1
|
Rico-Jiménez M, Udaondo Z, Krell T, Matilla MA. Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium Serratia plymuthica. mSystems 2024; 9:e0016524. [PMID: 38837409 PMCID: PMC11264596 DOI: 10.1128/msystems.00165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
The communication between plants and their microbiota is highly dynamic and involves a complex network of signal molecules. Among them, the auxin indole-3-acetic acid (IAA) is a critical phytohormone that not only regulates plant growth and development, but is emerging as an important inter- and intra-kingdom signal that modulates many bacterial processes that are important during interaction with their plant hosts. However, the corresponding signaling cascades remain largely unknown. Here, we advance our understanding of the largely unknown mechanisms by which IAA carries out its regulatory functions in plant-associated bacteria. We showed that IAA caused important changes in the global transcriptome of the rhizobacterium Serratia plymuthica and multidisciplinary approaches revealed that IAA sensing interferes with the signaling mediated by other pivotal plant-derived signals such as amino acids and 4-hydroxybenzoic acid. Exposure to IAA caused large alterations in the transcript levels of genes involved in amino acid metabolism, resulting in significant metabolic alterations. IAA treatment also increased resistance to toxic aromatic compounds through the induction of the AaeXAB pump, which also confers resistance to IAA. Furthermore, IAA promoted motility and severely inhibited biofilm formation; phenotypes that were associated with decreased c-di-GMP levels and capsule production. IAA increased capsule gene expression and enhanced bacterial sensitivity to a capsule-dependent phage. Additionally, IAA induced the expression of several genes involved in antibiotic resistance and led to changes in the susceptibility and responses to antibiotics with different mechanisms of action. Collectively, our study illustrates the complexity of IAA-mediated signaling in plant-associated bacteria. IMPORTANCE Signal sensing plays an important role in bacterial adaptation to ecological niches and hosts. This communication appears to be particularly important in plant-associated bacteria since they possess a large number of signal transduction systems that respond to a wide diversity of chemical, physical, and biological stimuli. IAA is emerging as a key inter- and intra-kingdom signal molecule that regulates a variety of bacterial processes. However, despite the extensive knowledge of the IAA-mediated regulatory mechanisms in plants, IAA signaling in bacteria remains largely unknown. Here, we provide insight into the diversity of mechanisms by which IAA regulates primary and secondary metabolism, biofilm formation, motility, antibiotic susceptibility, and phage sensitivity in a biocontrol rhizobacterium. This work has important implications for our understanding of bacterial ecology in plant environments and for the biotechnological and clinical applications of IAA, as well as related molecules.
Collapse
Affiliation(s)
- Miriam Rico-Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Zulema Udaondo
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
2
|
de Kroon RR, Frerichs NM, Struys EA, de Boer NK, de Meij TGJ, Niemarkt HJ. The Potential of Fecal Volatile Organic Compound Analysis for the Early Diagnosis of Late-Onset Sepsis in Preterm Infants: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3162. [PMID: 38794014 PMCID: PMC11124895 DOI: 10.3390/s24103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Early diagnosis and treatment of late-onset sepsis (LOS) is crucial for survival, but challenging. Intestinal microbiota and metabolome alterations precede the clinical onset of LOS, and the preterm gut is considered an important source of bacterial pathogens. Fecal volatile organic compounds (VOCs), formed by physiologic and pathophysiologic metabolic processes in the preterm gut, reflect a complex interplay between the human host, the environment, and microbiota. Disease-associated fecal VOCs can be detected with an array of devices with various potential for the development of a point-of-care test (POCT) for preclinical LOS detection. While characteristic VOCs for common LOS pathogens have been described, their VOC profiles often overlap with other pathogens due to similarities in metabolic pathways, hampering the construction of species-specific profiles. Clinical studies have, however, successfully discriminated LOS patients from healthy individuals using fecal VOC analysis with the highest predictive value for Gram-negative pathogens. This review discusses the current advancements in the development of a non-invasive fecal VOC-based POCT for early diagnosis of LOS, which may potentially provide opportunities for early intervention and targeted treatment and could improve clinical neonatal outcomes. Identification of confounding variables impacting VOC synthesis, selection of an optimal detection device, and development of standardized sampling protocols will allow for the development of a novel POCT in the near future.
