1
|
Lydick VN, Mass S, Pepin R, Podicheti R, Klempic E, Rusch DB, Ushijima B, Brown LC, Salomon D, van Kessel JC. Quorum sensing regulates virulence factors in the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol 2025; 91:e0114324. [PMID: 39812412 PMCID: PMC11837519 DOI: 10.1128/aem.01143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
The bacterial pathogen Vibrio coralliilyticus causes disease in coral species worldwide. The mechanisms of V. coralliilyticus coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model Vibrio species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS). Comparative genomics indicated that V. coralliilyticus genomes share high sequence identity for most of the QS signaling and regulatory components identified in other Vibrio species. Here, we identify an active QS signaling pathway in two V. coralliilyticus strains with distinct infection etiologies: type strain BAA-450 and coral isolate OCN008. In V. coralliilyticus, the inter-species AI-2 autoinducer signaling pathway in both strains controls expression of the master QS transcription factor and LuxR/HapR homolog VcpR to regulate >300 genes, including protease production, biofilm formation, and two conserved type VI secretion systems (T6SSs). Activation of T6SS1 by QS results in the secretion of effectors and enables interbacterial competition and killing of prey bacteria. We conclude that the QS system in V. coralliilyticus is functional and controls the expression of genes involved in relevant bacterial behaviors typically associated with host infection.IMPORTANCEVibrio coralliilyticus infects many marine organisms, including multiple species of corals, and is a primary causative agent of tissue loss diseases and bacterial-induced bleaching. Here, we investigated a common cell-cell communication mechanism called quorum sensing, which is known to be intimately connected to virulence in other Vibrio species. Our genetic and chemical studies of V. coralliilyticus quorum sensing uncovered an active pathway that directly regulates the following key virulence factors: proteases, biofilms, and secretion systems. These findings connect bacterial signaling in communities to the infection of corals, which may lead to novel treatments and earlier diagnoses of coral diseases in reefs.
Collapse
Affiliation(s)
| | - Shir Mass
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Robert Pepin
- Mass Spectrometry Facility, Indiana University, Bloomington, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Emra Klempic
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Laura C. Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
2
|
Cesaria M, Calcagnile M, Arima V, Bianco M, Alifano P, Cataldo R. Cyclic olefin copolymer (COC) as a promising biomaterial for affecting bacterial colonization: investigation on Vibrio campbellii. Int J Biol Macromol 2024; 271:132550. [PMID: 38782326 DOI: 10.1016/j.ijbiomac.2024.132550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Cyclic olefin copolymer (COC) has emerged as an interesting biocompatible material for Organ-on-a-Chip (OoC) devices monitoring growth, viability, and metabolism of cells. Despite ISO 10993 approval, systematic investigation of bacteria grown onto COC is a still not documented issue. This study discusses biofilm formations of the canonical wild type BB120 Vibrio campbellii strain on a native COC substrate and addresses the impact of the physico-chemical properties of COC compared to conventional hydroxyapatite (HA) and poly(dimethylsiloxane) (PDMS) surfaces. An interdisciplinary approach combining bacterial colony counting, light microscopy imaging and advanced digital image processing remarks interesting results. First, COC can reduce biomass adhesion with respect to common biopolymers, that is suitable for tuning biofilm formations in the biological and medical areas. Second, remarkably different biofilm morphology (dendritic complex patterns only in the case of COC) was observed among the examined substrates. Third, the observed biofilm morphogenesis was related to the interaction of COC with the conditioning layer of the planktonic biological medium. Fourth, Level Co-occurrence Matrix (CGLM)-based analysis enabled quantitative assessment of the biomass textural fractal development under different coverage conditions. All of this is of key practical relevance in searching innovative biocompatible materials for pharmaceutical, implantable and medical products.
Collapse
Affiliation(s)
- Maura Cesaria
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy.
