1
|
Gajic I, Kekic D, Jankovic M, Tomic N, Skoric M, Petrovic M, Mitic Culafic D, Opavski N, Ristivojevic P, Krstic Ristivojevic M, Lukovic B. Nature's Arsenal: Uncovering Antibacterial Agents Against Antimicrobial Resistance. Antibiotics (Basel) 2025; 14:253. [PMID: 40149065 PMCID: PMC11939603 DOI: 10.3390/antibiotics14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance (AMR) poses a significant public health threat, leading to increased mortality. The World Health Organization has established a priority list highlighting critical multidrug-resistant (MDR) pathogens that demand urgent research on antimicrobial treatments. Considering this and the fact that new antibiotics are only sporadically approved, natural antibacterial agents have seen a resurgence in interest as potential alternatives to conventional antibiotics and chemotherapeutics. Natural antibacterials, derived from microorganisms, higher fungi, plants, animals, natural minerals, and food sources, offer diverse mechanisms of action against MDR pathogens. Here, we present a comprehensive summary of antibacterial agents from natural sources, including a brief history of their application and highlighting key strategies for using microorganisms (microbiopredators, such as bacteriophages), plant extracts and essential oils, minerals (e.g., silver and copper), as well as compounds of animal origin, such as milk or even venoms. The review also addresses the role of prebiotics, probiotics, and antimicrobial peptides, as well as novel formulations such as nanoparticles. The mechanisms of action of these compounds, such as terpenoids, alkaloids, and phenolic compounds, are explored alongside the challenges for their application, e.g., extraction, formulation, and pharmacokinetics. Conclusions: Future research should focus on developing eco-friendly, sustainable antimicrobial agents and validating their safety and efficacy through clinical trials. Clear regulatory frameworks are essential for integrating these agents into clinical practice. Despite challenges, natural sources offer transformative potential for combating AMR and promoting sustainable health solutions.
Collapse
Affiliation(s)
- Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Marko Jankovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Nina Tomic
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Mila Skoric
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Milos Petrovic
- University Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje”, Heroja Milana Tepića, 1, 11040 Belgrade, Serbia;
| | | | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Petar Ristivojevic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Maja Krstic Ristivojevic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Bojana Lukovic
- College of Health Sciences, Academy of Applied Studies Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
de Souza AN, Cardoso GDA, Nunes LO, Aisenbrey C, Salnikov E, de Souza KR, Saad A, de Lima ME, Resende JM, Bechinger B, Verly RM. Comparative Structural and Biophysical Investigation of Lycosa erythrognatha Toxin I (LyeTx I) and Its Analog LyeTx I-b. Antibiotics (Basel) 2025; 14:66. [PMID: 39858352 PMCID: PMC11762800 DOI: 10.3390/antibiotics14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider Lycosa erythrognatha, and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation and increased amphipathicty. Methods: To understand the mechanisms behind these enhanced properties, comparative analyses of the structural, topological, biophysical, and thermodynamic aspects of the interactions between each peptide and phospholipid bilayers were evaluated. Both peptides were isotopically labeled with 2H3-Ala and 15N-Leu to facilitate structural studies via NMR spectroscopy. Results: Circular dichroism and solid-state NMR analyses revealed that, while both peptides adopt α-helical conformations in membrane mimetic environments, LyeTx I-b exhibits a more amphipathic and extended helical structure, which correlates with its enhanced membrane interaction. The thermodynamic properties of the peptide-membrane interactions were quantitatively evaluated in the presence of phospholipid bilayers using ITC and DSC, highlighting a greater propensity of LyeTx I-b to disrupt lipid vesicles. Calcein release studies reveal that both peptides cause vesicle disruption, although DLS measurements and TEM imaging indicate distinct effects on phospholipid vesicle organization. While LyeTx I-b permeabilizes anionic membrane retaining the vesicle integrity, LyeTx I promotes significant vesicle agglutination. Furthermore, DSC and calcein release assays indicate that LyeTx I-b exhibits significantly lower cytotoxicity toward eukaryotic membranes compared to LyeTx I, suggesting greater selectivity for bacterial membranes. Conclusions: Our findings provide insights into the structural and functional modifications that enhance the antimicrobial and therapeutic potential of LyeTx I-b, offering valuable guidance for the design of novel peptides targeting resistant bacterial infections and cancer.
Collapse
Affiliation(s)
- Amanda Neves de Souza
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Diamantina 39100-000, MG, Brazil; (A.N.d.S.); (L.O.N.); (K.R.d.S.)
- Institut de Chimie, Université de Strasbourg, CNRS, UMR7177, 67000 Strasbourg, France; (C.A.); (E.S.); (A.S.); (B.B.)
| | - Gabriele de Azevedo Cardoso
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (G.d.A.C.); (J.M.R.)
| | - Lúcio Otávio Nunes
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Diamantina 39100-000, MG, Brazil; (A.N.d.S.); (L.O.N.); (K.R.d.S.)
| | - Christopher Aisenbrey
- Institut de Chimie, Université de Strasbourg, CNRS, UMR7177, 67000 Strasbourg, France; (C.A.); (E.S.); (A.S.); (B.B.)
| | - Evgeniy Salnikov
- Institut de Chimie, Université de Strasbourg, CNRS, UMR7177, 67000 Strasbourg, France; (C.A.); (E.S.); (A.S.); (B.B.)
| | - Kelton Rodrigues de Souza
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Diamantina 39100-000, MG, Brazil; (A.N.d.S.); (L.O.N.); (K.R.d.S.)