Collapse
Affiliation(s)
- Rimke R. de Kroon
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nina M. Frerichs
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Center, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nanne K. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hendrik J. Niemarkt
- Department of Neonatology, Maxima Medisch Centrum, De Run 4600, 5504 DB Veldhoven, The Netherlands
- Department of Electrical Engineering, TU Eindhoven, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Bales MK, Vergara MM, Eckert CA. Application of functional genomics for domestication of novel non-model microbes. J Ind Microbiol Biotechnol 2024; 51:kuae022. [PMID: 38925657 PMCID: PMC11247347 DOI: 10.1093/jimb/kuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
With the expansion of domesticated microbes producing biomaterials and chemicals to support a growing circular bioeconomy, the variety of waste and sustainable substrates that can support microbial growth and production will also continue to expand. The diversity of these microbes also requires a range of compatible genetic tools to engineer improved robustness and economic viability. As we still do not fully understand the function of many genes in even highly studied model microbes, engineering improved microbial performance requires introducing genome-scale genetic modifications followed by screening or selecting mutants that enhance growth under prohibitive conditions encountered during production. These approaches include adaptive laboratory evolution, random or directed mutagenesis, transposon-mediated gene disruption, or CRISPR interference (CRISPRi). Although any of these approaches may be applicable for identifying engineering targets, here we focus on using CRISPRi to reduce the time required to engineer more robust microbes for industrial applications. ONE-SENTENCE SUMMARY The development of genome scale CRISPR-based libraries in new microbes enables discovery of genetic factors linked to desired traits for engineering more robust microbial systems.
Collapse
Affiliation(s)
- Margaret K Bales
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael Melesse Vergara
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Dubey S, Ager-Wick E, Peng B, Evensen Ø, Sørum H, Munang’andu HM. Characterization of virulence and antimicrobial resistance genes of Aeromonas media strain SD/21-15 from marine sediments in comparison with other Aeromonas spp. Front Microbiol 2022; 13:1022639. [PMID: 36532448 PMCID: PMC9752117 DOI: 10.3389/fmicb.2022.1022639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 10/03/2023] Open
Abstract
Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla MOX-9 and bla OXA-427 β-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.
Collapse
Affiliation(s)
- Saurabh Dubey
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hetron Mweemba Munang’andu
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
5
|
Phithakrotchanakoon C, Mayteeworakoon S, Siriarchawatana P, Kitikhun S, Harnpicharnchai P, Wansom S, Eurwilaichitr L, Ingsriswang S. Beneficial bacterial- Auricularia cornea interactions fostering growth enhancement identified from microbiota present in spent mushroom substrate. Front Microbiol 2022; 13:1006446. [PMID: 36299733 PMCID: PMC9589457 DOI: 10.3389/fmicb.2022.1006446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Complex dynamic bacterial-fungal interactions play key roles during mushroom growth, ranging from mutualism to antagonism. These interactions convey a large influence on mushroom's mycelial and fruiting body formation during mushroom cultivation. In this study, high-throughput amplicon sequencing was conducted to investigate the structure of bacterial communities in spent mushroom substrates obtained from cultivation of two different groups of Auricularia cornea with (A) high yield and (B) low yield of fruiting body production. It was found that species richness and diversity of microbiota in group (A) samples were significantly higher than in group (B) samples. Among the identified 765 bacterial OTUs, 5 bacterial species found to exhibit high differential abundance between group (A) and group (B) were Pseudonocardia mangrovi, Luteimonas composti, Paracoccus pantotrophus, Sphingobium jiangsuense, and Microvirga massiliensis. The co-cultivation with selected bacterial strains showed that A. cornea TBRC 12900 co-cultivated with P. mangrovi TBRC-BCC 42794 promoted a high level of mycelial growth. Proteomics analysis was performed to elucidate the biological activities involved in the mutualistic association between A. cornea TBRC 12900 and P. mangrovi TBRC-BCC 42794. After co-cultivation of A. cornea TBRC 12900 and P. mangrovi TBRC-BCC 42794, 1,616 proteins were detected including 578 proteins of A. cornea origin and 1,038 proteins of P. mangrovi origin. Functional analysis and PPI network construction revealed that the high level of mycelial growth in the co-culture condition most likely resulted from concerted actions of (a) carbohydrate-active enzymes including hydrolases, glycosyltransferases, and carbohydrate esterases important for carbohydrate metabolism and cell wall generation/remodeling, (b) peptidases including cysteine-, metallo-, and serine-peptidases, (c) transporters including the ABC-type transporter superfamily, the FAT transporter family, and the VGP family, and (d) proteins with proposed roles in formation of metabolites that can act as growth-promoting molecules or those normally contain antimicrobial activity (e.g., indoles, terpenes, β-lactones, lanthipeptides, iturins, and ectoines). The findings will provide novel insights into bacterial-fungal interactions during mycelial growth and fruiting body formation. Our results can be utilized for the selection of growth-promoting bacteria to improve the cultivation process of A. cornea with a high production yield, thus conveying potentially high socio-economic impact to mushroom agriculture.
