil
- UMR 5600 Environnement Ville Société, Université Lyon 2, CNRS, Lyon, France
| | - Pascal Breil
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Flora Branger
- UR RiverLy, INRAE Centre Lyon-Grenoble, Auvergne-Rhône-Alpes, 69625 Villeurbanne Cedex, France
| | - Benoit Cournoyer
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69280 Marcy L'Etoile, France.
| |
Collapse
|
3
|
Bouchali R, Marjolet L, Mondamert L, Chonova T, Ribun S, Laurent E, Bouchez A, Labanowski J, Cournoyer B. Evidence of Bacterial Community Coalescence between Freshwater and Discharged tpm-Harboring Bacterial Taxa from Hospital and Domestic Wastewater Treatment Plants among Epilithic Biofilms. Microorganisms 2023; 11:microorganisms11040922. [PMID: 37110345 PMCID: PMC10144666 DOI: 10.3390/microorganisms11040922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023] Open
Abstract
The ability of WWTP outflow bacteria at colonizing rock surfaces and contributing to the formation of river epilithic biofilms was investigated. Bacterial community structures of biofilms (b-) developing on rocks exposed to treated wastewaters (TWW) of a hospital (HTWW) and a domestic (DTWW) clarifier, and to surface waters of the stream located at 10 m, 500 m, and 8 km from the WWTP outlet, were compared. Biofilm bacterial contents were analyzed by cultural approaches and a tpm-based DNA metabarcoding analytical scheme. Co-occurrence distribution pattern analyses between bacterial datasets and eighteen monitored pharmaceuticals were performed. Higher concentrations of iohexol, ranitidine, levofloxacin, and roxithromycin were observed in the b-HTWW while atenolol, diclofenac, propranolol, and trimethoprim were higher in the b-DTWW. MPN growth assays showed recurrent occurrences of Pseudomonas aeruginosa and Aeromonas caviae among these biofilms. An enrichment of multi-resistant P. aeruginosa cells was observed in the hospital sewer line. P. aeruginosa MPN values were negatively correlated to roxithromycin concentrations. The tpm DNA metabarcoding analyses confirmed these trends and allowed an additional tracking of more than 90 species from 24 genera. Among the recorded 3082 tpm ASV (amplicon sequence variants), 41% were allocated to the Pseudomonas. Significant differences through ANOSIM and DESeq2 statistical tests were observed between ASV recovered from b-HTWW, b-DTWW, and epilithic river biofilms. More than 500 ASV were found restricted to a single sewer line such as those allocated to Aeromonas popoffii and Stenotrophomonas humi being strictly found in the b-HTWW file. Several significant correlations between tpm ASV counts per species and pharmaceutical concentrations in biofilms were recorded such as those of Lamprocystis purpurea being positively correlated with trimethoprim concentrations. A tpm source tracking analysis showed the b-DTWW and b-HTWW tpm ASV to have contributed, respectively, at up to 35% and 2.5% of the epilithic river biofilm tpm-taxa recovered downstream from the WWTP outlet. Higher contributions of TWW taxa among epilithic biofilms were recorded closer to the WWTP outlet. These analyses demonstrated a coalescence of WWTP sewer communities with river freshwater taxa among epilithic biofilms developing downstream of a WWTP outlet.