- Institut de Chimie, Université de Strasbourg, CNRS, UMR7177, 67000 Strasbourg, France; (C.A.); (E.S.); (A.S.); (B.B.)
| | - Ahmad Saad
- Institut de Chimie, Université de Strasbourg, CNRS, UMR7177, 67000 Strasbourg, France; (C.A.); (E.S.); (A.S.); (B.B.)
| | - Maria Elena de Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde Santa Casa de Belo Horizonte, Belo Horizonte 30150-221, MG, Brazil;
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (G.d.A.C.); (J.M.R.)
| | - Burkhard Bechinger
- Institut de Chimie, Université de Strasbourg, CNRS, UMR7177, 67000 Strasbourg, France; (C.A.); (E.S.); (A.S.); (B.B.)
- Institut Universitaire de France, 75005 Paris, France
| | - Rodrigo Moreira Verly
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Diamantina 39100-000, MG, Brazil; (A.N.d.S.); (L.O.N.); (K.R.d.S.)
| |
Collapse
|
3
|
Germoush MO, Fouda M, Mantargi MJS, Sarhan M, AlRashdi BM, Massoud D, Altyar AE, Abdel-Daim MM. Exploring the SARS-CoV-2 spike protein destabilizer toxin from the scorpion, spider, and wasp group of toxins as a promising candidate for the identification of pharmacophores against viral infections. Open Vet J 2025; 15:69-84. [PMID: 40092205 PMCID: PMC11910296 DOI: 10.5455/ovj.2024.v15.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/27/2024] [Indexed: 03/19/2025] Open
Abstract
Background The SARS-CoV-2 virus is the infectious agent that causes coronavirus illness (COVID-19). The majority of virus-infected individuals will recover without the need for special care after experiencing mild-to-moderate respiratory symptoms. Some people, nevertheless, will get quite sick and need medical help. The choice of COVID-19 treatment should be made individually. The severity of the illness and the chance that it will worsen will determine the decision. Therefore, developing more potent medications is always a primary goal. Finding more effective drugs is a top priority. In this regard, natural animal toxins, such as toxin derived from scorpions, spiders, and wasps, have been found to include compounds that have significant therapeutic properties. Specifically, targeting the spike protein which acts as a gateway for the vires to enter the human or animal cells. Aim This study focuses on the ability of toxins to destabilize the spike protein of the SARS-CoV-2 virus, which is responsible for the SARS-CoV-2 pandemic. Methods The active protein structure of the SARS-CoV-2, the toxins chosen obtained from the RCSB-protein data bank (PDB), and the molecular structures of toxins that were not proteins were either obtained from PubChem or downloaded as computer structure models from RCSB-PDB. Using molecular docking software such as "PyRx," analyzers such as "BIOVIA-Discovery studios" and "Pymol," and various techniques, the evaluation of the interactions between the spike protein and toxin was performed, to find possible pharmacophores that might serve as a foundation for upcoming medication development. The protein-ligand complex was put to test through the molecular dynamic (MD) simulation via visual molecular dynamics /nanoscale molecular dynamics application to determine the complex stability. Results The current research findings reveal intriguing binding affinities and interaction patterns between the toxin and the SARS-CoV-2 spike protein, where the complex was identified to be stable throughout the study resembling the cellular conditions via MD simulations. We discuss the implications of these interactions and how they might interfere viral infection and entry. Conclusion The current study sheds light on a promising avenue for the development of antiviral therapies, leveraging natural venoms as a source of inspiration for pharmacophore-based drug discovery opposing viral infections.
Collapse
Affiliation(s)
- Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maged Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammad J. S. Mantargi
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Moustafa Sarhan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Zoology, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | - Barakat M. AlRashdi
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Germoush MO, Fouda M, Mantargi MJS, Sarhan M, AlRashdi BM, Massoud D, Altyar AE, Abdel-Daim MM. Exploring the SARS-CoV-2 spike protein destabilizer toxin from the scorpion, spider, and wasp group of toxins as a promising candidate for the identification of pharmacophores against viral infections. Open Vet J 2025; 15:69-84. [PMID: 40092205 PMCID: PMC11910296 DOI: 10.5455/ovj.2025.v15.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/27/2024] [Indexed: 04/11/2025] Open
Abstract
Background The SARS-CoV-2 virus is the infectious agent that causes coronavirus illness (COVID-19). The majority of virus-infected individuals will recover without the need for special care after experiencing mild-to-moderate respiratory symptoms. Some people, nevertheless, will get quite sick and need medical help. The choice of COVID-19 treatment should be made individually. The severity of the illness and the chance that it will worsen will determine the decision. Therefore, developing more potent medications is always a primary goal. Finding more effective drugs is a top priority. In this regard, natural animal toxins, such as toxin derived from scorpions, spiders, and wasps, have been found to include compounds that have significant therapeutic properties. Specifically, targeting the spike protein which acts as a gateway for the vires to enter the human or animal cells. Aim This study focuses on the ability of toxins to destabilize the spike protein of the SARS-CoV-2 virus, which is responsible for the SARS-CoV-2 pandemic. Methods The active protein structure of the SARS-CoV-2, the toxins chosen obtained from the RCSB-protein data bank (PDB), and the molecular structures of toxins that were not proteins were either obtained from PubChem or downloaded as computer structure models from RCSB-PDB. Using molecular docking software such as "PyRx," analyzers such as "BIOVIA-Discovery studios" and "Pymol," and various techniques, the evaluation of the interactions between the spike protein and toxin was performed, to find possible pharmacophores that might serve as a foundation for upcoming medication development. The protein-ligand complex was put to test through the molecular dynamic (MD) simulation via visual molecular dynamics /nanoscale molecular dynamics application to determine the complex stability. Results The current research findings reveal intriguing binding affinities and interaction patterns between the toxin and the SARS-CoV-2 spike protein, where the complex was identified to be stable throughout the study resembling the cellular conditions via MD simulations. We discuss the implications of these interactions and how they might interfere viral infection and entry. Conclusion The current study sheds light on a promising avenue for the development of antiviral therapies, leveraging natural venoms as a source of inspiration for pharmacophore-based drug discovery opposing viral infections.
