1
|
Qi Y, Du S, Li W, Qiu X, Zhou F, Bai L, Zhang B, Mi Z, Qian W, Li L, Zhao X, Li Y. Sanye tablet regulates gut microbiota and bile acid metabolism to attenuate hepatic steatosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119514. [PMID: 39971018 DOI: 10.1016/j.jep.2025.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanye Tablet (SYT), a patent traditional Chinese prescription, is commonly used in treating type 2 diabetes mellitus and hyperlipidemia. Both clinical and animal studies suggest that SYT effectively regulates lipid metabolism. However, its mode of action on hepatic steatosis has yet to be fully elucidated. AIM OF STUDY This study investigates the lipid-regulating effects and underlying mechanism of SYT in high-fat diet (HFD)-induced hepatic steatosis mice. MATERIAL AND METHODS The inhibitory effects of SYT on developing hepatic steatosis were investigated in HFD-fed C57BL/6N mice. Biochemical markers, including total cholesterol (TC) and triglycerides (TG), were measured using specific kits. Hepatic histological alterations were determined by Hematoxylin and Eosin (H&E) and Oil Red O staining. Hepatic, fecal, and systemic bile acids (BAs) profiles were detected by UPLC-MS. mRNA and protein levels of BAs synthesis-related enzymes and critical nodes of farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15)/fibroblast growth factor receptor 4 (FGFR4) signaling were detected. Fecal microbial composition was analyzed by 16S rRNA gene sequencing and the antimicrobial activity of SYT was further evaluated in vitro. RESULTS SYT alleviated HFD-induced hepatic steatosis by decreasing TG and TC levels, relieving hepatocyte ballooning, and promoting hepatic BAs synthesis. Moreover, SYT significantly increased the levels of taurine-conjugated BAs in the liver and feces, which in turn inhibited the FXR/FGF15/FGFR4 signaling. Consequently, the hepatic BAs synthesis-related enzyme expression was promoted to reduce lipid accumulation. Notably, SYT remodeled the gut microbiota composition of HFD-fed mice, especially inhibiting the growth of bile salt hydrolase (BSH)-producing bacteria, such as Lactobacillus murinus, Lactobacillus johnsonii, and Enterococcus faecalis. CONCLUSION The findings illustrated that SYT prevented hepatic steatosis by improving hepatic lipid accumulation, which is reflected in modulating the gut-liver axis. SYT corrects BAs profile, restores perturbed FXR/FGF15/FGFR4 signaling and promotes hepatic BAs synthesis, which is associated with modulation on certain BSH-producing bacteria.
Collapse
Affiliation(s)
- Yulin Qi
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Siqi Du
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenwen Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xianzhe Qiu
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fengjie Zhou
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liding Bai
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Boli Zhang
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhuoxin Mi
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Weiqiang Qian
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xin Zhao
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Li
- Key Laboratory of Traditional Chinese Medical Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
2
|
Yu Y, Zheng Z, Gao X, Gu Y, Zhang M, Hu B, Gao Q, Li Z, Chen Y, Li Q, Shen F, Zhu M, Hang D, Zhan Q, Wang L, Shen C, Lu X, Gu D, Ma H, Shen H, Jin G, Yan C. Plasma Metabolomic Signatures of H. pylori Infection, Alcohol Drinking, Smoking, and Risk of Gastric Cancer. Mol Carcinog 2025; 64:463-474. [PMID: 39630052 DOI: 10.1002/mc.23851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 02/13/2025]
Abstract
Circulating metabolic profiles have shown promising potential in identifying high-risk populations for various diseases, while metabolic perturbation plays an important role in gastric cancer. In this study, we conducted a cross-sectional study with 1800 participants to identify plasma metabolite signatures associated with environmental risk factors of gastric cancer. Subsequently, we evaluated the association between these signatures and gastric cancer risk in a nested case-control study involving 326 gastric cancer cases and 326 matched cancer-free controls. We conducted mediation analyses to elucidate the potential impact of metabolites on the association between environmental factors and gastric cancer. In the cross-sectional study, we identified 46 metabolites associated with Helicobacter pylori (H. pylori) infection, 365 with alcohol drinking, and 154 with smoking status. In the nested case-control study, 60 plasma metabolites, comprising 30 lipids, 15 amino acids, 6 xenobiotics, 3 nucleotides, 2 cofactors and vitamins, 2 carbohydrate, 1 energy, and 1 peptide, were associated with gastric cancer risk. A one-standard deviation increment in the H. pylori infection-related metabolomic signature was associated with an increased risk of gastric cancer (OR = 1.66, 95% CI: 1.32-2.09, p = 1.62 × 10-5). Furthermore, the effect of H. pylori infection on gastric cancer was partially mediated by the metabolomic signature (23.28%, 95% CI: 0.09-0.56) or adenine (13.69%, 95% CI: 0.05-0.31). In conclusion, we have identified metabolites associated with environmental factors and demonstrated the association between the H. pylori infection signature and gastric cancer risk. The findings provide novel insights into characterizing high-risk population for gastric cancer.
