1
|
Grebe LA, Lichtenberg PG, Hürter K, Forsten E, Miebach K, Büchs J, Magnus JB. Phosphate limitation enhances malic acid production on nitrogen-rich molasses with Ustilago trichophora. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:92. [PMID: 38961457 PMCID: PMC11223335 DOI: 10.1186/s13068-024-02543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND An important step in replacing petrochemical products with sustainable, cost-effective alternatives is the use of feedstocks other than, e.g., pure glucose in the fermentative production of platform chemicals. Ustilaginaceae offer the advantages of a wide substrate spectrum and naturally produce a versatile range of value-added compounds under nitrogen limitation. A promising candidate is the dicarboxylic acid malic acid, which may be applied as an acidulant in the food industry, a chelating agent in pharmaceuticals, or in biobased polymer production. However, fermentable residue streams from the food and agricultural industry with high nitrogen content, e.g., sugar beet molasses, are unsuited for processes with Ustilaginaceae, as they result in low product yields due to high biomass and low product formation. RESULTS This study uncovers challenges in evaluating complex feedstock applicability for microbial production processes, highlighting the role of secondary substrate limitations, internal storage molecules, and incomplete assimilation of these substrates. A microliter-scale screening method with online monitoring of microbial respiration was developed using malic acid production with Ustilago trichophora on molasses as an application example. Investigation into nitrogen, phosphate, sulphate, and magnesium limitations on a defined minimal medium demonstrated successful malic acid production under nitrogen and phosphate limitation. Furthermore, a reduction of nitrogen and phosphate in the elemental composition of U. trichophora was revealed under the respective secondary substrate limitation. These adaptive changes in combination with the intricate metabolic response hinder mathematical prediction of product formation and make the presented screening methodology for complex feedstocks imperative. In the next step, the screening was transferred to a molasses-based complex medium. It was determined that the organism assimilated only 25% and 50% of the elemental nitrogen and phosphorus present in molasses, respectively. Due to the overall low content of bioavailable phosphorus in molasses, the replacement of the state-of-the-art nitrogen limitation was shown to increase malic acid production by 65%. CONCLUSION The identification of phosphate as a superior secondary substrate limitation for enhanced malic acid production opens up new opportunities for the effective utilization of molasses as a more sustainable and cost-effective substrate than, e.g., pure glucose for biobased platform chemical production.
Collapse
Affiliation(s)
- Luca Antonia Grebe
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | | | - Katharina Hürter
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Eva Forsten
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Katharina Miebach
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Barsett Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
3
|
Mould DL, Finger CE, Conaway A, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding by Pseudomonas aeruginosa supports lasR mutant fitness. mBio 2024; 15:e0127823. [PMID: 38259061 PMCID: PMC10865840 DOI: 10.1128/mbio.01278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Cross-feeding of metabolites between subpopulations can affect cell phenotypes and population-level behaviors. In chronic Pseudomonas aeruginosa lung infections, subpopulations with loss-of-function (LOF) mutations in the lasR gene are common. LasR, a transcription factor often described for its role in virulence factor expression, also impacts metabolism, which, in turn, affects interactions between LasR+ and LasR- genotypes. Prior transcriptomic analyses suggested that citrate, a metabolite secreted by many cell types, induces virulence factor production when both genotypes are together. An unbiased analysis of the intracellular metabolome revealed broad differences including higher levels of citrate in lasR LOF mutants. Citrate consumption by LasR- strains required the CbrAB two-component system, which relieves carbon catabolite repression and is elevated in lasR LOF mutants. Within mixed communities, the citrate-responsive two-component system TctED and its gene targets OpdH (porin) and TctABC (citrate transporter) that are predicted to be under catabolite repression control were induced and required for enhanced RhlR/I-dependent signaling, pyocyanin production, and fitness of LasR- strains. Citrate uptake by LasR- strains markedly increased pyocyanin production in co-culture with Staphylococcus aureus, which also secretes citrate and frequently co-infects with P. aeruginosa. This citrate-induced restoration of virulence factor production by LasR- strains in communities with diverse species or genotypes may offer an explanation for the contrast observed between the markedly deficient virulence factor production of LasR- strains in monocultures and their association with the most severe forms of cystic fibrosis lung infections. These studies highlight the impact of secreted metabolites in mixed microbial communities.IMPORTANCECross-feeding of metabolites can change community composition, structure, and function. Here, we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes in chronic Pseudomonas aeruginosa lung infections. We illustrate an example of how clonally derived diversity in a microbial communication system enables intra- and inter-species cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa and Staphylococcus aureus, was differentially consumed between genotypes. Since these two pathogens frequently co-occur in the most severe cystic fibrosis lung infections, the cross-feeding-induced virulence factor expression and fitness described here between diverse genotypes exemplify how co-occurrence can facilitate the development of worse disease outcomes.