Collapse
Affiliation(s)
- Rayan Bouchali
- UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, Research Group «Bacterial Opportunistic Pathogens and Environment», VetAgro Sup, Aisle 3, 1st Floor, 69280 Marcy L’Etoile, France
| | - Laurence Marjolet
- UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, Research Group «Bacterial Opportunistic Pathogens and Environment», VetAgro Sup, Aisle 3, 1st Floor, 69280 Marcy L’Etoile, France
| | - Leslie Mondamert
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), École Nationale Supérieure d’Ingénieurs (ENSIP), UMR CNRS 7285, Université de Poitiers, 86000 Poitiers, France
| | - Teofana Chonova
- UMR CARRTEL, INRAE, Université de Savoie Mont Blanc, 75 Avenue de Corzent, 74200 Thonon-les-Bains, France
| | - Sébastien Ribun
- UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, Research Group «Bacterial Opportunistic Pathogens and Environment», VetAgro Sup, Aisle 3, 1st Floor, 69280 Marcy L’Etoile, France
| | - Elodie Laurent
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), École Nationale Supérieure d’Ingénieurs (ENSIP), UMR CNRS 7285, Université de Poitiers, 86000 Poitiers, France
| | - Agnès Bouchez
- UMR CARRTEL, INRAE, Université de Savoie Mont Blanc, 75 Avenue de Corzent, 74200 Thonon-les-Bains, France
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), École Nationale Supérieure d’Ingénieurs (ENSIP), UMR CNRS 7285, Université de Poitiers, 86000 Poitiers, France
| | - Benoit Cournoyer
- UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, Research Group «Bacterial Opportunistic Pathogens and Environment», VetAgro Sup, Aisle 3, 1st Floor, 69280 Marcy L’Etoile, France
| |
Collapse
|
4
|
Li X, Meng Z, Chen K, Hu F, Liu L, Zhu T, Yang D. Comparing diversity patterns and processes of microbial community assembly in water column and sediment in Lake Wuchang, China. PeerJ 2023; 11:e14592. [PMID: 36627922 PMCID: PMC9826614 DOI: 10.7717/peerj.14592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
The study compare the diversity patterns and processes of microbial community assembly in the water and sediment of Lake Wuchang (China) using high-throughput sequencing of 16S rRNA gene amplicons. A higher microbial α-diversity in the sediment was revealed (P < 0.01), and the most common bacterial phyla in water column were Proteobacteria, Cyanobacteria and Actinobacteria, while Proteobacteria, Acidobacteria, Chloroflexi and Nitrospirae were dominant in sediment. Functions related to phototrophy and nitrogen metabolism primarily occurred in the water column and sediment, respectively. The microbial communities in water column from different seasons were divided into three groups, while no such dispersion in sediment based on PCoA and ANOSIM. According to Pearson correlation analysis, water temperature, dissolved oxygen, water depth, total nitrogen, ammonium, and nitrite were key factors in determining microbial community structure in water column, while TN in sediment, conductivity, and organic matter were key factors in sediment. However, the stochastic processes (|βNTI| < 2) dominated community assembly in both the water column and sediment of Lake Wuchang. These data will provide a foundation for microbial development and utilization in lake water column and sediment under the circumstances of increasing tendency of lake ecological fishery in China.
Collapse
|
5
|
Wiesner-Friedman C, Beattie RE, Stewart JR, Hristova KR, Serre ML. Characterizing Differences in Sources of and Contributions to Fecal Contamination of Sediment and Surface Water with the Microbial FIT Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4231-4240. [PMID: 35298143 DOI: 10.1021/acs.est.2c00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface water monitoring and microbial source tracking (MST) are used to identify host sources of fecal pollution and protect public health. However, knowledge of the locations of spatial sources and their relative impacts on the environment is needed to effectively mitigate health risks. Additionally, sediment samples may offer time-integrated information compared to transient surface water. Thus, we implemented the newly developed microbial find, inform, and test framework to identify spatial sources and their impacts on human (HuBac) and bovine (BoBac) MST markers, quantified from both riverbed sediment and surface water in a bovine-dense region. Dairy feeding operations and low-intensity developed land-cover were associated with 99% (p-value < 0.05) and 108% (p-value < 0.05) increases, respectively, in the relative abundance of BoBac in sediment, and with 79% (p-value < 0.05) and 39% increases in surface water. Septic systems were associated with a 48% increase in the relative abundance of HuBac in sediment and a 56% increase in surface water. Stronger source signals were observed for sediment responses compared to water. By defining source locations, predicting river impacts, and estimating source influence ranges in a Great Lakes region, this work informs pollution mitigation strategies of local and global significance.
Collapse
Affiliation(s)
- Corinne Wiesner-Friedman
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Rachelle E Beattie
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Jill R Stewart
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Marc L Serre
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| |
Collapse
|
6
|
Wiesner-Friedman C, Beattie RE, Stewart JR, Hristova KR, Serre ML. Microbial Find, Inform, and Test Model for Identifying Spatially Distributed Contamination Sources: Framework Foundation and Demonstration of Ruminant Bacteroides Abundance in River Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10451-10461. [PMID: 34291905 DOI: 10.1021/acs.est.1c01602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbial pollution in rivers poses known ecological and health risks, yet causal and mechanistic linkages to sources remain difficult to establish. Host-associated microbial source tracking (MST) markers help to assess the microbial risks by linking hosts to contamination but do not identify the source locations. Land-use regression (LUR) models have been used to screen the source locations using spatial predictors but could be improved by characterizing transport (i.e., hauling, decay overland, and downstream). We introduce the microbial Find, Inform, and Test (FIT) framework, which expands previous LUR approaches and develops novel spatial predictor models to characterize the transported contributions. We applied FIT to characterize the sources of BoBac, a ruminant Bacteroides MST marker, quantified in riverbed sediment samples from Kewaunee County, Wisconsin. A 1 standard deviation increase in contributions from land-applied manure hauled from animal feeding operations (AFOs) was associated with a 77% (p-value <0.05) increase in the relative abundance of ruminant Bacteroides (BoBac-copies-per-16S-rRNA-copies) in the sediment. This is the first work finding an association between the upstream land-applied manure and the offsite bovine-associated fecal markers. These findings have implications for the sediment as a reservoir for microbial pollution associated with AFOs (e.g., pathogens and antibiotic-resistant bacteria). This framework and application advance statistical analysis in MST and water quality modeling more broadly.