Collapse
Affiliation(s)
- Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maged Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammad J. S. Mantargi
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Moustafa Sarhan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Zoology, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | - Barakat M. AlRashdi
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Fuscaldi LL, Durante ACR, Dapueto R, Reyes AL, Paolino A, Savio E, Malavolta L, de Lima ME, Fernandes SOA, Cardoso VN, de Barboza MF. Antimicrobial peptide LyeTx I mn∆K labeled with 68Ga is a potential PET radiopharmaceutical for molecular imaging of infections. Nucl Med Biol 2024; 138-139:108966. [PMID: 39426352 DOI: 10.1016/j.nucmedbio.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Antimicrobial peptides have been radiolabeled and investigated as molecular diagnostic probes due to their propensity to accumulate in infectious sites rather than aseptic inflammatory lesions. LyeTx I is a cationic peptide from the venom of Lycosa erythrognatha, exhibiting significant antimicrobial activity. LyeTx I mn∆K is a shortened derivative of LyeTx I, with an optimized balance between antimicrobial and hemolytic activities. This study reports the first 68Ga-radiolabeling of the DOTA-modified LyeTx I mn∆K and primarily preclinical evaluations of [68Ga]Ga-DOTA(K)-LyeTx I mn∆K as a PET radiopharmaceutical for infection imaging. METHODS DOTA(K)-LyeTx I mn∆K was radiolabeled with freshly eluted 68Ga. Radiochemical yield (RCY), radiochemical purity (RCP), and radiochemical stability (in saline and serum) were evaluated using ascending thin-layer chromatography (TLC) and reversed-phase high-performance liquid chromatography (RP-HPLC). The radiopeptide's lipophilicity was assessed by determining the logarithm of the partition coefficient (Log P). Serum protein binding (SBP) and binding to Staphylococcus aureus (S. aureus) cells were determined in vitro. Ex vivo biodistribution studies and PET/CT imaging were conducted in healthy mice (control) and mice with infection and aseptic inflammation to evaluate the potential of [68Ga]Ga-DOTA(K)-LyeTx I mn∆K as a specific PET radiopharmaceutical for infections. RESULTS [68Ga]Ga-DOTA(K)-LyeTx I mn∆K was obtained with a high RCY (>90 %), and after purification through a Sep-Pak C18 cartridge, the RCP exceeded 99 %. Ascending TLC and RP-HPLC showed that the radiopeptide remained stable for up to 3.0 h in saline solution and up to 1.5 h in murine serum. [68Ga]Ga-DOTA(K)-LyeTx I mn∆K exhibited hydrophilic characteristics (Log P = -2.4 ± 0.1) and low SPB (ranging from 23.3 ± 0.4 % at 5 min of incubation to 10.5 ± 1.1 % at 60 min of incubation). The binding of [68Ga]Ga-DOTA(K)-LyeTx I mn∆K to S. aureus cells was proportional to bacterial concentration, with binding percentages of 8.8 ± 0.5 % (0.5 × 109 CFU.mL-1), 16.2 ± 1.4 % (1.0 × 109 CFU.mL-1), and 62.2 ± 0.6 % (5.0 × 109 CFU.mL-1). Ex vivo biodistribution studies and PET/CT images showed higher radiopeptide uptake at the infection site compared to the aseptic inflammation site; the latter was similar to the control group. Target-to-non-target (T/NT) ratios obtained by ex vivo biodistribution data were approximately 1.0, 1.3, and 3.0 at all investigated time intervals for the control, aseptic inflammation, and infection groups, respectively. Furthermore, T/NT ratios obtained from PET/CT images were 1.1 ± 0.1 for the control group and 1.4 ± 0.1 for the aseptic inflammation group. For the infection group, T/NT ratio was 5.0 ± 0.3, approximately 5 times greater compared to the former groups. CONCLUSIONS The results suggest the potential of [68Ga]Ga-DOTA(K)-LyeTx I mn∆K as a PET radiopharmaceutical for molecular imaging of infections.
Collapse
Affiliation(s)
- Leonardo Lima Fuscaldi
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil.
| | | | - Rosina Dapueto
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Ana Laura Reyes
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Andrea Paolino
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Eduardo Savio
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Luciana Malavolta
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
6
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
7
|
Samat R, Sen S, Jash M, Ghosh S, Garg S, Sarkar J, Ghosh S. Venom: A Promising Avenue for Antimicrobial Therapeutics. ACS Infect Dis 2024; 10:3098-3125. [PMID: 39137302 DOI: 10.1021/acsinfecdis.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venom in medicine is well documented in the chronicles of ancient Greece and the Roman Empire and persisted into the Renaissance and even into the modern era. Venoms were not always associated with detrimental consequences. Since ancient times, the curative capacity of venom has been recognized, portraying venom as a metaphor for pharmacy and medicine. Venom proteins and peptides' antimicrobial potential has not undergone systematic exploration despite the huge literature on natural antimicrobials. In light of the escalating challenge of antimicrobial resistance and the diminishing effectiveness of antibiotics, there is a pressing need for innovative antimicrobials capable of effectively addressing illnesses caused by multidrug-resistant microorganisms. This review adds to our understanding of the effectiveness of different venom components against a host of pathogenic microorganisms. The aim is to illuminate the various antimicrobials present in venom and venom peptides, thereby emphasizing the unexplored medicinal potential for antimicrobial properties. We have presented a concise summary of the molecular examination of the venom peptides' functioning processes, as well as the current clinical and preclinical progress of venom antimicrobial peptides.