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento, c/o Campus Ecotekne-S.P. 6, 73100 Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento, c/o Campus Ecotekne-S.P. 6, 73100 Lecce, Italy
| | - Rosella Cataldo
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy
| |
Collapse
|
3
|
Chen C, Yang Y, Lee CH, Takizawa S, Zhang Z, Ng HY, Hou LA. Functionalization of seawater reverse osmosis membrane with quorum sensing inhibitor to regulate microbial community and mitigate membrane biofouling. WATER RESEARCH 2024; 253:121358. [PMID: 38402750 DOI: 10.1016/j.watres.2024.121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Membrane biofouling is a challenge to be solved for the stable operation of the seawater reverse osmosis (SWRO) membrane. This study explored the regulation mechanism of quorum sensing (QS) inhibition on microbial community composition and population-level behaviors in seawater desalination membrane biofouling. A novel antibiofouling SWRO membrane (MA_m) by incorporating one of quorum sensing inhibitors (QSIs), methyl anthranilate (MA) was prepared. It exhibited enhanced anti-biofouling performance than the exogenous addition of QSIs, showing long-term stability and alleviating 22 % decrease in membrane flux compared with the virgin membrane. The results observed that dominant bacteria Epsilon- and Gamma-proteobacteria (Shewanella, Olleya, Colwellia, and Arcobacter), which are significantly related to (P ≤ 0.01) the metabolic products (i.e., polysaccharides, proteins and eDNA), are reduced by over 80 % on the MA_m membrane. Additionally, the introduction of MA has a more significant impact on the QS signal-sensing pathway through binding to the active site of the transmembrane sensor receptor. It effectively reduces the abundance of genes encoding QS and extracellular polymeric substance (EPS) (exopolysaccharides (i.e., galE and nagB) and amino acids (i.e., ilvE, metH, phhA, and serB)) by up to 50 % and 30 %, respectively, resulting in a reduction of EPS by more than 50 %, thereby limiting the biofilm formation on the QSI-modified membrane. This study provides novel insights into the potential of QSIs to control consortial biofilm formation in practical SWRO applications.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Satoshi Takizawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Dai C, Qu Y, Wu W, Li S, Chen Z, Lian S, Jing J. QSP: An open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. WATER RESEARCH 2023; 235:119814. [PMID: 36934538 DOI: 10.1016/j.watres.2023.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Quorum sensing (QS) has attracted great attention due to its important role in the bacterial interactions and its relevance to water management. With the development of high-throughput sequencing technology, a specific database for QS-related sequence annotation is urgently needed. Here, Hidden Markov Model (HMM) profiles for 38 types of QS-related proteins were built using a total of 4024 collected seed sequences. Based on both homolog search and keywords confirmation against the non-redundant database, we established a QS-related protein (QSP) database, that includes 809,721 protein sequences and 186,133 nucleotide sequences, downloaded available at: https://github.com/chunxiao-dcx/QSP. The entries were classified into 38 types and 315 subtypes among 91 bacterial phyla. Furthermore, an automatic annotation pipeline, named QSAP, was developed for rapid annotation, classification and abundance quantification of QSP-like sequences from sequencing data. This pipeline provided the two homolog alignment strategies offered by Diamond (Blastp) or HMMER (Hmmscan), as well as a data cleansing function for a subset or union set of the hits. The pipeline was tested using 14 metagenomic samples from various water environments, including activated sludge, deep-sea sediments, estuary water, and reservoir water. The QSAP pipeline is freely available for academic use in the code repository at: https://github.com/chunxiao-dcx/QSAP. The establishment of this database and pipeline, provides a useful tool for QS-related sequence annotation in a wide range of projects, and will increase our understanding of QS communication in aquatic environments.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Cesaria M, Calcagnile M, Alifano P, Cataldo R. Mutant-Dependent Local Orientational Correlation in Biofilms of Vibrio campbellii Revealed through Digital Processing of Light Microscopy Images. Int J Mol Sci 2023; 24:ijms24065423. [PMID: 36982495 PMCID: PMC10056176 DOI: 10.3390/ijms24065423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Biofilms are key bacterial communities in genetic and adaptive resistance to antibiotics as well as disease control strategies. The mature high-coverage biofilm formations of the Vibrio campbellii strains (wild type BB120 and isogenic derivatives JAF633, KM387, and JMH603) are studied here through the unstraightforward digital processing of morphologically complex images without segmentation or the unrealistic simplifications used to artificially simulate low-density formations. The main results concern the specific mutant- and coverage-dependent short-range orientational correlation as well as the coherent development of biofilm growth pathways over the subdomains of the image. These findings are demonstrated to be unthinkable based only on a visual inspection of the samples or on methods such as Voronoi tessellation or correlation analyses. The presented approach is general, relies on measured rather than simulated low-density formations, and could be employed in the development of a highly efficient screening method for drugs or innovative materials.