Collapse
Affiliation(s)
- Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Carson E. Finger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico Botelho
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stacie E. Stuut
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Al-hazmi MA, Moussa TAA, Alhazmi NM. Statistical Optimization of Biosurfactant Production from Aspergillus niger SA1 Fermentation Process and Mathematical Modeling. J Microbiol Biotechnol 2023; 33:1238-1249. [PMID: 37449330 PMCID: PMC10580895 DOI: 10.4014/jmb.2303.03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023]
Abstract
In this study, we sought to investigate the production and optimization of biosurfactants by soil fungi isolated from petroleum oil-contaminated soil in Saudi Arabia. Forty-four fungal isolates were isolated from ten petroleum oil-contaminated soil samples. All isolates were identified using the internal transcribed spacer (ITS) region, and biosurfactant screening showed that thirty-nine of the isolates were positive. Aspergillus niger SA1 was the highest biosurfactant producer, demonstrating surface tension, drop collapsing, oil displacement, and an emulsification index (E24) of 35.8 mN/m, 0.55 cm, 6.7 cm, and 70%, respectively. This isolate was therefore selected for biosurfactant optimization using the Fit Group model. The biosurfactant yield was increased 1.22 times higher than in the nonoptimized medium (8.02 g/l) under conditions of pH 6, temperature 35°C, waste frying oil (5.5 g), agitation rate of 200 rpm, and an incubation period of 7 days. Model significance and fitness analysis had an RMSE score of 0.852 and a p-value of 0.0016. The biosurfactant activities were surface tension (35.8 mN/m), drop collapsing (0.7 cm), oil displacement (4.5 cm), and E24 (65.0%). The time course of biosurfactant production was a growth-associated phase. The main outputs of the mathematical model for biomass yield were Yx/s (1.18), and μmax (0.0306) for biosurfactant yield was Yp/s (1.87) and Yp/x (2.51); for waste frying oil consumption the So was 55 g/l, and Ke was 2.56. To verify the model's accuracy, percentage errors between biomass and biosurfactant yields were determined by experimental work and calculated using model equations. The average error of biomass yield was 2.68%, and the average error percentage of biosurfactant yield was 3.39%.
Collapse
Affiliation(s)
- Mansour A. Al-hazmi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Tarek A. A. Moussa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nuha M. Alhazmi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Mould DL, Finger CE, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding between Pseudomonas aerguinosa genotypes supports lasR mutant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542973. [PMID: 37398089 PMCID: PMC10312601 DOI: 10.1101/2023.05.30.542973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Across the tree of life, clonal populations-from cancer to chronic bacterial infections - frequently give rise to subpopulations with different metabolic phenotypes. Metabolic exchange or cross-feeding between subpopulations can have profound effects on both cell phenotypes and population-level behavior. In Pseudomonas aeruginosa, subpopulations with loss-of-function mutations in the lasR gene are common. Though LasR is often described for its role in density-dependent virulence factor expression, interactions between genotypes suggest potential metabolic differences. The specific metabolic pathways and regulatory genetics enabling such interactions were previously undescribed. Here, we performed an unbiased metabolomics analysis that revealed broad differences in intracellular metabolomes, including higher levels of intracellular citrate in LasR- strains. We found that while both strains secreted citrate, only LasR- strains, consumed citrate in rich media. Elevated activity of the CbrAB two component system which relieves carbon catabolite repression enabled citrate uptake. Within mixed genotype communities, we found that the citrate responsive two component system TctED and its gene targets OpdH (porin) and TctABC (transporter) required for citrate uptake were induced and required for enhanced RhlR signalling and virulence factor expression in LasR- strains. Enhanced citrate uptake by LasR- strains eliminates differences in RhlR activity between LasR+ and LasR- strains thereby circumventing the sensitivity of LasR- strains to quorum sensing controlled exoproducts. Citrate cross feeding also induces pyocyanin production in LasR- strains co-cultured with Staphylococcus aureus, another species known to secrete biologically-active concentrations of citrate. Metabolite cross feeding may play unrecognized roles in competitive fitness and virulence outcomes when different cell types are together. IMPORTANCE Cross-feeding can change community composition, structure and function. Though cross-feeding has predominantly focused on interactions between species, here we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes of Pseudomonas aeruginosa. Here we illustrate an example of how such clonally-derived metabolic diversity enables intraspecies cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa, was differentially consumed between genotypes, and this cross-feeding induced virulence factor expression and fitness in genotypes associated with worse disease.