Collapse
Affiliation(s)
- Chitwadee Phithakrotchanakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Paopit Siriarchawatana
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supattra Kitikhun
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Piyanun Harnpicharnchai
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supaporn Wansom
- National Energy Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
6
|
Production of indole and hydrogen sulfide by the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 contributes to form a hypoxic microenvironment. Arch Microbiol 2022; 204:486. [PMID: 35834134 DOI: 10.1007/s00203-022-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
In this study, the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 was found to produce indole when grown aerobically. The tnaA gene coding for tryptophanase responsible for the production of indole was cloned. The tnaA gene from Aeroto-AUH-JLC108 is 1677 bp and has one point mutation (C36G) compared to the original anaerobic strain AUH-JLC108. Phylogenetic analyses based on the amino acid sequence showed significant homology to that of TnaA from Flavonifractor. Furthermore, we found that the tnaA gene also exhibited cysteine desulfhydrase activity. The production of hydrogen sulfide (H2S) was accompanied by decrease in the amount of the dissolved oxygen in the culture medium. Similarly, the amount of indole produced by strain Aeroto-AUH-JLC108 obviously decreased the oxidation-reduction potential (ORP) in BHI liquid medium. The results demonstrated that production of indole and H2S helped to form a hypoxic microenvironment for strain Aeroto-AUH-JLC108 when grown aerobically.
Collapse
|
7
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Xiao Y, Nie L, Chen H, He M, Liang Q, Nie H, Chen W, Huang Q. The two-component system TarR-TarS is regulated by c-di-GMP/FleQ and FliA and modulates antibiotic susceptibility in Pseudomonas putida. Environ Microbiol 2021; 23:5239-5257. [PMID: 33938113 DOI: 10.1111/1462-2920.15555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Two-component systems (TCSs) are predominant means by which bacteria sense and respond to environment signals. Genome of Pseudomonas putida contains dozens of putative TCS-encoding genes, but phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterized function and transcriptional regulation of a conserved P. putida TCS, named TarR-TarS. TarS (PP_0769) encodes a potential histidine kinase, and tarR (PP_0768) encodes a potential response regulator. Protein-protein interaction assay and phosphorylation assay confirmed that TarR-TarS was a functional TCS. Growth assay under antibiotics revealed that TarR-TarS positively regulated bacterial resistance to multiple antibiotics. Pull-down assay revealed that TarR directly interacted with PP_0800 (a hypothetical protein) and GroEL (the chaperonin). GroEL played a positive role in antibiotic resistance, while PP_0800 seemed to have no effect on antibiotic resistance. The regulator FleQ indirectly activated tarR-tarS transcription. However, the second messenger c-di-GMP antagonized FleQ activation to inhibit tarR-tarS transcription. The sigma factor FliA directly activated tarR-tarS transcription via a consensus motif. These findings reveal function and transcriptional regulation of TarR-TarS, and enrich knowledge regarding the relationship between c-di-GMP and antibiotic susceptibility in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haozhe Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyuan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Liu H, Li S, Xie X, Shi Q. Pseudomonas putida actively forms biofilms to protect the population under antibiotic stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116261. [PMID: 33359874 DOI: 10.1016/j.envpol.2020.116261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics are frequently used for clinical treatment and by the farming industry, and most of these are