Collapse
Affiliation(s)
- Maura Cesaria
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento-c/o Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy
- Correspondence: (M.C.); (R.C.)
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento-c/o Campus Ecotekne—S.P. 6, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento-c/o Campus Ecotekne—S.P. 6, 73100 Lecce, Italy
| | - Rosella Cataldo
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento-c/o Campus Ecotekne—S.P. 6, 73100 Lecce, Italy
- Correspondence: (M.C.); (R.C.)
| |
Collapse
|
6
|
Zhao J, Li Y, Huang Y, Jin L, Xu Y, Xu M, Quan C, Chen M. Heterologous expression of quorum sensing transcriptional regulator LitR and its function in virulence-related gene regulation in foodborne pathogen Aeromonas hydrophila. Mol Biol Rep 2023; 50:2049-2060. [PMID: 36542235 DOI: 10.1007/s11033-022-07866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aeromonas hydrophila is an important foodborne and zoonotic pathogen causing serious diseases. Hence, revealing the pathogenic mechanism of A. hydrophila will be of importance in the development of novel therapies. Aeromonas hydrophila litR was reported to be regulated by two quorum sensing (QS) pathways, indicating that it is involved in QS network regulation correlated with bacterial virulence. However, the function of LitR is currently not understood. Therefore, we aimed to reveal the potential regulatory mechanisms of LitR on virulence-related genes. METHODS AND RESULTS In this study, amino acid sequences analysis of LitR was conducted, providing bioinformatics evidence for its function as a potential transcriptional regulator. LitR protein was heterologous expressed, purified and its in-vitro multimeric forms were observed with gel filtration chromatography. The correlation between intracellular LitR expression level and cell density was analyzed with immunoblots. Regulation mechanisms of LitR on several important virulence-related factors were investigated with qRT-PCR, EMSA, DNase I footprinting and microscale thermophoresis binding assays, etc. Results showed that recombinant LitR protein aggregated mainly as dimer and hexamer in vitro. Intracellular expression level of LitR was positively correlated with cell density of A. hydrophila. Furthermore, LitR exhibited complicated regulation modes on virulence-related genes; it could directly bind to promoter regions of the hemolysin, serine protease and T6SS effector protein VgrG encoded genes. The promoter region of the hemolysin gene showed high binding affinity and mainly two binding sites for LitR. Different dissociation constants were obtained for LitR interaction with the hemolysin gene binding motifs I and II. Assays focusing on physiological characteristics of A. hydrophila prove that LitR positively regulated hemolytic and total extracellular protease activities. CONCLUSIONS This study investigated the function of LitR as a quorum sensing transcriptional regulator in regulation of virulence-related genes, which will help reveal the mechanisms of A. hydrophila pathogenicity. LitR could serve as a potential target for development of new antimicrobial agents from the perspective of QS regulation.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yue Li
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Huang
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Menghao Xu
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China.
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| | - Ming Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
7
|
Identification of AHL Synthase in Desulfovibrio vulgaris Hildenborough Using an In-Silico Methodology. Catalysts 2023. [DOI: 10.3390/catal13020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are anaerobic bacteria that form biofilm and induce corrosion on various material surfaces. The quorum sensing (QS) system that employs acyl homoserine lactone (AHL)-type QS molecules primarily govern biofilm formation. Studies on SRB have reported the presence of AHL, but no AHL synthase have been annotated in SRB so far. In this computational study, we used a combination of data mining, multiple sequence alignment (MSA), homology modeling and docking to decode a putative AHL synthase in the model SRB, Desulfovibrio vulgaris Hildenborough (DvH). Through data mining, we shortlisted 111 AHL synthase genes. Conserved domain analysis of 111 AHL synthase genes generated a consensus sequence. Subsequent MSA of the consensus sequence with DvH genome indicated that DVU_2486 (previously uncharacterized protein from acetyltransferase family) is the gene encoding for AHL synthase. Homology modeling revealed the existence of seven α-helices and six β sheets in the DvH AHL synthase. The amalgamated study of hydrophobicity, binding energy, and tunnels and cavities revealed that Leu99, Trp104, Arg139, Trp97, and Tyr36 are the crucial amino acids that govern the catalytic center of this putative synthase. Identifying AHL synthase in DvH would provide more comprehensive knowledge on QS mechanism and help design strategies to control biofilm formation.