Collapse
Affiliation(s)
- Yuhui Yu
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhonghua Zheng
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinxiang Gao
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanliang Gu
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Beiping Hu
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qian Gao
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhe Li
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Shen
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Chronic Non-Communicable Disease Control, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Dong Hang
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Zhan
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lu Wang
- Department of Chronic Non-Communicable Disease Control, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Chong Shen
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongxia Ma
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Guangfu Jin
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Chronic Non-Communicable Disease Control, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Caiwang Yan
- Department of Epidemiology, State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
3
|
Liu Z, Xu H, You W, Pan K, Li W. Helicobacter pylori eradication for primary prevention of gastric cancer: progresses and challenges. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:299-310. [PMID: 39735441 PMCID: PMC11674435 DOI: 10.1016/j.jncc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 12/31/2024] Open
Abstract
Gastric cancer remains a significant global health challenge, causing a substantial number of cancer-related deaths, particularly in China. While the exact causes of gastric cancer are still being investigated, Helicobacter pylori (H. pylori) infection has been identified as the primary risk factor, which triggers chronic inflammation and a multistage progression of gastric lesions that may lead to carcinogenesis over a long latency time. Since the 1990s, numerous efforts have focused on assessing the effectiveness of H. pylori eradication in preventing new cases of gastric cancer among both the general population and patients who have undergone early-stage cancer treatment. This body of work, including several community-based interventions and meta-analyses, has shown a reduction in both the incidence of and mortality from gastric cancer following H. pylori treatment, alongside a decreased risk of metachronous gastric cancer. In this review, we seek to consolidate current knowledge on the effects of H. pylori treatment on gastric cancer prevention, its systemic consequences, cost-effectiveness, and the influence of antibiotic resistance and host characteristics on treatment outcomes. We further discuss the potential for precision primary prevention of H. pylori treatment and comment on the efficient implementation of test-and-treat policies and allocation of health resources towards minimizing the burden of gastric cancer globally.
Collapse
Affiliation(s)
- Zongchao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hengmin Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weicheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Kaifeng Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenqing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
4
|
Wenhui W, Zongchao L, Zhexuan L, Weidong L, Lanfu Z, Yang Z, Tong Z, Weicheng Y, Kaifeng P, Wenqing L. Effects of Helicobacter pylori eradication on the profiles of blood metabolites and their associations with the progression of gastric lesions: a prospective follow-up study. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0255. [PMID: 36069529 PMCID: PMC9425181 DOI: 10.20892/j.issn.2095-3941.2022.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: This study aimed at examining the alterations in metabolomic profiles caused by treatment of H. pylori infection, and the associations between key plasma metabolites and the risk of gastric lesion progression during follow-up after treatment. Methods: An intervention trial was performed in 183 participants, 117 of whom were H. pylori positive participants receiving treatment for H. pylori infection. H. pylori positive participants were prospectively followed for 182 to 1,289 days. Untargeted metabolomics assays were conducted on plasma samples collected at baseline, 6 months after treatment, and during continued follow-up. Results: We identified 59 metabolites with differential posttreatment changes between participants with successful and failed H. pylori eradication, 17 metabolites significantly distinguished participants with successful vs. failed eradication. Two metabolites [PC(18:1(11Z)/14:1(9Z)) and (2S)-6-amino-2-formamidohexanamide] showed posttreatment changes positively associated with successful H. pylori eradication, and were inversely associated with the risk of gastric lesion progression among participants with successful eradication. In contrast, 9-decenoic acid showed posttreatment changes inversely associated with successful eradication: its level was positively associated with the risk of gastric lesion progression among participants with successful eradication. Although the identified metabolites showed a temporary but significant decline after treatment, the trend generally reversed during continued follow-up, and pretreatment levels were restored. Conclusions: Treatment of H. pylori infection significantly altered plasma metabolic profiles in the short term, and key metabolites were capable of distinguishing participants with successful vs. failed eradication, but might not substantially affect metabolic regulation in the long term. Several plasma metabolites were differentially associated with the risk of gastric lesion progression among participants with successful or failed eradication.