Collapse
Affiliation(s)
- Dallas L. Mould
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Carson E. Finger
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Nico Botelho
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Stacie E. Stuut
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Deborah A. Hogan
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| |
Collapse
|
6
|
Mould DL, Finger CE, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding between Pseudomonas aerguinosa genotypes supports lasR mutant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542962. [PMID: 37398201 PMCID: PMC10312497 DOI: 10.1101/2023.05.30.542962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Across the tree of life, clonal populations-from cancer to chronic bacterial infections - frequently give rise to subpopulations with different metabolic phenotypes. Metabolic exchange or cross-feeding between subpopulations can have profound effects on both cell phenotypes and population-level behavior. In Pseudomonas aeruginosa, subpopulations with loss-of-function mutations in the lasR gene are common. Though LasR is often described for its role in density-dependent virulence factor expression, interactions between genotypes suggest potential metabolic differences. The specific metabolic pathways and regulatory genetics enabling such interactions were previously undescribed. Here, we performed an unbiased metabolomics analysis that revealed broad differences in intracellular metabolomes, including higher levels of intracellular citrate in LasR- strains. We found that while both strains secreted citrate, only LasR- strains, consumed citrate in rich media. Elevated activity of the CbrAB two component system which relieves carbon catabolite repression enabled citrate uptake. Within mixed genotype communities, we found that the citrate responsive two component system TctED and its gene targets OpdH (porin) and TctABC (transporter) required for citrate uptake were induced and required for enhanced RhlR signalling and virulence factor expression in LasR- strains. Enhanced citrate uptake by LasR- strains eliminates differences in RhlR activity between LasR+ and LasR- strains thereby circumventing the sensitivity of LasR- strains to quorum sensing controlled exoproducts. Citrate cross feeding also induces pyocyanin production in LasR- strains co-cultured with Staphylococcus aureus, another species known to secrete biologically-active concentrations of citrate. Metabolite cross feeding may play unrecognized roles in competitive fitness and virulence outcomes when different cell types are together. IMPORTANCE Cross-feeding can change community composition, structure and function. Though cross-feeding has predominantly focused on interactions between species, here we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes of Pseudomonas aeruginosa. Here we illustrate an example of how such clonally-derived metabolic diversity enables intraspecies cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa, was differentially consumed between genotypes, and this cross-feeding induced virulence factor expression and fitness in genotypes associated with worse disease.
Collapse
Affiliation(s)
- Dallas L. Mould
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Carson E. Finger
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Nico Botelho
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Stacie E. Stuut
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| | - Deborah A. Hogan
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, NH USA
| |
Collapse
|
7
|
MacLean A, Legendre F, Appanna VD. The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress. Crit Rev Biochem Mol Biol 2023; 58:81-97. [PMID: 37125817 DOI: 10.1080/10409238.2023.2201945] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
Collapse
Affiliation(s)
- Alex MacLean
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| | - Felix Legendre
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| | - Vasu D Appanna
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| |
Collapse
|
8
|
Genome-wide comparison deciphers lifestyle adaptation and glass biodeterioration property of Curvularia eragrostidis C52. Sci Rep 2022; 12:11411. [PMID: 35794131 PMCID: PMC9259613 DOI: 10.1038/s41598-022-15334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
Glass biodeterioration by fungi has caused irreversible damage to valuable glass materials such as cultural heritages and optical devices. To date, knowledge about metabolic potential and genomic profile of biodeteriorative fungi is still scarce. Here, we report for the first time the whole genome sequence of Curvularia eragrostidis C52 that strongly degraded silica-based glasses coated with fluorine and hafnium, as expressed by the hyphal surface coverage of 46.16 ± 3.3% and reduced light transmission of 50.93 ± 1.45%. The genome of C. eragrostidis C52 is 36.9 Mb long with a GC content of 52.1% and contains 14,913 protein-coding genes, which is the largest genome ever recorded in the genus Curvularia. Phylogenomic analysis revealed C. eragrostidis C52 formed a distinct cluster with Curvularia sp. IFB-Z10 and was not evolved from compared genomes. Genome-wide comparison showed that strain C52 harbored significantly higher proportion of proteins involved in carbohydrate-active enzymes, peptidases, secreted proteins, and transcriptional factors, which may be potentially attributed to a lifestyle adaptation. Furthermore, 72 genes involved in the biosynthesis of 6 different organic acids were identified and expected to be crucial for the fungal survival in the glass environment. To form biofilm against stress, the fungal strain utilized 32 genes responsible for exopolysaccharide production. These findings will foster a better understanding of the biology of C. eragrostidis and the mechanisms behind fungal biodeterioration in the future.