Collapse
|
8
|
Cesaria M, Alfinito E, Arima V, Bianco M, Cataldo R. MEED: A novel robust contrast enhancement procedure yielding highly-convergent thresholding of biofilm images. Comput Biol Med 2022; 151:106217. [PMID: 36306585 DOI: 10.1016/j.compbiomed.2022.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 12/27/2022]
Abstract
Morphological and statistical investigation of biofilm images may be even more critical than the image acquisition itself, in particular in the presence of morphologically complex distributions, due to the unavoidable impact of the measurement technique too. Hence, digital image pre-processing is mandatory for reliable feature extraction and enhancement preliminary to segmentation. Also, pattern recognition in automated deep learning (both supervised and unsupervised) models often requires a preliminary effective contrast-enhancement. However, no universal consensus exists on the optimal contrast enhancement approach. This paper presents and discusses a new general, robust, reproducible, accurate and easy to implement contrast enhancement procedure, briefly named MEED-procedure, able to work on images with different bacterial coverages and biofilm structures, coming from different imaging instrumentations (herein stereomicroscope and transmission microscope). It exploits a proper succession of basic morphological operations (erosion and dilation) and a horizontal line structuring element, to minimize the impact on size and shape of the even finer bacterial features. It systematically enhances the objects of interest, without histogram stretching and/or undesirable artifacts yielded by common automated methods. The quality of the MEED-procedure is ascertained by segmentation tests which demonstrate its robustness regarding the determination of threshold and convergence of the thresholding algorithm. Extensive validation tests over a rich image database, comparison with the literature and comprehensive discussion of the conceptual background support the superiority of the MEED-procedure over the existing methods and demonstrate it is not a routine application of morphological operators.
Collapse
Affiliation(s)
- Maura Cesaria
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy.
| | - Eleonora Alfinito
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Rosella Cataldo
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy.
| |
Collapse
|
9
|
Morot A, El Fekih S, Bidault A, Le Ferrand A, Jouault A, Kavousi J, Bazire A, Pichereau V, Dufour A, Paillard C, Delavat F. Virulence of Vibrio harveyi ORM4 towards the European abalone Haliotis tuberculata involves both quorum sensing and a type III secretion system. Environ Microbiol 2021; 23:5273-5288. [PMID: 33989448 DOI: 10.1111/1462-2920.15592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 02/05/2023]
Abstract
Environmental Vibrio strains represent a major threat in aquaculture, but the understanding of their virulence mechanisms heavily relies on the transposition of knowledge from human-pathogen vibrios. Here, the genetic bases of the virulence of Vibrio harveyi ORM4 towards the European abalone Haliotis tuberculata were characterized. We demonstrated that luxO, encoding a major regulator of the quorum sensing system, is crucial for the virulence of this strain, and that its deletion leads to a decrease in swimming motility, biofilm formation, and exopolysaccharide production. Furthermore, the biofilm formation by V. harveyi ORM4 was increased by abalone serum, which required LuxO. The absence of LuxO in V. harveyi ORM4 yielded opposite phenotypes compared with other Vibrio species including V. campbellii (still frequently named V. harveyi). In addition, we report a full type III secretion system (T3SS) gene cluster in the V. harveyi ORM4 genome. LuxO was shown to negatively regulate the promoter activity of exsA, encoding the major regulator of the T3SS genes, and the deletion of exsA abolished the virulence of V. harveyi ORM4. These results unveil virulence mechanisms set up by this environmentally important bacterial pathogen and pave the way for a better molecular understanding of the regulation of its pathogenicity.
