1
|
Herkenhoff ME, Bovolenta LA, Broedel O, Dos Santos LD, de Oliveira AC, Chuffa LGA, Ribeiro ADO, Lupi LA, Dias MAD, Hilsdorf AWS, Frohme M, Pinhal D. Variant expression signatures of microRNAs and protein related to growth in a crossbreed between two strains of Nile tilapia (Oreochromis niloticus). Genomics 2021; 113:4303-4312. [PMID: 34774982 DOI: 10.1016/j.ygeno.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Nile tilapia (Oreochromis niloticus) is a species of worldwide importance for aquaculture. A crossbred lineage was developed through introgressive backcross breeding techniques and combines the high growth performance of the Chitralada (CHIT) lwith attractive reddish color of the Red Stirling (REDS) strains. Since the crossbreed has an unknown genetically improved background, the objective of this work was to characterize expression signatures that portray the advantageous phenotype of the crossbreeds. We characterized the microRNA transcriptome by high throughput sequencing (RNA-seq) and the proteome through mass spectrometry (ESI-Q-TOF-MS) and applied bioinformatics for the comparative analysis of such molecular data on the three strains. Crossbreed expressed a distinct set of miRNAs and proteins compared to the parents. They comprised several microRNAs regulate traits of economic interest. Proteomic profiles revealed differences between parental and crossbreed in expression of proteins associated with glycolisis. Distinctive miRNA and protein signatures contribute to the phenotype of crossbreed.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Lucilene D Dos Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arthur C de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz G A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Amanda de O Ribeiro
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz A Lupi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Marco A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Alexandre W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil.
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Hofmann J, Bitew MA, Kuba M, De Souza DP, Newton HJ, Sansom FM. Characterisation of putative lactate synthetic pathways of Coxiella burnetii. PLoS One 2021; 16:e0255925. [PMID: 34388185 PMCID: PMC8362950 DOI: 10.1371/journal.pone.0255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.
Collapse
Affiliation(s)
- Janine Hofmann
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
The Use of Galleria mellonella (Wax Moth) as an Infection Model for Group A Streptococcus. Methods Mol Biol 2021; 2136:279-286. [PMID: 32430829 DOI: 10.1007/978-1-0716-0467-0_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Recently, the use of Galleria mellonella larvae as a nonmammalian model to simulate bacterial infectious diseases has shown to be a rapid, simple, and cost-effective alternative. The insect's innate immune response is remarkably similar to that of the vertebrates, and consists of both the cellular and the humoral immune response. Here, we provide a protocol for using G. mellonella larvae to study virulence of GAS, including the use of a health score system for quantitative analysis and the methods for assessing post-infection bacterial burden in vivo.
Collapse
|
4
|
Su YC, Mattsson E, Singh B, Jalalvand F, Murphy TF, Riesbeck K. The Laminin Interactome: A Multifactorial Laminin-Binding Strategy by Nontypeable Haemophilus influenzae for Effective Adherence and Colonization. J Infect Dis 2020; 220:1049-1060. [PMID: 31034569 DOI: 10.1093/infdis/jiz217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Laminin is a well-defined component of the airway basement membrane (BM). Efficient binding of laminin via multiple interactions is important for nontypeable Haemophilus influenzae (NTHi) colonization in the airway mucosa. In this study, we identified elongation factor thermo-unstable (EF-Tu), l-lactate dehydrogenase (LDH), protein D (PD), and peptidoglycan-associated lipoprotein P6 as novel laminin-binding proteins (Lbps) of NTHi. In parallel with other well-studied Lbps (protein 4 [P4], protein E [PE], protein F [PF], and Haemophilus adhesion and penetration protein [Hap]), EF-Tu, LDH, PD, and P6 exhibited interactions with laminin, and mediated NTHi laminin-dependent adherence to pulmonary epithelial cell lines. More importantly, the NTHi laminin interactome consisting of the well-studied and novel Lbps recognized laminin LG domains from the subunit α chains of laminin-111 and -332, the latter isoform of which is the main laminin in the airway BM. The NTHi interactome mainly targeted multiple heparin-binding domains of laminin. In conclusion, the NTHi interactome exhibited a high plasticity of interactions with different laminin isoforms via multiple heparin-binding sites.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Emma Mattsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Dangel ML, Dettmann JC, Haßelbarth S, Krogull M, Schakat M, Kreikemeyer B, Fiedler T. The 5'-nucleotidase S5nA is dispensable for evasion of phagocytosis and biofilm formation in Streptococcus pyogenes. PLoS One 2019; 14:e0211074. [PMID: 30703118 PMCID: PMC6354987 DOI: 10.1371/journal.pone.0211074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/04/2022] Open
Abstract
5’-nucleotidases are widespread among all domains of life. The enzymes hydrolyze phosphate residues from nucleotides and nucleotide derivatives. In some pathobiontic bacteria, 5’-nucleotidases contribute to immune evasion by dephosphorylating adenosine mono-, di-, or tri-phosphates, thereby either decreasing the concentration of pro-inflammatory ATP or increasing the concentration of anti-inflammatory adenosine, both acting on purinergic receptors of phagocytic cells. The strict human pathogen Streptococcus pyogenes expresses a surface-associated 5’-nucleotidase (S5nA) under infection conditions that has previously been discussed as a potential virulence factor. Here we show that deletion of the S5nA gene does not significantly affect growth in human blood, evasion of phagocytosis by neutrophils, formation of biofilms and virulence in an infection model with larvae of the greater wax moth Galleria mellonella in S. pyogenes serotypes M6, M18 and M49. Hence, the surface-associated 5’-nucleotidase S5nA seems dispensable for evasion of phagocytosis and biofilm formation in S. pyogenes.
Collapse
Affiliation(s)
- Marcel-Lino Dangel
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Johann-Christoph Dettmann
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Steffi Haßelbarth
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Martin Krogull
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Miriam Schakat
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Bernd Kreikemeyer
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Tomas Fiedler
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
- * E-mail:
| |
Collapse
|