eventually released into the surrounding environment. The impact of these antibiotic pollutants on environmental microorganisms is a concern. The present study showed that after Pseudomonas putida entered the logarithmic growth phase, tetracycline strongly stimulated its biofilm formation in a dose-dependent manner. This was supported by the increased expression of the key adhesin gene lapA in response to tetracycline treatment. Tetracycline treatment also changed the expression levels of the exopolysaccharide gene clusters alg, bcs and pea and the adhesin gene lapF. However, these genes did not participate in the tetracycline-induced biofilm formation. When a biofilm had been established, the P. putida population became more tolerant to tetracycline. Confocal laser scanning microscopic images showed that the interior of the biofilm provided favorable conditions that protected bacterial cells from tetracycline. Besides, biofilm formation of P. putida was also promoted by several other antibiotics, including oxytetracycline, fluoroquinolones, rifampicin, and imipenem, but not aminoglycosides. Susceptibility tests suggested that biofilm conferred a higher tolerance on P. putida cells to specific antibiotics (e.g., tetracyclines and fluoroquinolones). These antibiotics exerted a stronger inducing effect on biofilm formation. Together, our results indicate that P. putida actively forms robust biofilms in response to antibiotic stress, and the biofilms improve the survival of bacterial population under such stress.
Collapse
Affiliation(s)
- Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Sujuan Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
10
|
Mohamed ET, Werner AZ, Salvachúa D, Singer CA, Szostkiewicz K, Rafael Jiménez-Díaz M, Eng T, Radi MS, Simmons BA, Mukhopadhyay A, Herrgård MJ, Singer SW, Beckham GT, Feist AM. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metab Eng Commun 2020; 11:e00143. [PMID: 32963959 PMCID: PMC7490845 DOI: 10.1016/j.mec.2020.e00143] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas putida KT2440 is a promising bacterial chassis for the conversion of lignin-derived aromatic compound mixtures to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to aromatic catabolism and toxicity tolerance of P. putida will be required to achieve industrial relevance. Here, tolerance adaptive laboratory evolution (TALE) was employed with increasing concentrations of the hydroxycinnamic acids p-coumaric acid (pCA) and ferulic acid (FA) individually and in combination (pCA + FA). The TALE experiments led to evolved P. putida strains with increased tolerance to the targeted acids as compared to wild type. Specifically, a 37 h decrease in lag phase in 20 g/L pCA and a 2.4-fold increase in growth rate in 30 g/L FA was observed. Whole genome sequencing of intermediate and endpoint evolved P. putida populations revealed several expected and non-intuitive genetic targets underlying these aromatic catabolic and toxicity tolerance enhancements. PP_3350 and ttgB were among the most frequently mutated genes, and the beneficial contributions of these mutations were verified via gene knockouts. Deletion of PP_3350, encoding a hypothetical protein, recapitulated improved toxicity tolerance to high concentrations of pCA, but not an improved growth rate in high concentrations of FA. Deletion of ttgB, part of the TtgABC efflux pump, severely inhibited growth in pCA + FA TALE-derived strains but did not affect growth in pCA + FA in a wild type background, suggesting epistatic interactions. Genes involved in flagellar movement and transcriptional regulation were often mutated in the TALE experiments on multiple substrates, reinforcing ideas of a minimal and deregulated cell as optimal for domesticated growth. Overall, this work demonstrates increased tolerance towards and growth rate at the expense of hydroxycinnamic acids and presents new targets for improving P. putida for microbial lignin valorization.