Collapse
Affiliation(s)
- Amandine Morot
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | | | | | - Albane Jouault
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | - Javid Kavousi
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | - Alexis Bazire
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | - Alain Dufour
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | | | - François Delavat
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- UMR CNRS 6286 UFIP, University of Nantes, Nantes, France
| |
Collapse
|
10
|
Yi L, Dong X, Grenier D, Wang K, Wang Y. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143031. [PMID: 33129525 DOI: 10.1016/j.scitotenv.2020.143031] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The microbial community is an important part of the natural ecosystem, and the quorum sensing system is a momentous communication tool for the microbial community to connect to the surrounding environment. Quorum sensing is a process of cell-cell communication that relies on the production, release, and detection of extracellular signaling molecules, which are called autoinducers. Quorum sensing systems in bacteria consist of two main components: a receptor protein and an autoinducer. The binding of autoinducer to its receptor activates the target gene, which then performs the corresponding function in bacteria. In a natural environment, different bacterial species possess quorum sensing receptors that are structurally and functionally different. So far, many bacterial quorum sensing receptors have been identified and the structure and function of some receptors have been characterized. There are many reviews about quorum sensing and quorum sensing receptors, but there are few reviews that describe various types of quorum sensing in different environments with receptors as the core. Therefore, we summarize the well-defined quorum sensing receptors involved in intra-species and inter-species cell-cell communication, and describe the structure, function, and characteristics of typical receptors for different types of quorum sensing. A systematic understanding of quorum sensing receptors will help researchers to further explore the signaling mechanism and regulation mechanism of quorum sensing system, provide help to clarify the role and function of quorum sensing in natural ecosystems, then provide theoretical basis for the discovery or synthesis of new targeted drugs that block quorum sensing.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Xiao Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
11
|
Chen J, Lu Y, Ye X, Emam M, Zhang H, Wang H. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. Eur J Med Chem 2020; 207:112741. [PMID: 32871343 DOI: 10.1016/j.ejmech.2020.112741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Vibrio harveyi is a marine bacterial pathogen which infects a wide range of marine organisms and results in severe loss. Antibiotics have been used for prophylaxis and treatment of V. harveyi infection. However, antibiotic resistance is a major public health threat to both human and animals. Therefore, there is an urgent need for novel antimicrobial agents with new modes of action. In V. harveyi, many virulence factors production and bioluminescence formation depend on its quorum sensing (QS) network. Therefore, the QS system has been widely investigated as an effective potential target for the treatment of V. harveyi infection. This perspective focuses on the quorum sensing inhibitors (QSIs) of V. harveyi QS systems (LuxM/N, LuxS/PQ, and CqsA/S) and evaluates medicinal chemistry strategies.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yaojia Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
12
|
Deng Y, Xu L, Liu S, Wang Q, Guo Z, Chen C, Feng J. What drives changes in the virulence and antibiotic resistance of Vibrio harveyi in the South China Sea? JOURNAL OF FISH DISEASES 2020; 43:853-862. [PMID: 32557678 DOI: 10.1111/jfd.13197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
To understand the driving environmental factors in changes of bacterial virulence and antibiotic resistance, we determined the prevalence, antibiotic resistance and antibiotic resistance and virulence genes of Vibrio harveyi isolated from diseased marine fish in south coastal China. We isolated 2, 52 and 53 V. harveyi strains from Fujian, Hainan and Guangdong, respectively, and identified them by multilocus sequence analysis of 16S rRNA-toxRVh -rctB. Nine typical virulence genes were represented at a higher average in Hainan (7.39 ± 0.24) than in Guangdong (6.91 ± 0.28). Five atypical virulence genes were detected in some isolates. In particular, flaC and vvh were detected in more than 60% of isolates. Their average number was significantly higher in Hainan (2.30 ± 0.20) than in Guangdong (1.70 ± 0.10). Multidrug resistance was widespread with an average resistance to 4.57 ± 0.18 of 15 antibiotics. Both the average number of antibiotic resistance and antibiotic resistance genes were higher in Hainan (5.25 ± 0.27 and 1.11 ± 0.15, respectively) than in Guangdong (3.87 ± 0.21 and 0.75 ± 0.10, respectively). This study demonstrated that there were more virulence genes and greater drug resistance in Hainan than in Guangdong, suggesting that warmer temperature and antibiotics pollutants probably enhance antibiotic resistance and bacterial infection.