Collapse
Affiliation(s)
- Wu Wenhui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing 100142, China
| | - Liu Zongchao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing 100142, China
| | - Li Zhexuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing 100142, China
| | - Liu Weidong
- Linqu County Public Health Bureau, Linqu 262600, China
| | - Zhang Lanfu
- Linqu County People's Hospital, Linqu 262600, China
| | - Zhang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing 100142, China
| | - Zhou Tong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing 100142, China
| | - You Weicheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing 100142, China
| | - Pan Kaifeng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing 100142, China
| | - Li Wenqing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Haidian District, Beijing 100142, China
| |
Collapse
|
5
|
Impact of Helicobacter pylori infection on fluid duodenal microbial community structure and microbial metabolic pathways. BMC Microbiol 2022; 22:27. [PMID: 35033024 PMCID: PMC8760755 DOI: 10.1186/s12866-022-02437-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Background The bioactivities of commensal duodenal microbiota greatly influence the biofunction of hosts. We investigated the role of Helicobacter pylori infection in extra-gastroduodenal diseases by determining the impact of H. pylori infection on the duodenal microbiota. We sequenced 16 S rRNA genes in samples aspirated from the descending duodenum of 47 (male, 20; female, 27) individuals who were screened for gastric cancer. Samples were analysed using 16 S rRNA gene amplicon sequencing, and the LEFSe and Kyoto Encyclopaedia of Genes and Genomes methods were used to determine whether the duodenal microflora and microbial biofunctions were affected using H. pylori infection. Results Thirteen and 34 participants tested positive and negative for H. pylori, respectively. We identified 1,404 bacterial operational taxonomic units from 23 phyla and 253 genera. H. pylori infection changed the relative mean abundance of three phyla (Proteobacteria, Actinobacteria, and TM7) and ten genera (Neisseria, Rothia, TM7-3, Leptotrichia, Lachnospiraceae, Megasphaera, F16, Moryella, Filifactor, and Paludibacter). Microbiota features were significantly influenced in H. pylori-positive participants by 12 taxa mostly classified as Gammaproteobacteria. Microbial functional annotation revealed that H. pylori significantly affected 12 microbial metabolic pathways. Conclusions H. pylori disrupted normal bacterial communities in the duodenum and changed the biofunctions of commensal microbiota primarily by upregulating specific metabolic pathways. Such upregulation may be involved in the onset of diseases associated with H. pylori infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02437-w.
Collapse
|
6
|
Abstract
Little is known about the influence of gastric microbiota on host metabolism, even though the stomach plays an important role in the production of hormones involved in body weight regulation and glucose homeostasis. Proton pump inhibitors (PPIs) and Helicobacter pylori alter gut microbiota, but their impact on gastric microbiota in patients with obesity and the influence of these factors on the metabolic response to bariatric surgery is not fully understood. Forty-one subjects with morbid obesity who underwent sleeve gastrectomy were included in this study. The H. pylori group was established by the detection of H. pylori using a sequencing-based method (n = 16). Individuals in whom H. pylori was not detected were classified according to PPI treatment. Gastric biopsy specimens were obtained during surgery and were analyzed by a high-throughput-sequencing method. Patients were evaluated at baseline and 3, 6, and 12 months after surgery. β-Diversity measures were able to cluster patients according to their gastric mucosa-associated microbiota composition. H. pylori and PPI treatment are presented as two important factors for gastric mucosa-associated microbiota. H. pylori reduced diversity, while PPIs altered β-diversity. Both factors induced changes in the gastric mucosa-associated microbiota composition and its predicted functions. PPI users showed lower percentages of change in the body mass index (BMI) in the short term after surgery, while the H. pylori group showed higher glucose levels and lower percentages of reduction in body weight/BMI 1 year after surgery. PPIs and H. pylori colonization could modify the gastric mucosa-associated microbiota, altering its diversity, composition, and predicted functionality. These factors may have a role in the metabolic evolution of patients undergoing bariatric surgery. IMPORTANCE The gut microbiota has been shown to have an impact on host metabolism. In the stomach, factors like proton pump inhibitor treatment and Helicobacter pylori haven been suggested to alter gut microbiota; however, the influence of these factors on the metabolic response to bariatric surgery has not been fully studied. In this study, we highlight the impact of these factors on the gastric microbiota composition. Moreover, proton pump inhibitor treatment and the presence of Helicobacter pylori could have an influence on bariatric surgery outcomes, mainly on body weight loss and glucose homeostasis. Deciphering the relationship between gastric hormones and gastric microbiota and their contributions to bariatric surgery outcomes paves the way to develop gut manipulation strategies to improve the metabolic success of bariatric surgery.