Collapse
Affiliation(s)
- Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
8
|
Kaye AD, Greene D, Alvarez-Amado AV, Townsend HL, Forte M, Vasterling M, Hirsch JD, Howard J, Ahmadzadeh S, Willett O, Kaye AM, Shekoohi S, Varrassi G. Pathophysiology and Evolving Treatment Options of Septic Arthritis: A Narrative Review. Cureus 2024; 16:e65883. [PMID: 39219968 PMCID: PMC11364462 DOI: 10.7759/cureus.65883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Pyogenic (septic) arthritis is a severe joint infection characterized by the invasion of microorganisms into the synovium, causing inflammation and joint destruction. This review article provides a comprehensive overview of pyogenic arthritis, focusing on etiology, pathogenesis, clinical manifestations, diagnosis, and management strategies. This review explores routes of microbial entry into joints, emphasizing the importance of prompt identification and treatment to prevent irreversible joint damage. Clinical manifestations, such as joint pain, swelling, and limited range of motion, are discussed, along with the challenges in differentiating pyogenic arthritis from other joint disorders. Diagnostic approaches, including joint aspiration and imaging modalities, are critically examined for accuracy in confirming diagnosis. This review also addresses the significance of early intervention through antimicrobial therapy and joint drainage, highlighting the role of multidisciplinary collaboration in optimizing patient outcomes. In summary, the present investigation underscores the complexities of pyogenic arthritis and the need for a comprehensive understanding of pathophysiology for timely and effective management to improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Driskell Greene
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | | | - Horace L Townsend
- School of Medicine, American University of the Caribbean, Cupecoy, SXM
| | - Michael Forte
- School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, USA
| | - Megan Vasterling
- School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, USA
| | - Jon D Hirsch
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jeffrey Howard
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Olga Willett
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
9
|
Lima WG, Brito JCM, Verly RM, de Lima ME. Jelleine, a Family of Peptides Isolated from the Royal Jelly of the Honey Bees ( Apis mellifera), as a Promising Prototype for New Medicines: A Narrative Review. Toxins (Basel) 2024; 16:24. [PMID: 38251241 PMCID: PMC10819630 DOI: 10.3390/toxins16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The jelleine family is a group of four peptides (jelleines I-IV) originally isolated from the royal jelly of honey bee (Apis mellifera), but later detected in some honey samples. These oligopeptides are composed of 8-9 amino acid residues, positively charged (+2 to +3 at pH 7.2), including 38-50% of hydrophobic residues and a carboxamide C-terminus. Jelleines, generated by processing of the C-terminal region of major royal jelly proteins 1 (MRJP-1), play an important biological role in royal jelly conservation as well as in protecting bee larvae from potential pathogens. Therefore, these molecules present numerous benefits for human health, including therapeutic purposes as shown in preclinical studies. In this review, we aimed to evaluate the biological effects of jelleines in addition to characterising their toxicities and stabilities. Jelleines I-III have promising antimicrobial activity and low toxicity (LD50 > 1000 mg/Kg). However, jelleine-IV has not shown relevant biological potential. Jelleine-I, but not the other analogues, also has antiparasitic, healing, and pro-coagulant activities in addition to indirectly modulating tumor cell growth and controlling the inflammatory process. Although it is sensitive to hydrolysis by proteases, the addition of halogens increases the chemical stability of these molecules. Thus, these results suggest that jelleines, especially jelleine-I, are a potential target for the development of new, effective and safe therapeutic molecules for clinical use.
Collapse
Affiliation(s)
- William Gustavo Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde da Santa Casa de Belo Horizonte, Avenida dos Andradas, 2688, Santa Efigênia, Belo Horizonte 30110-005, MG, Brazil;
| | - Julio Cesar Moreira Brito
- Fundação Ezequiel Dias (FUNED), Rua Conde Pereira Carneiro, 8, Gameleira, Belo Horizonte 30510-010, MG, Brazil;
| | - Rodrigo Moreira Verly
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367, 5000, Auto da Jacuba, Diamantina 39100-000, MG, Brazil;
| | - Maria Elena de Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde da Santa Casa de Belo Horizonte, Avenida dos Andradas, 2688, Santa Efigênia, Belo Horizonte 30110-005, MG, Brazil;
| |
Collapse
|
10
|
Richards NJ, Alqallaf A, Mitchell RD, Parnell A, Haidar HB, Almeida JR, Williams J, Vijayakumar P, Balogun A, Matsakas A, Trim SA, Patel K, Vaiyapuri S. Indian Ornamental Tarantula ( Poecilotheria regalis) Venom Affects Myoblast Function and Causes Skeletal Muscle Damage. Cells 2023; 12:2074. [PMID: 37626884 PMCID: PMC10453882 DOI: 10.3390/cells12162074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Envenomation by the Indian ornamental tarantula (Poecilotheria regalis) is medically relevant to humans, both in its native India and worldwide, where they are kept as pets. Muscle-related symptoms such as cramps and pain are commonly reported in humans following envenomation by this species. There is no specific treatment, including antivenom, for its envenomation. Moreover, the scientific knowledge of the impact of this venom on skeletal muscle function is highly limited. Therefore, we carried out this study to better understand the myotoxic properties of Poecilotheria regalis venom by determining its effects in cultured myoblasts and in the tibialis anterior muscle in mice. While there was no effect found on undifferentiated myoblasts, the venom affected differentiated multinucleated myotubes resulting in the reduction of fusion and atrophy of myotubes. Similarly, intramuscular administration of this venom in the tibialis anterior muscle in mice resulted in extensive muscle damage on day 5. However, by day 10, the regeneration was evident, and the regeneration process continued until day 20. Nevertheless, some tissue abnormalities including reduced dystrophin expression and microthrombi presence were observed on day 20. Overall, this study demonstrates the ability of this venom to induce significant muscle damage and affect its regeneration in the early stages. These data provide novel mechanistic insights into this venom-induced muscle damage and guide future studies to isolate and characterise individual toxic component(s) that induce muscle damage and their significance in developing better therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Richards
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - Ali Alqallaf
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