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qian Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Chen
- Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| |
Collapse
|
13
|
Jung K, Brameyer S, Fabiani F, Gasperotti A, Hoyer E. Phenotypic Heterogeneity Generated by Histidine Kinase-Based Signaling Networks. J Mol Biol 2019; 431:4547-4558. [DOI: 10.1016/j.jmb.2019.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
|
14
|
Francis VI, Porter SL. Multikinase Networks: Two-Component Signaling Networks Integrating Multiple Stimuli. Annu Rev Microbiol 2019; 73:199-223. [PMID: 31112439 DOI: 10.1146/annurev-micro-020518-115846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria depend on two-component systems to detect and respond to threats. Simple pathways comprise a single sensor kinase (SK) that detects a signal and activates a response regulator protein to mediate an appropriate output. These simple pathways with only a single SK are not well suited to making complex decisions where multiple different stimuli need to be evaluated. A recently emerging theme is the existence of multikinase networks (MKNs) where multiple SKs collaborate to detect and integrate numerous different signals to regulate a major lifestyle switch, e.g., between virulence, sporulation, biofilm formation, and cell division. In this review, the role of MKNs and the phosphosignaling mechanisms underpinning their signal integration and decision making are explored.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| |
Collapse
|
15
|
Svenningsen SL. Small RNA-Based Regulation of Bacterial Quorum Sensing and Biofilm Formation. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0017-2018. [PMID: 30003870 PMCID: PMC11633610 DOI: 10.1128/microbiolspec.rwr-0017-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 02/08/2023] Open
Abstract
Quorum sensing is a vital property of bacteria that enables community-wide coordination of collective behaviors. A key example of such a behavior is biofilm formation, in which groups of bacteria invest in synthesizing a protective, joint extracellular matrix. Quorum sensing involves the production, release, and subsequent detection of extracellular signaling molecules called autoinducers. The architecture of quorum-sensing signal transduction pathways is highly variable among different species of bacteria, but frequently involves posttranscriptional regulation carried out by small regulatory RNA molecules. This review illustrates the diverse roles small trans-acting regulatory RNAs can play, from constituting a network's core to auxiliary roles in adjusting the rate of autoinducer synthesis, mediating cross talk among different parts of a network, or integrating different regulatory inputs to trigger appropriate changes in gene expression. The emphasis is on describing how the study of small RNA-based regulation in quorum sensing and biofilm formation has uncovered new general properties or expanded our understanding of bacterial riboregulation.
Collapse
|
16
|
Naik SP, Scholin J, Ching S, Chi F, Herpfer M. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:40-44. [PMID: 29231719 DOI: 10.1021/acs.jafc.7b03918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.
Collapse
Affiliation(s)
- Sajo P Naik
- Innovation Center, Oil-Dri Corporation of America , 777 Forest Edge Road, Vernon Hills, Illinois 60061-3197, United States
| | - Jonathon Scholin
- Innovation Center, Oil-Dri Corporation of America , 777 Forest Edge Road, Vernon Hills, Illinois 60061-3197, United States
| | - San Ching
- Innovation Center, Oil-Dri Corporation of America , 777 Forest Edge Road, Vernon Hills, Illinois 60061-3197, United States
| | - Fang Chi
- Innovation Center, Oil-Dri Corporation of America , 777 Forest Edge Road, Vernon Hills, Illinois 60061-3197, United States
| | - Marc Herpfer
- Innovation Center, Oil-Dri Corporation of America , 777 Forest Edge Road, Vernon Hills, Illinois 60061-3197, United States
| |
Collapse
|
17
|
Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol 2017; 26:313-328. [PMID: 29132819 DOI: 10.1016/j.tim.2017.10.005] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed.
Collapse
|