Collapse
|
7
|
Miller AK, Williams SM. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun 2021; 22:218-226. [PMID: 34244666 PMCID: PMC8390445 DOI: 10.1038/s41435-021-00146-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) is necessary but not sufficient for the development of gastric cancer, the third leading cause of cancer death globally. H. pylori infection affects over half of people globally; however, it does not affect populations uniformly. H. pylori infection rates are declining in western industrialized countries but are plateauing in developing and newly industrialized countries where gastric cancer is most prevalent. Despite H. pylori infection being the primary causative agent for gastric cancer, H. pylori infection can also cause other effects, detrimental or beneficial, throughout an individual's life, with the beneficial effects often being seen in childhood and the deleterious effects in adulthood. H. pylori is an ancient bacterium and its likelihood of affecting disease or health is dependent on both human and bacterial genetics that have co-evolved over millennia. In this review, we focus on the impact of infection and its genetic bases in different populations and diseases throughout an individual's lifespan, highlighting the benefits of individualized treatment and argue that universal eradication of H. pylori in its host may cause more harm than good for those infected with H. pylori.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH,Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
8
|
Tan AH, Chong CW, Lim SY, Yap IKS, Teh CSJ, Loke MF, Song SL, Tan JY, Ang BH, Tan YQ, Kho MT, Bowman J, Mahadeva S, Yong HS, Lang AE. Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multi-Omics. Ann Neurol 2021; 89:546-559. [PMID: 33274480 DOI: 10.1002/ana.25982] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Gut microbiome alterations in Parkinson disease (PD) have been reported repeatedly, but their functional relevance remains unclear. Fecal metabolomics, which provide a functional readout of microbial activity, have scarcely been investigated. We investigated fecal microbiome and metabolome alterations in PD, and their clinical relevance. METHODS Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry. RESULTS Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores. INTERPRETATION Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia.,Center of Translational Research, Institute of Research, Development, and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sze-Looi Song
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Jiun Yan Tan
- Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ban Hong Ang
- Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yong Qi Tan
- Mah Pooi Soo and Tan Chin Nam Center for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mee Teck Kho
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Jeff Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, USA
| | - Sanjiv Mahadeva
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Hoi Sen Yong
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
9
|
Zuo ZT, Ma Y, Sun Y, Bai CQ, Ling CH, Yuan FL. The Protective Effects of Helicobacter pylori Infection on Allergic Asthma. Int Arch Allergy Immunol 2020; 182:53-64. [PMID: 33080611 DOI: 10.1159/000508330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
As an ancient Gram-negative bacterium, Helicobacter pylori has settled in human stomach. Eradicating H. pylori increases the morbidities of asthma and other allergic diseases. Therefore, H. pylori might play a protective role against asthma. The "disappearing microbiota" hypothesis suggests that the absence of certain types of the ancestral microbiota could change the development of immunology, metabolism, and cognitive ability in our early life, contributing to the development of some diseases. And the Hygiene Hypothesis links early environmental and microbial exposure to the prevalence of atopic allergies and asthma. Exposure to the environment and microbes can influence the growing immune system and protect subsequent immune-mediated diseases. H. pylori can inhibit allergic asthma by regulating the ratio of helper T cells 1/2 (Th1/Th2), Th17/regulatory T cells (Tregs), etc. H. pylori can also target dendritic cells to promote immune tolerance and enhance the protective effect on allergic asthma, and this effect relies on highly suppressed Tregs. The remote regulation of lung immune function by H. pylori is consistent with the gut-lung axis theory. Perhaps, H. pylori also protects against asthma by altering levels of stomach hormones, affecting the autonomic nervous system and lowering the expression of heat shock protein 70. Therapeutic products from H. pylori may be used to prevent and treat asthma. This paper reviews the possible protective influence of H. pylori on allergic asthma and the possible application of H. pylori in treating asthma.
Collapse
Affiliation(s)
- Zhi Tong Zuo
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China,
| | - Ya Ma
- Wuxi Medical College of Jiangnan University, Wuxi, China
| | - Yan Sun
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Cui Qing Bai
- Department of Respiratory Disease, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Chun Hua Ling
- Department of Respiratory Disease, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|