- Medical Services Authority, Ministry of Defence, Kuwait City 13012, Kuwait
| | | | - Andrew Parnell
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
- Micregen Ltd., Thames Valley Science Park, Reading RG2 9LH, UK;
| | - Husain Bin Haidar
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Pradeep Vijayakumar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Adedoyin Balogun
- Molecular Physiology Laboratory, Centre for Biomedicine, Hull York Medical School, Hull HU6 7RX, UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Biomedicine, Hull York Medical School, Hull HU6 7RX, UK
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| |
Collapse
|
11
|
Moreira Brito JC, Carvalho LR, Neves de Souza A, Carneiro G, Magalhães PP, Farias LM, Guimarães NR, Verly RM, Resende JM, Elena de Lima M. PEGylation of the antimicrobial peptide LyeTx I-b maintains structure-related biological properties and improves selectivity. Front Mol Biosci 2022; 9:1001508. [PMID: 36310605 PMCID: PMC9611540 DOI: 10.3389/fmolb.2022.1001508] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 07/31/2023] Open
Abstract
The biological activity of antimicrobial peptides and proteins is closely related to their structural aspects and is sensitive to certain post-translational modifications such as glycosylation, lipidation and PEGylation. However, PEGylation of protein and peptide drugs has expanded in recent years due to the reduction of their toxicity. Due to their size, the PEGylation process can either preserve or compromise the overall structure of these biopolymers and their biological properties. The antimicrobial peptide LyeTx I-bcys was synthesized by Fmoc strategy and coupled to polyethylene glycol 2.0 kDa. The conjugates were purified by HPLC and characterized by MALDI-ToF-MS analysis. Microbiological assays with LyeTx I-bcys and LyeTx I-bPEG were performed against Staphylococcus aureus (ATCC 33591) and Escherichia coli (ATCC 25922) in liquid medium. MIC values of 2.0 and 1.0 µM for LyeTx I-bcys and 8.0 and 4.0 µM for LyeTx I-bPEG were observed against S. aureus and E. coli, respectively. PEGylation of LyeTx I-bcys (LyeTx I-bPEG) decreased the cytotoxicity determined by MTT method for VERO cells compared to the non-PEGylated peptide. In addition, structural and biophysical studies were performed to evaluate the effects of PEGylation on the nature of peptide-membrane interactions. Surface Plasmon Resonance experiments showed that LyeTx I-b binds to anionic membranes with an association constant twice higher than the PEGylated form. The three-dimensional NMR structures of LyeTx I-bcys and LyeTx I-bPEG were determined and compared with the LyeTx I-b structure, and the hydrodynamic diameter and zeta potential of POPC:POPG vesicles were similar upon the addition of both peptides. The mPEG-MAL conjugation of LyeTx I-bcys gave epimers, and it, together with LyeTx I-bPEG, showed clear α-helical profiles. While LyeTx I-bcys showed no significant change in amphipathicity compared to LyeTx I-b, LyeTx I-bPEG was found to have a slightly less clear separation between hydrophilic and hydrophobic faces. However, the similar conformational freedom of LyeTx I-b and LyeTx I-bPEG suggests that PEGylation does not cause significant structural changes. Overall, our structural and biophysical studies indicate that the PEGylation does not alter the mode of peptide interaction and maintains antimicrobial activity while minimizing tissue toxicity, which confirmed previous results obtained in vivo. Interestingly, significantly improved proteolytic resistance to trypsin and proteinase K was observed after PEGylation.
Collapse
Affiliation(s)
| | - Lucas Raposo Carvalho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Amanda Neves de Souza
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Guilherme Carneiro
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Paula Prazeres Magalhães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz Macêdo Farias
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália Rocha Guimarães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Moreira Verly
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Elena de Lima
- Programa de Pós-graduação em Medicina e Biomedicina da Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| |
Collapse
|
12
|
de Avelar Júnior JT, Lima-Batista E, Castro Junior CJ, Pimenta AMDC, Dos Santos RG, Souza-Fagundes EM, De Lima ME. LyeTxI-b, a Synthetic Peptide Derived From a Spider Venom, Is Highly Active in Triple-Negative Breast Cancer Cells and Acts Synergistically With Cisplatin. Front Mol Biosci 2022; 9:876833. [PMID: 35601827 PMCID: PMC9114809 DOI: 10.3389/fmolb.2022.876833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer that affects women globally and is among the leading cause of women’s death. Triple-negative breast cancer is more difficult to treat because hormone therapy is not available for this subset of cancer. The well-established therapy against triple-negative breast cancer is mainly based on surgery, chemotherapy, and immunotherapy. Among the drugs used in the therapy are cisplatin and carboplatin. However, they cause severe toxicity to the kidneys and brain and cause nausea. Therefore, it is urgent to propose new chemotherapy techniques that provide new treatment options to patients affected by this disease. Nowadays, peptide drugs are emerging as a class of promising new anticancer agents due to their lytic nature and, apparently, a minor drug resistance compared to other conventional drugs (reviewed in Jafari et al., 2022). We have recently reported the cytotoxic effect of the antimicrobial peptide LyeTx I-b against glioblastoma cells (Abdel-Salam et al., 2019). In this research, we demonstrated the cytotoxic effect of the peptide LyeTx I-b, alone and combined with cisplatin, against triple-negative cell lines (MDA-MD-231). LyeTx-I-b showed a selectivity index 70-fold higher than cisplatin. The peptide:cisplatin combination (P:C) 1:1 presented a synergistic effect on the cell death and a selective index value 16 times greater than the cisplatin alone treatment. Therefore, an equi-effective reduction of cisplatin can be reached in the presence of LyeTx I-b. Cells treated with P:C combinations were arrested in the G2/M cell cycle phase and showed positive staining for acridine orange, which was inhibited by bafilomycin A1, indicating autophagic cell death (ACD) as a probable cell death mechanism. Furthermore, Western blot experiments indicated a decrease in P21 expression and AKT phosphorylation. The decrease in AKT phosphorylation is indicative of ACD. However, other studies are still necessary to better elucidate the pathways involved in the cell death mechanism induced by the peptide and the drug combinations. These findings confirmed that the peptide LyeTx I-b seems to be a good candidate for combined chemotherapy to treat breast cancer. In addition, in vivo studies are essential to validate the use of LyeTx I-b as a therapeutic drug candidate, alone and/or combined with cisplatin.