Collapse
Affiliation(s)
- Corinne Wiesner-Friedman
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Rachelle E Beattie
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Jill R Stewart
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Marc L Serre
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| |
Collapse
|
7
|
Aigle A, Colin Y, Bouchali R, Bourgeois E, Marti R, Ribun S, Marjolet L, Pozzi ACM, Misery B, Colinon C, Bernardin-Souibgui C, Wiest L, Blaha D, Galia W, Cournoyer B. Spatio-temporal variations in chemical pollutants found among urban deposits match changes in thiopurine S-methyltransferase-harboring bacteria tracked by the tpm metabarcoding approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145425. [PMID: 33636795 DOI: 10.1016/j.scitotenv.2021.145425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
The bTPMT (bacterial thiopurine S-methyltransferase), encoded by the tpm gene, can detoxify metalloid-containing oxyanions and xenobiotics. The hypothesis of significant relationships between tpm distribution patterns and chemical pollutants found in urban deposits was investigated. The tpm gene was found conserved among eight bacterial phyla with no sign of horizontal gene transfers but a predominance among gammaproteobacteria. A DNA metabarcoding approach was designed for tracking tpm-harboring bacteria among polluted urban deposits and sediments recovered for more than six years in a detention basin (DB). This DB recovers runoff waters and sediments from a zone of high commercial activities. The PCR products from DB samples led to more than 540,000 tpm reads after DADA2 or MOTHUR bio-informatic manipulations that were allocated to more than 88 and less than 634 sequence variants per sample. The tpm community patterns were significantly different between the recent urban deposits and those that had accumulated for more than 2 years in the DB, and between those of the DB surface and the DB settling pit. These groups of samples had distinct mixture of priority pollutants. Significant relationships between tpm ordination patterns, sediment accumulation time periods and location, and concentrations in PAH, chlorpyrifos, and 4-nonylphenols (NP) were observed. These correlations matched the higher occurrences of, among others, Aeromonas, Pseudomonas, and Xanthomonas tpm-harboring bacteria in recent urban DB deposits more contaminated with chrysene and alkylphenol ethoxylates. Highly significant drops in tpm reads allocated to Aeromonas species were recorded in the oldest DB sediments accumulating naphthalene and metallic pollutants. Degraders of urban pollutants such as P. aeruginosa and P. putida showed conserved distribution patterns over time but P. syringae phytopathogens were more abundant in the oldest sediments. TPMT-harboring bacteria can be used to assess the incidence of high risk priority pollutants on environmental systems.
Collapse
Affiliation(s)
- Axel Aigle
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Yannick Colin
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Rayan Bouchali
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Emilie Bourgeois
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Romain Marti
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Sébastien Ribun
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Laurence Marjolet
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Adrien C M Pozzi
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Boris Misery
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Céline Colinon
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Claire Bernardin-Souibgui
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Laure Wiest
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Didier Blaha
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Wessam Galia
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France
| | - Benoit Cournoyer
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRA 1418, Research team "Bacterial Opportunistic Pathogens and Environment", 69280 Marcy L'Etoile, France.