Collapse
|
9
|
Arenas F, López-García Á, Berná LM, Morte A, Navarro-Ródenas A. Desert truffle mycorrhizosphere harbors organic acid releasing plant growth-promoting rhizobacteria, essentially during the truffle fruiting season. MYCORRHIZA 2022; 32:193-202. [PMID: 35043240 PMCID: PMC8907101 DOI: 10.1007/s00572-021-01067-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Desert truffle is becoming a new crop in semiarid areas. Climatic parameters and the presence of microorganisms influence the host plant physiology and alter desert truffle production. Desert truffle plants present a typical summer deciduous plant phenology divided into four stages: summer dormancy, autumn bud break, winter photosynthetic activity, and spring fruiting. We hypothesize that the bacterial community associated with desert truffle plants will show a seasonal trend linked to their plant growth-promoting rhizobacteria (PGPR) traits. This information will provide us with a better understanding about its potential role in this symbiosis and possible management implementations. Bacteria were isolated from root-adhering soil at the four described seasons. A total of 417 isolated bacteria were phenotypically and biochemically characterized and gathered by molecular analysis into 68 operational taxonomic units (OTUs). They were further characterized for PGPR traits such as indole acetic acid production, siderophore production, calcium phosphate solubilization, and ACCD (1-amino-cyclopropane-1-carboxilatedeaminase) activity. These PGPR traits were used to infer functional PGPR diversity and cultivable bacterial OTU composition at different phenological moments. The different seasons induced shifts in the OTU composition linked to their PGPR traits. Summer was the phenological stage with the lowest microbial diversity and PGPR functions, whereas spring was the most active one. Among the PGPR traits analyzed, P-solubilizing rhizobacteria were harbored in the mycorrhizosphere during desert truffle fruiting in spring.
Collapse
Affiliation(s)
- Francisco Arenas
- Dpto. Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR "Campus Mare Nostrum", Campus de Espinardo, 30100, Murcia, Spain
| | - Álvaro López-García
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-CSIC, Calle Prof. Albareda, 18008, Granada, Spain
- Department of Animal Biology, Plant Biology and Ecology, Universidad de Jaén, Jaén, Spain
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Av. del Mediterráneo, 18006, Granada, S/N, Spain
| | - Luis Miguel Berná
- Dpto. Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR "Campus Mare Nostrum", Campus de Espinardo, 30100, Murcia, Spain
| | - Asunción Morte
- Dpto. Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR "Campus Mare Nostrum", Campus de Espinardo, 30100, Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Dpto. Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR "Campus Mare Nostrum", Campus de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
10
|
Farkas B, Vojtková H, Bujdoš M, Kolenčík M, Šebesta M, Matulová M, Duborská E, Danko M, Kim H, Kučová K, Kisová Z, Matúš P, Urík M. Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides. J Fungi (Basel) 2021; 7:jof7100810. [PMID: 34682232 PMCID: PMC8539610 DOI: 10.3390/jof7100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.
Collapse
Affiliation(s)
- Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic; (H.V.); (K.K.)
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Michaela Matulová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea;
- Department of Environment and Energy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
| | - Kateřina Kučová
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic; (H.V.); (K.K.)
| | - Zuzana Kisová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia;
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
- Correspondence:
| |
Collapse
|
11
|
Something old, something new: challenges and developments in Aspergillus niger biotechnology. Essays Biochem 2021; 65:213-224. [PMID: 33955461 PMCID: PMC8314004 DOI: 10.1042/ebc20200139] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The filamentous ascomycete fungus Aspergillus niger is a prolific secretor of organic acids, proteins, enzymes and secondary metabolites. Throughout the last century, biotechnologists have developed A. niger into a multipurpose cell factory with a product portfolio worth billions of dollars each year. Recent technological advances, from genome editing to other molecular and omics tools, promise to revolutionize our understanding of A. niger biology, ultimately to increase efficiency of existing industrial applications or even to make entirely new products. However, various challenges to this biotechnological vision, many several decades old, still limit applications of this fungus. These include an inability to tightly control A. niger growth for optimal productivity, and a lack of high-throughput cultivation conditions for mutant screening. In this mini-review, we summarize the current state-of-the-art for A. niger biotechnology with special focus on organic acids (citric acid, malic acid, gluconic acid and itaconic acid), secreted proteins and secondary metabolites, and discuss how new technological developments can be applied to comprehensively address a variety of old and persistent challenges.
