1
|
Li X, Zhou F, Li S, Wang Y, Fan J, Liang X, Peng Y, Jin Y, Jiang W, Liu F, Zhou Y, Liu S, Wang T, Peng Y, Xiong J, Liu J, Zhang J, He C, Zhang H, Li Y. Clinicopathologic study of mantle cell lymphoma with epstein-barr virus infection: A case series and literature review. Front Oncol 2022; 12:933964. [PMID: 35992854 PMCID: PMC9386618 DOI: 10.3389/fonc.2022.933964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Mantle cell lymphoma (MCL) with Epstein–Barr virus (EBV) infection is rarely reported. The objective of this study was to analyze the prevalence and clinicopathological features of MCL with EBV infection in the largest series thus far. Methods After screening 138 cases of MCL, we identified eight cases of MCL with EBV infection. Results Most of them (7/8) had non-neoplastic bystander cells with positivity for EBV and no expression of latent membrane protein 1 (LMP1) and EBV nuclear antigen 2 (EBNA2). The cases of MCL with EBER positivity did not have abnormal immune function or other lymphomas. Moreover, their histopathological morphology was indicative of classical MCL. Cases of MCL with EBER positivity exhibited statistically significant differences in lactate dehydrogenase, anemia status, and MCL international prognostic index grouping (P=0.008, P=0.02, P=0.001, and P=0.011, respectively). The differences between the two groups in age, sex ratio, clinical manifestations, and immunohistochemical phenotypes were not statistically significant. Conclusions The incidence of MCL with EBV infection was low (5.8%). Clinicopathologically, cases of MCL with EBER positivity were similar to their EBV-negative counterparts. Our findings revealed that most cells infected by EBV in MCL are background cells rather than tumor cells. This is inconsistent with data from previous studies, indicating that tumor cells in MCL may not be prone to EBV infection.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Fanlin Zhou
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shijie Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yangyang Wang
- Bioengineering College, Chongqing University, Chongqing, China
| | - Jianing Fan
- School of Medicine, Chongqing University, Chongqing, China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, China
| | - Yan Peng
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yudi Jin
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Weiyang Jiang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Fang Liu
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yixing Zhou
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuke Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Tao Wang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Peng
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jianbo Xiong
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jia Liu
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Zhang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Changqing He
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Zhang
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
- Bioengineering College, Chongqing University, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Yu Li,
| |
Collapse
|
2
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
3
|
Gu YY, Luo B, Li CY, Huang LS, Chen G, Feng ZB, Peng ZG. Expression and clinical significance of neuropilin-1 in Epstein-Barr virus-associated lymphomas. Cancer Biomark 2020; 25:259-273. [PMID: 31282408 DOI: 10.3233/cbm-192437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The expression of neuropilin-1 (NRP-1) in Epstein-Barr virus (EBV)-associated lymphomas and its relationships with clinicopathological parameters was investigated. METHODS The researchers compared 111 cases of patients with lymphoma to 20 cases of reactive lymphoid hyperplasia. In situ hybridization was applied to observe the expression of EBV-encoded RNA (EBER) in lymphomas, and immunohistochemistry was used to detect the NRP-1 expression in lymphoma tissues and lymph node tissues with reactive hyperplasia. RESULTS In these 111 cases, the EBER of 62 cases (55.9%) appeared positive. NRP-1 was relatively highly expressed in lymphomas (P= 0.019). Further, NRP-1 showed higher expression in lymphomas with positive EBER than in negative ones. A comprehensive analysis revealed that NRP-1 was differently expressed in NK/T-cell lymphoma, Hodgkin's lymphoma, diffuse large B-cell lymphoma, and anaplastic large cell lymphoma (P= 0.027). Moreover, highly expressed NRP-1 was found to be a useful independent prognostic factor in assessing overall survival and progression-free survival rates in cases of non-Hodgkin's lymphoma (NHL). CONCLUSIONS NRP-1 exhibited higher expression in lymphomas, and it was positively expressed in EBV-positive lymphomas. Moreover, highly expressed NRP-1 can be used as an undesirable independent prognostic factor in NHL.
Collapse
Affiliation(s)
- Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.,Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.,Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chun-Yao Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lan-Shan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|