| |
Collapse
|
8
|
Lebon Y, Navel S, Moro M, Voisin J, Cournoyer B, François C, Volatier L, Mermillod-Blondin F. Influence of stormwater infiltration systems on the structure and the activities of groundwater biofilms: Are the effects restricted to rainy periods? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142451. [PMID: 33017764 DOI: 10.1016/j.scitotenv.2020.142451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Stormwater infiltration systems (SIS) have been set up to collect and infiltrate urban stormwater runoff in order to reduce flooding and to artificially recharge aquifers. Such practices produce environmental changes in shallow groundwater ecosystems like an increase in organic matter concentrations that could drive changes in structure and functions of groundwater microbial communities. Previous works suggested that SIS influence groundwater physico-chemistry during either rainy and dry period but no study has examined the impact of SIS on groundwater microorganisms during both periods. This study aimed to fill this gap by assessing SIS impacts on groundwater quality parameters in three SIS with vadose zone thickness < 3 m during two contrasting meteorological conditions (rainy/dry periods). Physicochemical (dissolved organic carbon and nutrient concentrations) and microbial variables (biomass, dehydrogenase and hydrolytic activities, and bacterial community structure) were assessed on SIS-impacted and non-SIS-impacted zones of the aquifers for the three SIS. Using clay beads incubated in the aquifer to collect microbial biofilm, we show that SIS increased microbial activities, bacterial richness and diversity in groundwater biofilms during the rainy period but not during the dry period. In contrast, the significant differences in dissolved organic carbon and nutrient concentrations, biofilm biomass and bacterial community structures (Bray-Curtis distances, relative abundances of main bacterial orders) measured between SIS-impacted and non-SIS-impacted zones of the aquifer were comparable during the two periods. These results suggest that structural indicators of biofilm like biomass were probably controlled by long-term effects of SIS on concentrations of dissolved organic matter and nutrients whereas biofilm activities and bacterial richness were temporally stimulated by stormwater runoff infiltrations during the rainy period. This decoupling between the structural and functional responses of groundwater biofilms to stormwater infiltration practices suggests that biofilms functions were highly reactive to fluxes associated with aquifer recharge events.
Collapse
Affiliation(s)
- Yohan Lebon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - Simon Navel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Maylis Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Jérémy Voisin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France; Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRA 1418, VetAgro Sup, 69680 Marcy L'Etoile, France
| | - Benoit Cournoyer
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRA 1418, VetAgro Sup, 69680 Marcy L'Etoile, France
| | - Clémentine François
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Laurence Volatier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
9
|
Lee AH, Lee J, Noh J, Lee C, Hong S, Kwon BO, Kim JJ, Khim JS. Characteristics of long-term changes in microbial communities from contaminated sediments along the west coast of South Korea: Ecological assessment with eDNA and physicochemical analyses. MARINE POLLUTION BULLETIN 2020; 160:111592. [PMID: 32927183 DOI: 10.1016/j.marpolbul.2020.111592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The environmental DNA (eDNA) metabarcoding was applied to assess benthic ecological health in the west coast of South Korea by investigating a long-term microbial community change (2015-17). The ecological interaction among microorganisms, from phylum to family level, and their associations to environmental variables across the five regions were highlighted. As part of the study, the available chemistry and toxicological data in the regions during the monitoring periods were incorporated into an integrated sediment triad assessment. The bacterial communities were dominated by Proteobacteria (34.2%), Bacteroidetes (13.8%), and Firmicutes (10.8%). Proteobacteria and Bacteroidetes dominated consistently across regions and years, while Firmicutes and Cyanobacteria significantly varied by region and years (p < 0.05). The abundance of this phylum declined over time with the increasing abundance of Cyanobacteria, indicating their independent interactions to certain environmental changes. Planctomycetes and Gemmatimonadetes linked to some contaminants (ΣPAHs and Cu), implying indicator taxa. Overall, eDNA-based microbial community analysis combined with exposures of contaminants and responses of microorganisms is a promising strategy for the assessment of benthic ecological health in contaminated sediments from coastal waters.
Collapse
Affiliation(s)
- Aslan Hwanhwi Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Noyer M, Reoyo-Prats B, Aubert D, Bernard M, Verneau O, Palacios C. Particle-attached riverine bacteriome shifts in a pollutant-resistant and pathogenic community during a Mediterranean extreme storm event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139047. [PMID: 32473395 DOI: 10.1016/j.scitotenv.2020.139047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Rivers are representative of the overall contamination found in their catchment area. Contaminant concentrations in watercourses depend on numerous factors including land use and rainfall events. Globally, in Mediterranean regions, rainstorms are at the origin of fluvial multipollution phenomena as a result of Combined Sewer Overflows (CSOs) and floods. Large loads of urban-associated microorganisms, including faecal bacteria, are released from CSOs which place public health - as well as ecosystems - at risk. The impacts of freshwater contamination on river ecosystems have not yet been adequately addressed, as is the case for the release of pollutant mixtures linked to extreme weather events. In this context, microbial communities provide critical ecosystem services as they are the only biological compartment capable of degrading or transforming pollutants. Through the use of 16S rRNA gene metabarcoding of environmental DNA at different seasons and during a flood event in a typical Mediterranean coastal river, we show that the impacts of multipollution phenomena on structural shifts in the particle-attached riverine bacteriome were greater than those of seasonality. Key players were identified via multivariate statistical modelling combined with network module eigengene analysis. These included species highly resistant to pollutants as well as pathogens. Their rapid response to contaminant mixtures makes them ideal candidates as potential early biosignatures of multipollution stress. Multiple resistance gene transfer is likely enhanced with drastic consequences for the environment and human-health, particularly in a scenario of intensification of extreme hydrological events.