Collapse
|
12
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
13
|
Šimonovičová A, Vojtková H, Nosalj S, Piecková E, Švehláková H, Kraková L, Drahovská H, Stalmachová B, Kučová K, Pangallo D. Aspergillus niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling. Front Microbiol 2021; 12:658010. [PMID: 34248871 PMCID: PMC8261049 DOI: 10.3389/fmicb.2021.658010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
We present a biological profile of 16 Aspergillus niger environmental isolates from different types of soils and solid substrates across a pH range, from an ultra-acidic (<3.5) to a very strongly alkaline (>9.0) environment. The soils and solid substrates also differ in varying degrees of anthropic pollution, which in most cases is caused by several centuries of mining activity at old mining sites, sludge beds, ore deposits, stream sediments, and coal dust. The values of toxic elements (As, Sb, Zn, Cu, Pb) very often exceed the limit values. The isolates possess different macro- and micromorphological features. All the identifications of Aspergillus niger isolates were confirmed by molecular PCR analysis and their similarity was expressed by RAMP analysis. The biochemical profile of isolates based on FF-MicroPlate tests from the Biolog system showed identical biochemical reactions in 50 tests, while in 46 tests the utilisation reactions differed. The highest similarity of strains isolated from substrates with the same pH, as well as the most suitable biochemical tests for analysis of the phenotypic similarity of isolated strains, were confirmed when evaluating the biochemical profile using multicriterial analysis in the Canoco program. The isolates were screened for mycotoxin production by thin-layer chromatography (TLC), as well. Two of them were able to synthesise ochratoxin A, while none produced fumonisins under experimental conditions. Presence of toxic compounds in contaminated sites may affect environmental microscopic fungi and cause the genome alteration, which may result in changes of their physiology, including the production of different (secondary) metabolites, such as mycotoxins.
Collapse
Affiliation(s)
- Alexandra Šimonovičová
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Sanja Nosalj
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Elena Piecková
- Department of Microbiology, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Hana Švehláková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Lucia Kraková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbara Stalmachová
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Kateřina Kučová
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
14
|
Karaffa L, Fekete E, Kubicek CP. The Role of Metal Ions in Fungal Organic Acid Accumulation. Microorganisms 2021; 9:1267. [PMID: 34200938 PMCID: PMC8230503 DOI: 10.3390/microorganisms9061267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
Organic acid accumulation is probably the best-known example of primary metabolic overflow. Both bacteria and fungi are capable of producing various organic acids in large amounts under certain conditions, but in terms of productivity-and consequently, of commercial importance-fungal platforms are unparalleled. For high product yield, chemical composition of the growth medium is crucial in providing the necessary conditions, of which the concentrations of four of the first-row transition metal elements, manganese (Mn2+), iron (Fe2+), copper (Cu2+) and zinc (Zn2+) stand out. In this paper we critically review the biological roles of these ions, the possible biochemical and physiological consequences of their influence on the accumulation of the most important mono-, di- and tricarboxylic as well as sugar acids by fungi, and the metal ion-related aspects of submerged organic acid fermentations, including the necessary instrumental analytics. Since producing conditions are associated with a cell physiology that differs strongly to what is observed under "standard" growth conditions, here we consider papers and patents only in which organic acid accumulation levels achieved at least 60% of the theoretical maximum yield, and the actual trace metal ion concentrations were verified.
Collapse
Affiliation(s)
- Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Christian P. Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, A-1060 Vienna, Austria;
| |
Collapse
|
15
|
Laothanachareon T, Bruinsma L, Nijsse B, Schonewille T, Suarez-Diez M, Tamayo-Ramos JA, Martins dos Santos VAP, Schaap PJ. Global Transcriptional Response of Aspergillus niger to Blocked Active Citrate Export through Deletion of the Exporter Gene. J Fungi (Basel) 2021; 7:jof7060409. [PMID: 34071072 PMCID: PMC8224569 DOI: 10.3390/jof7060409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus niger is the major industrial citrate producer worldwide. Export as well as uptake of citric acid are believed to occur by active, proton-dependent, symport systems. Both are major bottlenecks for industrial citrate production. Therefore, we assessed the consequences of deleting the citT gene encoding the A. niger citrate exporter, effectively blocking active citrate export. We followed the consumption of glucose and citrate as carbon sources, monitored the secretion of organic acids and carried out a thorough transcriptome pathway enrichment analysis. Under controlled cultivation conditions that normally promote citrate secretion, the knock-out strain secreted negligible amounts of citrate. Blocking active citrate export in this way led to a reduced glucose uptake and a reduced expression of high-affinity glucose transporter genes, mstG and mstH. The glyoxylate shunt was strongly activated and an increased expression of the OAH gene was observed, resulting in a more than two-fold higher concentration of oxalate in the medium. Deletion of citT did not affect citrate uptake suggesting that citrate export and citrate uptake are uncoupled from the system.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani 12120, Thailand
- Correspondence: (T.L.); (V.A.P.M.d.S.)