Collapse
Affiliation(s)
- Elsayed T. Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Allison Z. Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Christine A. Singer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kiki Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Manuel Rafael Jiménez-Díaz
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Eng
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mohammad S. Radi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus J. Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven W. Singer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Bioengineering, University of California, San Diego, CA, USA
| |
Collapse
|
11
|
Protective Role of Bacterial Alkanesulfonate Monooxygenase under Oxidative Stress. Appl Environ Microbiol 2020; 86:AEM.00692-20. [PMID: 32503904 DOI: 10.1128/aem.00692-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Bacterial alkane metabolism is associated with a number of cellular stresses, including membrane stress and oxidative stress, and the limited uptake of charged ions such as sulfate. In the present study, the genes ssuD and tauD in Acinetobacter oleivorans DR1 cells, which encode an alkanesulfonate monooxygenase and a taurine dioxygenase, respectively, were found to be responsible for hexadecanesulfonate (C16SO3H) and taurine metabolism, and Cbl was experimentally identified as a potential regulator of ssuD and tauD expression. The expression of ssuD and tauD occurred under sulfate-limited conditions generated during n-hexadecane degradation. Interestingly, expression analysis and knockout experiments suggested that both genes are required to protect cells against oxidative stress, including that generated by n-hexadecane degradation and H2O2 exposure. Measurable levels of intracellular hexadecanesulfonate were also produced during n-hexadecane degradation. Phylogenetic analysis suggested that ssuD and tauD are mainly present in soil-dwelling aerobes within the Betaproteobacteria and Gammaproteobacteria classes, which suggests that they function as controllers of the sulfur cycle and play a protective role against oxidative stress in sulfur-limited conditions.IMPORTANCE ssuD and tauD, which play a role in the degradation of organosulfonate, were expressed during n-hexadecane metabolism and oxidative stress conditions in A. oleivorans DR1. Our study confirmed that hexadecanesulfonate was accidentally generated during bacterial n-hexadecane degradation in sulfate-limited conditions. Removal of this by-product by SsuD and TauD must be necessary for bacterial survival under oxidative stress generated during n-hexadecane degradation.
Collapse
|
12
|
Shin B, Park C, Park W. Stress responses linked to antimicrobial resistance in Acinetobacter species. Appl Microbiol Biotechnol 2020; 104:1423-1435. [DOI: 10.1007/s00253-019-10317-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022]
|
13
|
Yaikhan T, Chuerboon M, Tippayatham N, Atimuttikul N, Nuidate T, Yingkajorn M, Tun AW, Buncherd H, Tansila N. Indole and Derivatives Modulate Biofilm Formation and Antibiotic Tolerance of Klebsiella pneumoniae. Indian J Microbiol 2019; 59:460-467. [PMID: 31762509 PMCID: PMC6842365 DOI: 10.1007/s12088-019-00830-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Intercellular communication is a crucial process for the multicellular community in both prokaryotes and eukaryotes. Indole has been recognized as a new member of the signal molecules which enables the regulated control of various bacterial phenotypes. To elucidate the inter-species relationship among enteric microorganisms via indole signaling, Klebsiella pneumoniae (KP) culture was treated with indole solution and examined for the pathogenicity by using various phenotypic tests. Both synthetic and naturally-produced indole preparations had no deteriorating effect on growth and autoaggregative capacity of KP. The results showed that biofilm formation of carbapenem-susceptible K. pneumoniae (KP-S) was clearly induced by indole exposure (≈ 2-10 folds), whereas no significant difference was observed in the resistant counterpart. In addition, the tolerance to β-lactam antibiotics of KP was altered upon exposure to indole and/or derivatives assessed by Kirby-Bauer disk diffusion test. Taken together, our finding indicates the functional role of indole in changing or modulating pathogenic behaviors of other bacteria.