Collapse
Affiliation(s)
- Mégane Noyer
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | - Brice Reoyo-Prats
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | - Dominique Aubert
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | - Maria Bernard
- Univ. Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; INRAE, SIGENAE, 78350 Jouy-en-Josas, France
| | - Olivier Verneau
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France; Unit. for Environmental Sciences and Management, North-West University, ZA-2520 Potchefstroom, South Africa
| | - Carmen Palacios
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France.
| |
Collapse
|
11
|
Voisin J, Cournoyer B, Marjolet L, Vienney A, Mermillod-Blondin F. Ecological assessment of groundwater ecosystems disturbed by recharge systems using organic matter quality, biofilm characteristics, and bacterial diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3295-3308. [PMID: 31838704 DOI: 10.1007/s11356-019-06971-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Recharge of aquifers by urban stormwater may trigger significant ecological changes that can be detrimental to the biodiversity and functioning of groundwater ecosystems. Here, the effects of aquifer recharge (AR) on three levels of parameters were investigated: dissolved organic carbon (DOC) quantity and quality, global biofilm characteristics, and diversity changes of bacterial communities. As DOC enrichment by AR can be mitigated by vadose zone (VZ) thickness, three AR sites with thin VZ (< 3 m) and three sites with thick VZ (> 10 m) were selected. For each AR site, clay beads were incubated over a 10-day-long rainy period through wells in recharged and non-recharged groundwaters. Total proteins, dehydrogenase, and hydrolytic activities were monitored from clay beads to assess biofilm development. Bacterial richness on beads was estimated by 16S rRNA-based metabarcoding. AR was found to significantly increase DOC and biodegradable DOC (BDOC) concentrations, biofilm development, and bacterial richness especially in sites with thin VZ. VZ thickness was inversely related to microbial growth indicators and bacterial richness in groundwater, through a control of DOC availability. The proportion of Bacteroidetes 16S rRNA gene reads was higher in recharged groundwater than in non-recharged groundwater, suggesting that this phylum could be used as an indicator of DOC enrichment associated with AR. Quantitative PCR assays for Bacteroides DNA confirmed these trends and showed an enrichment of this bacterial group in DOC-rich aquifer waters. The positive linear relationships between BDOC concentrations and biofilm variables highlighted a strong C-limitation of groundwater impacting bacterial species sorting and activity.
Collapse
Affiliation(s)
- Jérémy Voisin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, CNRS, UMR5557, INRA UMR1418, Laboratoire d'Écologie Microbienne (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment", 69280, Marcy L'Etoile, France
| | - Benoit Cournoyer
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, CNRS, UMR5557, INRA UMR1418, Laboratoire d'Écologie Microbienne (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment", 69280, Marcy L'Etoile, France
| | - Laurence Marjolet
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, CNRS, UMR5557, INRA UMR1418, Laboratoire d'Écologie Microbienne (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment", 69280, Marcy L'Etoile, France
| | - Antonin Vienney
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 69622, Villeurbanne, France.