Collapse
Affiliation(s)
- Joaquim Teixeira de Avelar Júnior
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Joaquim Teixeira de Avelar Júnior, ; Maria Elena De Lima,
| | - Edleusa Lima-Batista
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Célio José Castro Junior
- Programa de Pós-Graduação em Medicina e Biomedicina da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | | | | | - Elaine Maria Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Elena De Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Medicina e Biomedicina da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
- *Correspondence: Joaquim Teixeira de Avelar Júnior, ; Maria Elena De Lima,
| |
Collapse
|
13
|
da Silva CN, Dourado LFN, Silva LM, de Lima AB, de Lima ME, Silva-Cunha A, Fialho SL. Pathophysiological Effects of Lycosa erythrognatha Derived Peptide LyeTxI-b on RKO-AS-45-1 Colorectal Carcinoma Cell Line Using the Chicken Chorioallantoic Membrane Model. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
César Moreira Brito J, Gustavo Lima W, Magalhães Resende J, Cristina Sampaio de Assis D, Boff D, Nascimento Cardoso V, Almeida Amaral F, Maria Souza-Fagundes E, Odília Antunes Fernandes S, Elena de Lima M. Pegylated LyeTx I-b peptide is effective against carbapenem-resistant Acinetobacter baumannii in an in vivo model of pneumonia and shows reduced toxicity. Int J Pharm 2021; 609:121156. [PMID: 34624440 DOI: 10.1016/j.ijpharm.2021.121156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
The World Health Organization (WHO) has been warning about the importance of developing new drugs against superbugs. Antimicrobial peptides are an alternative in this context, most of them being involved in innate immunity, acting in various ways, and some even showing synergism with commercial antimicrobial agents. LyeTx I-b is a synthetic peptide derived from native LyeTx I, originally isolated from Lycosa erythrognatha spider venom. Although LyeTx I-b is active against several multidrug-resistant bacteria, it shows some hemolytic and cytotoxic effects. To overcome this hindrance, in the present study we PEGylated LyeTx I-b and evaluated its toxicity and in vitro and in vivo activities on pneumonia caused by multi-resistant Acinetobacter baumannii. PEGylated LyeTx I-b (LyeTx I-bPEG) maintained the same MIC value as the non- PEGylated peptide, showed anti-biofilm activity, synergistic effect with commercial antimicrobial agents, and did not induce resistance. Moreover, in vivo experiments showed its activity against pneumonia. Additionally, LyeTx I-bPEG reduced hemolysis up to 10 times, was approximately 2 times less cytotoxic to HEK-293 cells and 4 times less toxic to mice in acute toxicity models, compared to LyeTx I-b. Our results show LyeTx I-bPEG as a promising antimicrobial candidate, significantly active against pneumonia caused by multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Júlio César Moreira Brito
- Programa de Inovação Tecnológica e Biofarmacêutica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil.
| | - William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora Cristina Sampaio de Assis
- Escola de Veterinária, Departamento de Inspeção Sanitária, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Daiane Boff
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Maria Souza-Fagundes
- Programa de Inovação Tecnológica e Biofarmacêutica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Elena de Lima
- Programa de Inovação Tecnológica e Biofarmacêutica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; Faculdade Santa Casa de Belo Horizonte: Programa de Pós-Graduação em Medicina-Biomedicina, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Fischer T, Riedl R. Paracelsus' legacy in the faunal realm: Drugs deriving from animal toxins. Drug Discov Today 2021; 27:567-575. [PMID: 34678490 DOI: 10.1016/j.drudis.2021.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Given the vast number of venomous and poisonous animals, it is surprising that only relatively few animal-derived toxins have been explored and made their way into marketed drugs or are being investigated in ongoing clinical trials. In this review, we highlight marketed drugs deriving from animal toxins as well as ongoing clinical trials and preclinical investigations in the field. We emphasize that more attention should be paid to the rich supply of candidates that nature provides as valuable starting points for addressing serious unmet medical needs.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
16
|
Abdel-Salam MAL, Pinto B, Cassali G, Bueno L, Pêgas G, Oliveira F, Silva I, Klein A, de Souza-Fagundes EM, de Lima ME, Carvalho-Tavares J. LyeTx I-b Peptide Attenuates Tumor Burden and Metastasis in a Mouse 4T1 Breast Cancer Model. Antibiotics (Basel) 2021; 10:1136. [PMID: 34572719 PMCID: PMC8466574 DOI: 10.3390/antibiotics10091136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Cationic anticancer peptides have exhibited potent anti-proliferative and anti-inflammatory effects in neoplastic illness conditions. LyeTx I-b is a synthetic peptide derived from Lycosa erythrognatha spider venom that previously showed antibiotic activity in vitro and in vivo. This study focused on the effects of LyeTxI-b on a 4T1 mouse mammary carcinoma model. Mice with a palpable tumor in the left flank were subcutaneously or intratumorally injected with LyeTx I-b (5 mg/kg), which significantly decreased the tumor volume and metastatic nodules. Histological analyses showed a large necrotic area in treated primary tumors compared to the control. LyeTxI-b reduced tumor growth and lung metastasis in the 4T1 mouse mammary carcinoma model with no signs of toxicity in healthy or cancerous mice. The mechanism of action of LyeTx I-b on the 4T1 mouse mammary carcinoma model was evaluated in vitro and is associated with induction of apoptosis and cell proliferation inhibition. Furthermore, LyeTx I-b seems to be an efficient regulator of the 4T1 tumor microenvironment by modulating several cytokines, such as TGF-β, TNF-α, IL-1β, IL-6, and IL-10, in primary tumor and lung, spleen, and brain. LyeTx I-b also plays a role in leukocytes rolling and adhesion into spinal cord microcirculation and in the number of circulating leukocytes. These data suggest a potent antineoplastic efficacy ofLyeTx I-b.