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Tom Schonewille
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Juan Antonio Tamayo-Ramos
- International Research Center in Critical Raw Materials-ICCRAM, University of Burgos, 09001 Burgos, Spain;
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
- LifeGlimmer GmbH, 12163 Berlin, Germany
- Correspondence: (T.L.); (V.A.P.M.d.S.)
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| |
Collapse
|
16
|
Urík M, Farkas B, Miglierini MB, Bujdoš M, Mitróová Z, Kim H, Matúš P. Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124938. [PMID: 33450513 DOI: 10.1016/j.jhazmat.2020.124938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Natural ferric ochres that precipitate in streambeds at abandoned mining sites are natural scavengers of various metals and metalloids. Thus, their chemical and structural modification via microbial activity should be considered in evaluation of the risks emerging from probable spread of contamination at mining sites. Our results highlight the role of various aspergilli strains in this process via production of acidic metabolites that affect mobility and bioavailability of coprecipitated contaminants. The Mössbauer analysis revealed subtle structural changes of iron in ochres, while the elemental analysis of non-dissolved residues of ochres that were exposed to filamentous fungi suggest coinciding bioextraction of arsenic and antimony with extensive iron mobilisation. However, the zinc bioextraction by filamentous fungi is less likely dependent on iron leaching from ferric ochres. The strain specific bioextraction efficiency and subsequent bioaccumulation of mobilised metals resulted in distinct tolerance responses among the studied soil fungal strains. However, regardless the burden of bioextracted metal(loid)s on its activity, the Aspergillus niger strain has shown remarkable capability to decrease pH of its environment and, thus, bioextract significant and environmentally relevant amounts of potentially toxic elements from the natural ochres.
Collapse
Affiliation(s)
- Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215 Bratislava, Slovakia.
| | - Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Marcel B Miglierini
- Slovak University of Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 81219 Bratislava, Slovakia; Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Zuzana Mitróová
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering & Department of Environment and Energy, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, 54896 Jeonbuk, Republic of Korea
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215 Bratislava, Slovakia
| |
Collapse
|
17
|
Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc Natl Acad Sci U S A 2020; 117:32358-32369. [PMID: 33273114 PMCID: PMC7768705 DOI: 10.1073/pnas.2016380117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Siderophore secretion confers competitive advantage to pathogenic and beneficial bacteria in various nutritional environments, including human infections and rhizosphere microbiome. The siderophore biosynthesis must be sustained during a compromised carbon metabolism in Fe-deficient cells. Here we demonstrate that Fe-deficient Pseudomonas species overcome this paradox by coupling selectivity in carbon utilization with a hierarchy in metabolic pathways to favor carbon and energy fluxes for siderophore biosynthesis. A reprogrammed metabolism is predicted from genomics-based data obtained with several marine and soil bacterial systems in response to Fe deficiency, but metabolomics evidence is lacking. The present study offers an important roadmap for investigating the underlying metabolic connections between Fe or other metal nutrient availability and carbon utilization. High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood. Here, through multiple 13C-metabolomics experiments with Fe-replete and Fe-limited cells, we uncover how soil Pseudomonas species reprogram their metabolic pathways to prioritize siderophore biosynthesis. Across the three species investigated (Pseudomonas putida KT2440, Pseudomonas protegens Pf-5, and Pseudomonas putida S12), siderophore secretion is higher during growth on gluconeogenic substrates than during growth on glycolytic substrates. In response to Fe limitation, we capture decreased flux toward the tricarboxylic acid (TCA) cycle during the metabolism of glycolytic substrates but, due to carbon recycling to the TCA cycle via enhanced anaplerosis, the metabolism of gluconeogenic substrates results in an increase in both siderophore secretion (up to threefold) and Fe extraction (up to sixfold) from soil minerals. During simultaneous feeding on the different substrate types, Fe deficiency triggers a hierarchy in substrate utilization, which is facilitated by changes in protein abundances for substrate uptake and initial catabolism. Rerouted metabolism further promotes favorable fluxes in the TCA cycle and the gluconeogenesis–anaplerosis nodes, despite decrease in several proteins in these pathways, to meet carbon and energy demands for siderophore precursors in accordance with increased proteins for siderophore biosynthesis. Hierarchical carbon metabolism thus serves as a critical survival strategy during the metal nutrient deficiency.