| |
Collapse
|
12
|
Vadde KK, Feng Q, Wang J, McCarthy AJ, Sekar R. Next-generation sequencing reveals fecal contamination and potentially pathogenic bacteria in a major inflow river of Taihu Lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113108. [PMID: 31491696 DOI: 10.1016/j.envpol.2019.113108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Taihu Lake is one of the largest freshwater lakes in China and serves as an important source for drinking water. This lake is suffering from eutrophication, cyanobacterial blooms and fecal pollution, and the inflow Tiaoxi River is one of the main contributors. The goal here was to characterize the bacterial community structure of Tiaoxi River water by next-generation sequencing (NGS), paying attention to bacteria that are either fecal-associated or pathogenic, and to examine the relationship between environmental parameters and bacterial community structure. Water samples collected from 15 locations in three seasons, and fecal samples collected from different hosts and wastewater samples were used for bacterial community analysis. The phyla Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were predominant in most of the water samples tested. In fecal samples, Bacteroidetes, Firmicutes, and Proteobacteria were abundant, while wastewater samples were dominated by Proteobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi. The cluster analysis and principal coordinate analysis indicated that bacterial community structure was significantly different between water, fecal and sewage samples. Shared OTUs between water samples and chicken, pig, and human fecal samples ranged from 4.5 to 9.8% indicating the presence of avian, pig and human fecal contamination in Tiaoxi River. At genus level, five bacterial genera of fecal origin and sequences of seven potential pathogens were detected in many locations and their presence was correlated well with the land use pattern. The sequencing data revealed that Faecalibacterium could be a potential target for human-associated microbial source-tracking qPCR assays. Our results suggest that pH, conductivity, and temperature were the main environmental factors in shaping the bacterial community based on redundancy analysis. Overall, NGS is a valuable tool for preliminary investigation of environmental samples to identify the potential human health risk, providing specific information about fecal and potentially pathogenic bacteria that can be followed up by specific methods.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Qiaoli Feng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Alan J McCarthy
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, UK
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
13
|
Ordaz G, Merino-Mascorro JÁ, García S, Heredia N. Persistence of Bacteroidales and other fecal indicator bacteria on inanimated materials, melon and tomato at various storage conditions. Int J Food Microbiol 2019; 299:33-38. [PMID: 30952015 DOI: 10.1016/j.ijfoodmicro.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
In order to determine the microbial safety of produce, conventional fecal indicator bacteria (CFIB) such as Escherichia coli and Enterococcus are quantified as a standard practice. Bacteroidales are also fecal indicators mostly used for water samples; however, their use and persistence in foods has been rarely studied. In this study, persistence of both CFIB and genetic markers of host-specific Bacteroidales was determined in artificially contaminated materials and vegetables with different textured surfaces under different storage conditions. Sterile feces were contaminated with E. coli, E. faecalis, Bacteroidesthetaiotaomicron (human origin), and Bacteroidales from porcine and bovine origin. Feces were applied to filters of mixed cellulose esters and tomatoes (smooth surface) and flat cork coupons and melons (rough surface) and stored at 10 °C/95% relative humidity (RH) and 25 °C/65%RH for up to 25 days. Bacteroidales markers were analyzed by real-time polymerase chain reaction (qPCR), whereas CFIB were plated onto selective agars. CFIB detection on filters and cork surfaces declined over time. E. coli decreased 2.9 log CFU and 1.2 log CFU per filter and cork, respectively, at 10 °C/95%RH and 5.8 log CFU and 1.8 log CFU per filter and cork, respectively, at 25 °C/65%RH. E. faecalis decreased 1.9 log CFU on filters and 1.3 log CFU on cork at 10 °C/95%RH and 2.6 log CFU/filter and cork under both storage conditions. Although E. coli levels in tomatoes slightly increased during storage, the levels decreased by the end of the assays. However, CFIB levels in melons stored at 10 °C/95%RH increased after 20 days; when stored at 25 °C/65%RH, these levels increased after five days. Bacteroidales levels (universal and host-specific markers) in inanimated material and produce did not show significant differences (P ≤ 0.01) over time. Stability and persistence of Bacteroidales genetic markers make them superior to CFIB as markers and are alternatives for determining the risk of exposure to feces-contaminated produce.
Collapse
Affiliation(s)
- Gilberto Ordaz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - José Ángel Merino-Mascorro
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Santos García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Norma Heredia
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico.
| |
Collapse
|
14
|
McMinn BR, Klemm S, Korajkic A, Wyatt KM, Herrmann MP, Haugland RA, Lu J, Villegas EN, Frye C. A Constructed Wetland for Treatment of an Impacted Waterway and the Influence of Native Waterfowl on its Perceived Effectiveness. ECOLOGICAL ENGINEERING 2019; 128:48-56. [PMID: 31631948 PMCID: PMC6800712 DOI: 10.1016/j.ecoleng.2018.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A constructed, variable-flow treatment wetland was evaluated for its ability to reduce microbial loads from the Banklick Creek, an impacted recreational waterway in Northern Kentucky. For this study, levels of traditional (Escherichia coli and enterococci measured by culture and molecular techniques) and alternative fecal indicators (infectious somatic and F+ coliphage, Clostridium spp. and Clostridium perfringens by culture), potential pathogens (molecular signal of Campylobacter spp.) as well as various microbial source tracking (MST) markers (human fecal marker HF183 and avian fecal marker GFD) were monitored during the summer and early fall through five treatment stages within the Banklick Creek Wetland. No difference in concentrations of traditional or alternative fecal indicators were observed in any of the sites monitored. Microbial source tracking markers were employed to identify sources of fecal contamination within the wetland. Human marker HF183 concentrations at beginning stages of treatment were found to be significantly higher (P value range: 0.0016-0.0003) than levels at later stages. Conversely, at later stages of treatment where frequent bird activity was observed, Campylobacter and avian marker (GFD) signals were detected at significantly higher frequencies (P value range: 0.024 to <0.0001), and both signals were strongly correlated (P = 0.0001). Our study suggests constructed wetlands are an effective means for removal of microbial contamination in ambient waters, but reliance on general fecal indicators is not ideal for determining system efficacy or assessing appropriate remediation efforts.