Collapse
Affiliation(s)
- Mostafa A. L. Abdel-Salam
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.L.A.-S.); (B.P.); (E.M.d.S.-F.)
| | - Bárbara Pinto
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.L.A.-S.); (B.P.); (E.M.d.S.-F.)
| | - Geovanni Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.C.); (G.P.); (F.O.)
| | - Lilian Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Gabriela Pêgas
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.C.); (G.P.); (F.O.)
| | - Fabrício Oliveira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.C.); (G.P.); (F.O.)
| | - Irismara Silva
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.S.); (A.K.)
| | - André Klein
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.S.); (A.K.)
| | - Elaine Maria de Souza-Fagundes
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.L.A.-S.); (B.P.); (E.M.d.S.-F.)
| | - Maria Elena de Lima
- Programa de Pós-Graduação em Medicina-Biomedicina, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30110-005, Brazil
| | - Juliana Carvalho-Tavares
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.L.A.-S.); (B.P.); (E.M.d.S.-F.)
| |
Collapse
|
17
|
Kuhn-Nentwig L, Lischer HEL, Pekár S, Langenegger N, Albo MJ, Isaia M, Nentwig W. Linear Peptides-A Combinatorial Innovation in the Venom of Some Modern Spiders. Front Mol Biosci 2021; 8:705141. [PMID: 34295924 PMCID: PMC8290080 DOI: 10.3389/fmolb.2021.705141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
In the venom of spiders, linear peptides (LPs), also called cytolytical or antimicrobial peptides, represent a largely neglected group of mostly membrane active substances that contribute in some spider species considerably to the killing power of spider venom. By next-generation sequencing venom gland transcriptome analysis, we investigated 48 spider species from 23 spider families and detected LPs in 20 species, belonging to five spider families (Ctenidae, Lycosidae, Oxyopidae, Pisauridae, and Zodariidae). The structural diversity is extraordinary high in some species: the lynx spider Oxyopes heterophthalmus contains 62 and the lycosid Pardosa palustris 60 different LPs. In total, we identified 524 linear peptide structures and some of them are in lycosids identical on amino acid level. LPs are mainly encoded in complex precursor structures in which, after the signal peptide and propeptide, 13 or more LPs (Hogna radiata) are connected by linkers. Besides Cupiennius species, also in Oxyopidae, posttranslational modifications of some precursor structures result in the formation of two-chain peptides. It is obvious that complex precursor structures represent a very suitable and fast method to produce a high number and a high diversity of bioactive LPs as economically as possible. At least in Lycosidae, Oxyopidae, and in the genus Cupiennius, LPs reach very high Transcripts Per Kilobase Million values, indicating functional importance within the envenomation process.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Heidi E. L. Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Maria J. Albo
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Marco Isaia
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Torino, Torino, Italy
| | - Wolfgang Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Wang J, Wang L. Novel therapeutic interventions towards improved management of septic arthritis. BMC Musculoskelet Disord 2021; 22:530. [PMID: 34107951 PMCID: PMC8191206 DOI: 10.1186/s12891-021-04383-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Septic arthritis (SA) represents a medical emergency that needs immediate diagnosis and urgent treatment. Despite aggressive treatment and rapid diagnosis of the causative agent, the mortality and lifelong disability, associated with septic arthritis remain high as close to 11%. Moreover, with the rise in drug resistance, the rates of failure of conventional antibiotic therapy have also increased. Among the etiological agents frequently isolated from cases of septic arthritis, Staphylococcus aureus emerges as a dominating pathogen, and to worsen, the rise in methicillin-resistant S. aureus (MRSA) isolates in bone and joint infections is worrisome. MRSA associated cases of septic arthritis exhibit higher mortality, longer hospital stay, and higher treatment failure with poorer clinical outcomes as compared to cases caused by the sensitive strain i.e methicillin-sensitive S. aureus (MSSA). In addition to this, equal or even greater damage is imposed by the exacerbated immune response mounted by the patient’s body in a futile attempt to eradicate the bacteria. The antibiotic therapy may not be sufficient enough to control the progression of damage to the joint involved thus, adding to higher mortality and disability rates despite the prompt and timely start of treatment. This situation implies that efforts and focus towards studying/understanding new strategies for improved management of sepsis arthritis is prudent and worth exploring. The review article aims to give a complete insight into the new therapeutic approaches studied by workers lately in this field. To the best of our knowledge studies highlighting the novel therapeutic strategies against septic arthritis are limited in the literature, although articles on pathogenic mechanism and choice of antibiotics for therapy, current treatment algorithms followed have been discussed by workers in the past. The present study presents and discusses the new alternative approaches, their mechanism of action, proof of concept, and work done so far towards their clinical success. This will surely help to enlighten the researchers with comprehensive knowledge of the new interventions that can be used as an adjunct therapy along with conventional treatment protocol for improved success rates.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nursing, The Third Hospital of Jinan, Shandong Province, Jinan, 250132, China.
| | - Liucai Wang
- Hand and Foot Surgery, Shandong Provincial Hospital, Jinan, 250000, China
| |
Collapse
|
19
|
Reis PVM, Lima VM, Souza KR, Cardoso GA, Melo-Braga MN, Santos DM, Verly RM, Pimenta AMC, Dos Santos VL, de Lima ME. Synthetic Peptides Derived From Lycosa Erythrognatha Venom: Interaction With Phospholipid Membranes and Activity Against Resistant Bacteria. Front Mol Biosci 2021; 8:680940. [PMID: 34169094 PMCID: PMC8217815 DOI: 10.3389/fmolb.2021.680940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of μmol L−1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.