Collapse
|
18
|
Differences in metabolites production using the Biolog FF Microplate™ system with an emphasis on some organic acids of Aspergillus niger wild type strains. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00521-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Mould DL, Botelho NJ, Hogan DA. Intraspecies Signaling between Common Variants of Pseudomonas aeruginosa Increases Production of Quorum-Sensing-Controlled Virulence Factors. mBio 2020; 11:e01865-20. [PMID: 32843558 PMCID: PMC7448281 DOI: 10.1128/mbio.01865-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR-) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR- strains, LasR- strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR-but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections.IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR- strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico J Botelho
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
20
|
Odoni DI, Vazquez-Vilar M, van Gaal MP, Schonewille T, Martins Dos Santos VAP, Tamayo-Ramos JA, Suarez-Diez M, Schaap PJ. Aspergillus niger citrate exporter revealed by comparison of two alternative citrate producing conditions. FEMS Microbiol Lett 2020; 366:5437674. [PMID: 31062025 PMCID: PMC6502548 DOI: 10.1093/femsle/fnz071] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Currently, there is no consensus regarding the mechanism underlying Aspergillus niger citrate biosynthesis and secretion. We hypothesise that depending on the experimental setup, extracellular citrate accumulation can have fundamentally different underlying transcriptomic landscapes. We show that varying the amount and type of supplement of an arginine auxotrophic A. niger strain results in transcriptional down-regulation of citrate metabolising enzymes in the condition in which more citrate is accumulated extracellularly. This contrasts with the transcriptional adaptations when increased citrate production is triggered by iron limitation. By combining gene expression data obtained from these two very distinct experimental setups with hidden Markov models and transporter homology approaches, we were able to compile a shortlist of the most likely citrate transporter candidates. Two candidates (An17g01710 and An09g06720m.01) were heterologously expressed in the yeast Saccharomyces cerevisiae, and one of the resultant mutants showed the ability to secrete citrate. Our findings provide steps in untangling the complex interplay of different mechanisms underlying A. niger citrate accumulation, and we demonstrate how a comparative transcriptomics approach complemented with further bioinformatics analyses can be used to pinpoint a fungal citrate exporter.
Collapse
Affiliation(s)
- Dorett I Odoni
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marta Vazquez-Vilar
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Merlijn P van Gaal
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Schonewille
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Juan Antonio Tamayo-Ramos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,International Research Center in Critical Raw Materials-ICCRAM, Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
21
|
Artmann DJ, Vrabl P, Gianordoli R, Burgstaller W. Challenging the charge balance hypothesis: reconsidering buffer effect and reuptake of previously excreted organic acids by Penicillium ochrochloron. FEMS Microbiol Lett 2020; 367:5780226. [PMID: 32129848 PMCID: PMC7150580 DOI: 10.1093/femsle/fnaa039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/03/2020] [Indexed: 01/15/2023] Open
Abstract
Penicillium ochrochloron was used in the past for the leaching of zinc from a zinc oxide containing filter dust via excreted organic acids. Organic acid excretion by P. ochrochloron was stimulated by the addition of an extracellular buffer (2-(N-Morpholino)ethanesulfonic acid, MES; or zinc oxide, ZnO: ZnO + 2 H+ → Zn2+ + H2O). It was tested if the buffer stimulated excretion of organic acid anions is due to the necessity of an anion efflux across the plasma membrane to maintain electroneutrality by balancing the excretion of protons by the H+-ATPase. This charge balance hypothesis was previously postulated for P. ochrochloron. Two strains of P. ochrochloron were studied, which differed in growth parameters and amount of excreted organic acids. From the results, it was concluded that charge balance at the plasma membrane is not the main reason for organic acid excretion in these two strains of P. ochrochloron. Furthermore, the phenomenon of reuptake of excreted organic acids in the presence of about 100 mM of glucose is confirmed. It is suggested that the equilibrium between extracellular and intracellular organic acid anions may be maintained passively by a facilitated diffusion transporter.