Collapse
Affiliation(s)
- Brian R. McMinn
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Sara Klemm
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Asja Korajkic
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Kimberly M. Wyatt
- Thomas More College 33 Thomas More Parkway Crestview Hills, Kentucky 41017
| | - Michael P. Herrmann
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Richard A. Haugland
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Jingrang Lu
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Eric N. Villegas
- National Exposure Research Laboratory Office of Research and Development United States Environmental Protection Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 United States
| | - Craig Frye
- Sanitation District No.1 1045 Eaton Drive Fort Wright, Kentucky 41017
| |
Collapse
|
15
|
Voisin J, Cournoyer B, Vienney A, Mermillod-Blondin F. Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1496-1507. [PMID: 29801243 DOI: 10.1016/j.scitotenv.2018.05.094] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO43-, NO3-, NH4+), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (<3 m) and three SIS with a thick vadose zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting).
Collapse
Affiliation(s)
- Jérémy Voisin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, UMR5557, UMR INRA 1418, Laboratoire d'Ecologie Microbienne (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment", Marcy L'Etoile F-69280, France
| | - Benoit Cournoyer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, UMR5557, UMR INRA 1418, Laboratoire d'Ecologie Microbienne (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment", Marcy L'Etoile F-69280, France
| | - Antonin Vienney
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Villeurbanne F-69622, France
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Villeurbanne F-69622, France.
| |
Collapse
|
16
|
Jani K, Dhotre D, Bandal J, Shouche Y, Suryavanshi M, Rale V, Sharma A. World's Largest Mass Bathing Event Influences the Bacterial Communities of Godavari, a Holy River of India. MICROBIAL ECOLOGY 2018; 76:706-718. [PMID: 29536131 DOI: 10.1007/s00248-018-1169-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 02/22/2018] [Indexed: 05/04/2023]
Abstract
Kumbh Mela is one of the largest religious mass gathering events (MGE) involving bathing in rivers. The exponential rise in the number of devotees, from around 0.4 million in 1903 to 120 million in 2013, bathing in small specified sites can have a dramatic impact on the river ecosystem. Here, we present the spatiotemporal profiling of bacterial communities in Godavari River, Nashik, India, comprising five sites during the Kumbh Mela, held in 2015. Assessment of environmental parameters indicated deterioration of water quality. Targeted amplicon sequencing demonstrates approximately 37.5% loss in microbial diversity because of anthropogenic activity during MGE. A significant decrease in phyla viz. Actinobacteria, Chloroflexi, Proteobacteria, and Bacteroidetes was observed, while we noted substantial increase in prevalence of the phylum Firmicutes (94.6%) during MGE. qPCR estimations suggested nearly 130-fold increase in bacterial load during the event. Bayesian mixing model accounted the source of enormous incorporation of bacterial load of human origin. Further, metagenomic imputations depicted increase in virulence and antibiotic resistance genes during the MGE. These observations suggest the striking impact of the mass bathing on river ecosystem. The subsequent increase in infectious diseases and drug-resistant microbes pose a critical public health concern.
Collapse
Affiliation(s)
- Kunal Jani
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, 411021, India
- Symbiosis School of Biological Sciences, Symbiosis International University, Pune, 412115, India
| | - Dhiraj Dhotre
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, 411021, India
| | - Jayashree Bandal
- Department of Microbiology, KTHM College, Nashik, Maharashtra, 422002, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, 411021, India
| | - Mangesh Suryavanshi
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, 411021, India
| | - Vinay Rale
- Symbiosis School of Biological Sciences, Symbiosis International University, Pune, 412115, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, 411021, India.