Collapse
Affiliation(s)
- Thanachaporn Yaikhan
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Manatsanan Chuerboon
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Natchapol Tippayatham
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Nateekarn Atimuttikul
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Taiyeebah Nuidate
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Aung Win Tun
- Faculty of Graduate Studies, Mahidol University, Salaya, Nakhon Pathom 73170 Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110 Thailand
| |
Collapse
|
14
|
Zheng J, Liu Q, Xia Y, Bai L, Feng Y. Pantoea agglomerans YS19 poly(A) polymerase I gene possesses the indole-sensing sequence in the promoter region. FEMS Microbiol Lett 2019; 366:5538762. [PMID: 31344226 DOI: 10.1093/femsle/fnz166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Pantoea agglomerans YS19 is a predominant diazotrophic endophyte with multiple growth-promoting effects on its host plant that was isolated from rice. Indole is confirmed to induce many changes of physiological and biochemical characteristics in bacteria. Although YS19 cannot produce indole, it can sense indole in the environment and be regulated by indole. Here, using gfp as a reporter gene, we constructed a series of recombinant plasmids containing the promoter region of the poly(A) polymerase I gene (pcnB) fused with gfp, and compared the green fluorescence intensity at different concentrations of exogenous indole by a flow cytometer. In this research, we confirmed that exogenous indole significantly inhibited the expression of pcnB by its promoter; the regulation sequence sensitive to indole in the promoter region of the pcnB gene (In-pcnB) was between -129 and -88 bp. In-pcnB is widely distributed and strictly conserved in the same genus. These results suggest novel roles of In-pcnB in P. agglomerans YS19, showing its special relation to the indole regulatory pathway.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Qi Liu
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Yifan Xia
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Lijuan Bai
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, 5# Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| |
Collapse
|
15
|
Veselova MA, Plyuta VA, Khmel IA. Volatile Compounds of Bacterial Origin: Structure, Biosynthesis, and Biological Activity. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Drabińska N, de Lacy Costello B, Hewett K, Smart A, Ratcliffe N. From fast identification to resistance testing: Volatile compound profiling as a novel diagnostic tool for detection of antibiotic susceptibility. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Shin B, Park C, Imlay JA, Park W. 4-Hydroxybenzaldehyde sensitizes Acinetobacter baumannii to amphenicols. Appl Microbiol Biotechnol 2018; 102:2323-2335. [PMID: 29387955 DOI: 10.1007/s00253-018-8791-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Bacterial metabolism modulated by environmental chemicals could alter antibiotic susceptibility. 4-Hydroxybenzaldehyde (4-HBA), which cannot support the growth of Acinetobacter baumannii, exhibited synergism only with amphenicol antibiotics including chloramphenicol (CAM) and thiamphenicol. Interestingly, this synergistic effect was not observed with other growth-supporting, structurally similar compounds such as 4-hydroxybenzoate. Transcriptomic analysis demonstrated that genes involved in protocatechuate metabolism (pca genes) and osmotic stress (bet genes) were significantly upregulated by 4-HBA and CAM treatment. The 14C-labeled CAM influx was lower in a pcaK1 (encoding a transporter of protocatechuate) deletion mutant and was higher in the pcaK1 overexpressing cells relative to that in the wild type upon 4-HBA treatment. Our kinetic data using 14C-labeled CAM clearly showed that CAM uptake is possibly through facilitated diffusion. Deletion of pcaK1 did not result in the elimination of CAM influx, indicating that CAM does not enter only through PcaK1. The amount of 4-HBA in the culture supernatant was, however, unaffected during the test conditions, validating that it was not metabolized by the bacteria. CAM resistant A. baumannii cells derived by serial passages through CAM-amended media exhibited lower level of pcaK1 gene expression. These results led us to conclude that the activation of PcaK1 transporter is probably linked to cellular CAM susceptibility. This is the first report showing a relationship between CAM influx and aromatic compound metabolism in A. baumannii.
Collapse
Affiliation(s)
- Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Sciences and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Sciences and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Sciences and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
18
|
Zheng J, Yu J, Jia M, Zheng L, Feng Y. Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions. J Basic Microbiol 2017; 57:633-639. [PMID: 28485502 DOI: 10.1002/jobm.201700027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 11/07/2022]
Abstract
Pantoea ananatis YJ76 is an indole-producing predominant diazotrophic endophyte isolated from rice having multiple growth-promoting effects on host plant. As a decomposition metabolite of L-tryptophan (L-Trp), indole is confirmed to regulate various physiological processes of bacteria. In this research, we found that indole significantly improves the survival of YJ76 in face of starvation conditions and the promoting effect is related to the glycogen accumulation promoted by indole, which is much more significant in the middle decline phase than in other growth phases. Since carbon storage regulator CsrA is a key inhibiting factor on the storage of glycogen in bacteria, we explored the relation between indole-enhanced glycogen accumulation and csrA expression and found that there is a positive correlation between indole-enhanced glycogen accumulation and the indole-inhibited csrA expression in YJ76, which implies the potential relation between CsrA regulation and indole regulatory pathway.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Jiajia Yu
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Mengqi Jia
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Liping Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|