Collapse
Affiliation(s)
- D J Artmann
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Österreich
| | - P Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Österreich
| | - R Gianordoli
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Österreich
| | - W Burgstaller
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Österreich
| |
Collapse
|
22
|
|
23
|
Urík M, Polák F, Bujdoš M, Miglierini MB, Milová-Žiaková B, Farkas B, Goneková Z, Vojtková H, Matúš P. Antimony leaching from antimony-bearing ferric oxyhydroxides by filamentous fungi and biotransformation of ferric substrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:683-689. [PMID: 30763848 DOI: 10.1016/j.scitotenv.2019.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/02/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Ferric oxyhydroxides are natural scavengers of antimony, thus, they contribute significantly to antimony immobilization in soils and sediments. Recent studies, however, usually omit microbial influence on geochemically stable antimony-ferric oxyhydroxide association. Therefore, we have evaluated fungal contribution to antimony mobility during static cultivation of common soil fungus Aspergillus niger in presence of ferric oxyhydroxides. Our results indicate distinguished effect of fungus on antimony distribution at two different antimony concentrations that were used for antimony pre-adsorbtion onto ferric oxyhydroxides prior to the inoculation. Approximately 36% of antimony was bioextracted by fungus from antimony bearing ferric oxyhydroxide after 14-day cultivation when the 8.9 mg·L-1 antimony concentration was used for pre-adsorption. However, no statistically significant change of antimony content in ferric oxyhydroxides was observed after cultivation when initial 48 mg·L-1 antimony concentration was used for pre-adsorption. As Mössbauer spectroscopy and XRD analysis indicated, nanosized akageneite, goethite, and lepidocrocite enhanced their crystallinity during cultivation, while hematite was identified only after the cultivation. Nevertheless, presence of ferric oxyhydroxides at both initial concentrations enabled transformation of antimony into volatile derivatives, and almost 9.5% of antimony was biovolatilized after cultivation. These results contribute significantly to environmental geochemistry of antimony-ferric oxyhydroxides association and highlight the importance of microbial activity in relation to ferric component of natural geochemical barriers.
Collapse
Affiliation(s)
- Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Filip Polák
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Marcel B Miglierini
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Reactors, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Barbora Milová-Žiaková
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Zuzana Goneková
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 70833 Ostrava, Czech Republic
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
24
|
Karaffa L, Kubicek CP. Citric acid and itaconic acid accumulation: variations of the same story? Appl Microbiol Biotechnol 2019; 103:2889-2902. [PMID: 30758523 PMCID: PMC6447509 DOI: 10.1007/s00253-018-09607-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023]
Abstract
Citric acid production by Aspergillus niger and itaconic acid production by Aspergillus terreus are two major examples of technical scale fungal fermentations based on metabolic overflow of primary metabolism. Both organic acids are formed by the same metabolic pathway, but whereas citric acid is the end product in A. niger, A. terreus performs two additional enzymatic steps leading to itaconic acid. Despite of this high similarity, the optimization of the production process and the mechanism and regulation of overflow of these two acids has mostly been investigated independently, thereby ignoring respective knowledge from the other. In this review, we will highlight where the similarities and the real differences of these two processes occur, which involves various aspects of medium composition, metabolic regulation and compartmentation, transcriptional regulation, and gene evolution. These comparative data may facilitate further investigations of citric acid and itaconic acid accumulation and may contribute to improvements in their industrial production.
Collapse
Affiliation(s)
- Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary.
| | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.,, 1100, Vienna, Austria
| |
Collapse
|
25
|
Laothanachareon T, Tamayo-Ramos JA, Nijsse B, Schaap PJ. Forward Genetics by Genome Sequencing Uncovers the Central Role of the Aspergillus niger goxB Locus in Hydrogen Peroxide Induced Glucose Oxidase Expression. Front Microbiol 2018; 9:2269. [PMID: 30319579 PMCID: PMC6165874 DOI: 10.3389/fmicb.2018.02269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023] Open
Abstract
Aspergillus niger is an industrially important source for gluconic acid and glucose oxidase (GOx), a secreted commercially important flavoprotein which catalyses the oxidation of β-D-glucose by molecular oxygen to D-glucolactone and hydrogen peroxide. Expression of goxC, the GOx encoding gene and the concomitant two step conversion of glucose to gluconic acid requires oxygen and the presence of significant amounts of glucose in the medium and is optimally induced at pH 5.5. The molecular mechanisms underlying regulation of goxC expression are, however, still enigmatic. Genetic studies aimed at understanding GOx induction have indicated the involvement of at least seven complementation groups, for none of which the molecular basis has been resolved. In this study, a mapping-by-sequencing forward genetics approach was used to uncover the molecular role of the goxB locus in goxC expression. Using the Illumina and PacBio sequencing platforms a hybrid high quality draft genome assembly of laboratory strain N402 was obtained and used as a reference for mapping of genomic reads obtained from the derivative NW103:goxB mutant strain. The goxB locus encodes a thioredoxin reductase. A deletion of the encoding gene in the N402 parent strain led to a high constitutive expression level of the GOx and the lactonase encoding genes required for the two-step conversion of glucose in gluconic acid and of the catR gene encoding catalase R. This high constitutive level of expression was observed to be irrespective of the carbon source and oxidative stress applied. A model clarifying the role of GoxB in the regulation of the expression of goxC involving hydrogen peroxide as second messenger is presented.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands.,Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | | | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|