| |
Collapse
|
17
|
Drummond JD, Boano F, Atwill ER, Li X, Harter T, Packman AI. Cryptosporidium oocyst persistence in agricultural streams -a mobile-immobile model framework assessment. Sci Rep 2018; 8:4603. [PMID: 29545629 PMCID: PMC5854703 DOI: 10.1038/s41598-018-22784-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 11/09/2022] Open
Abstract
Rivers are a means of rapid and long-distance transmission of pathogenic microorganisms from upstream terrestrial sources. Pathogens enter streams and rivers via overland flow, shallow groundwater discharge, and direct inputs. Of concern is the protozoal parasite, Cryptosporidium, which can remain infective for weeks to months under cool and moist conditions, with the infectious stage (oocysts) largely resistant to chlorination. We applied a mobile-immobile model framework to assess Cryptosporidium transport and retention in streams, that also accounts for inactivation. The model is applied to California's Central Valley where Cryptosporidium exposure can be at higher risk due to agricultural and wildlife nonpoint sources. The results demonstrate that hyporheic exchange is an important process to include in models characterizing pathogen dynamics in streams, delaying downstream transmission and allowing for immobilization processes, such as reversible filtration in the sediments, to occur. Although in-stream concentrations decrease relatively quickly (within hours), pathogen accumulation of up to 66% of the inputs due to immobilization processes in the sediments and slower moving surface water could result in long retention times (months to years). The model appropriately estimates baseflow pathogen accumulation and can help predict the potential loads of resuspended pathogens in response to a storm event.
Collapse
Affiliation(s)
- J D Drummond
- Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Girona, Spain. .,Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada, USA.
| | - F Boano
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - E R Atwill
- Department of Population Health and Reproduction, University of California, Davis, California, USA
| | - X Li
- Department of Population Health and Reproduction, University of California, Davis, California, USA
| | - T Harter
- Department of Land, Air, and Water Resources, University of California, Davis, California, USA
| | - A I Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
18
|
Teaf CM, Flores D, Garber M, Harwood VJ. Toward Forensic Uses of Microbial Source Tracking. Microbiol Spectr 2018; 6:10.1128/microbiolspec.emf-0014-2017. [PMID: 29350132 PMCID: PMC11633552 DOI: 10.1128/microbiolspec.emf-0014-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 01/21/2023] Open
Abstract
The science of microbial source tracking has allowed researchers and watershed managers to go beyond general indicators of fecal pollution in water such as coliforms and enterococci, and to move toward an understanding of specific contributors to water quality issues. The premise of microbial source tracking is that characteristics of microorganisms that are strongly associated with particular host species can be used to trace fecal pollution to particular animal species (including humans) or groups, e.g., ruminants or birds. Microbial source tracking methods are practiced largely in the realm of research, and none are approved for regulatory uses on a federal level. Their application in the conventional sense of forensics, i.e., to investigate a crime, has been limited, but as some of these methods become standardized and recognized in a regulatory context, they will doubtless play a larger role in applications such as total maximum daily load assessment, investigations of sewage spills, and contamination from agricultural practices.
Collapse
Affiliation(s)
- Christopher M Teaf
- Hazardous Substance & Waste Management Research, Inc., Tallahassee, FL 32309
| | - David Flores
- Center for Progressive Reform, Washington, DC 20001
| | - Michele Garber
- Hazardous Substance & Waste Management Research, Inc., Tallahassee, FL 32309
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620
| |
Collapse
|
19
|
Bacteriome genetic structures of urban deposits are indicative of their origin and impacted by chemical pollutants. Sci Rep 2017; 7:13219. [PMID: 29038457 PMCID: PMC5643393 DOI: 10.1038/s41598-017-13594-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
Urban activities generate surface deposits over impervious surfaces that can represent ecological and health hazards. Bacteriome genetic structures of deposits washed off during rainfall events, over an urban industrial watershed, were inferred from 16 S rRNA gene (rrs) sequences generated by high throughput sequencing. Deposits were sampled over a 4 year-period from a detention basin (DB). Major shifts, matching key management practices, in the structure of these urban bacteriomes, were recorded. Correlation analyses of rrs similarities between samples and their respective concentrations in chemical pollutants, markers of human fecal contaminations (HF183) and antimicrobial resistances (integrons), were performed. Harsher environmental constraints building up in the older deposits led to an increase number of rrs reads from extremophiles such as Acidibacter and Haliangium. Deposits accumulating in the decantation pit of the DB showed an increase in rrs reads from warm blooded intestinal tract bacteria such as Bacteroides and Prevotella. This enrichment matched higher concentrations of Bacteroides HF183 genotypes normally restricted to humans. Bacteriomes of urban deposits appeared good indicators of human-driven environmental changes. Their composition was found representative of their origin. Soil particles and rain appeared to be major contributors of the inferred bacterial taxa recovered from recent deposits.
Collapse
|