Collapse
Affiliation(s)
- Pablo V M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius M Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kelton R Souza
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Gabriele A Cardoso
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel M Santos
- Departamento de Bioquímica e Biologia Molecular, Campos Centro Oeste. Universidade Federal de São João Del-Rei, Diamantina, Brazil
| | - Rodrigo M Verly
- Departamento de Química, FACET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - Campus JK, Diamantina, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vera Lúcia Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Faculdade Santa Casa de Belo Horizonte, Programa de Pós-Graduação em Medicina - Biomedicina, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Li D, Yang Y, Li R, Huang L, Wang Z, Deng Q, Dong S. N-terminal acetylation of antimicrobial peptide L163 improves its stability against protease degradation. J Pept Sci 2021; 27:e3337. [PMID: 33987904 DOI: 10.1002/psc.3337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022]
Abstract
Antimicrobial peptide L163 was computationally designed by our laboratory; L163 is active against multidrug-resistant (MDR) bacteria but is easily degraded in the plasma and by trypsin. Amino acid substitution, cyclization, and amino-terminal (N-terminal) acetylation were performed to obtain L163 analogs with high stability in the plasma and in trypsin solutions. The stability, antimicrobial activity, and biosafety of L163 and its analogs were investigated. Comparison with unmodified L163 indicated that N-terminal acetylation enhanced the stability against pH, plasma, and trypsin degradation, and phenylalanine (Phe) substitution for leucine (Leu) and cysteine bridge (S-S) cyclization decreased the stability. N-terminal acetylation also enhanced antimicrobial activity against MDR Streptococcus Sc181, Listeria monocytogenes, and Enterococcus E1478F; did not change the activity against MDR Staphylococcus aureus 9, Staphylococcus sciuri P254, and Staphylococcus aureus RN4220; and decreased the activity against Candida tropicalis, Candida albicans, and Enterococcus faecalis Fbc35. Phe substitution for Leu and S-S cyclization decreased the antimicrobial activity. The negative effect of these modifications was detected against biofilm formation by the tested microbial strains. Comparison of Phe substitution for Leu and S-S cyclization indicated that N-terminally acetylated L163 (L163-Ac) is the best candidate. L163-Ac peptide had the highest antibacterial activity and enhanced tolerance to temperature, pH, plasma, and trypsin and low toxicity.
Collapse
Affiliation(s)
- Dandan Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yanhui Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Liang Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Qiwu Deng
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibo Dong
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
21
|
Daniele-Silva A, Rodrigues SDCS, Dos Santos ECG, Queiroz Neto MFD, Rocha HADO, Silva-Júnior AAD, Resende JM, Araújo RM, Fernandes-Pedrosa MDF. NMR three-dimensional structure of the cationic peptide Stigmurin from Tityus stigmurus scorpion venom: In vitro antioxidant and in vivo antibacterial and healing activity. Peptides 2021; 137:170478. [PMID: 33359395 DOI: 10.1016/j.peptides.2020.170478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/05/2023]
Abstract
Infectious diseases and the rapid development of pathogens resistant to conventional drugs are a serious global public health problem, which motivates the search for new pharmacological agents. In this context, cationic peptides without disulfide bridges from different species of scorpion venom have been the target of scientific studies due to their multifunctional activities. Stigmurin is a linear peptide composed of 17 amino acid residues (Phe-Phe-Ser-Leu-Ile-Pro-Ser-Leu-Val-Gly-Gly-Leu-Ile-Ser-Ala-Phe-Lys-NH2), which is present in the venom gland of the scorpion Tityus stigmurus. Here we present investigations of the in vitro antioxidant action of Stigmurin together with the in vivo antibacterial and healing activity of this peptide in a wound infection model induced by Staphylococcus aureus. In addition, we have reports for the first time of the three-dimensional structure determined by NMR spectroscopy of a peptide without disulfide bridges present in scorpion venom from the Tityus genus. Stigmurin showed hydroxyl radical scavenging above 70 % at 10 μM and antibiotic action in the skin wound, reducing the number of viable microorganisms by 67.2 % on the 7 day after infection. Stigmurin (1 μg / μL) increased the retraction rate of the lesion, with wound area reduction of 43 % on the second day after skin injury, which indicates its ability to induce tissue repair. Stigmurin in trifluoroethanol:water exhibited a random conformation at the N-terminus region (Phe1 to Pro6), with a helical structure from Ser7 to Phe16. This structural information, allied with the multifunctional activity of Stigmurin, makes it an attractive candidate for the design of novel therapeutic agents.
Collapse
Affiliation(s)
- Alessandra Daniele-Silva
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Suedson de Carvalho Silva Rodrigues
- Laboratório de Isolamento e Síntese de Compostos Orgânicos, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Moacir Fernandes de Queiroz Neto
- Laboratório de Biotecnologia de Polímeros Naturais, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Hugo Alexandre de Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Arnóbio Antônio da Silva-Júnior
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Jarbas Magalhães Resende
- Laboratório de Síntese e Estrutura de Peptídeos, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renata Mendonça Araújo
- Laboratório de Isolamento e Síntese de Compostos Orgânicos, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
22
|
Kuhn-Nentwig L. Complex precursor structures of cytolytic cupiennins identified in spider venom gland transcriptomes. Sci Rep 2021; 11:4009. [PMID: 33597701 PMCID: PMC7889660 DOI: 10.1038/s41598-021-83624-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of spider venom gland transcriptomes focuses on the identification of possible neurotoxins, proteins and enzymes. Here, the first comprehensive transcriptome analysis of cupiennins, small linear cationic peptides, also known as cytolytic or antimicrobial peptides, is reported from the venom gland transcriptome of Cupiennius salei by 454- and Illumina 3000 sequencing. Four transcript families with complex precursor structures are responsible for the expression of 179 linear peptides. Within the transcript families, after an anionic propeptide, cationic linear peptides are separated by anionic linkers, which are transcript family specific. The C-terminus of the transcript families is characterized by a linear peptide or truncated linkers with unknown function. A new identified posttranslational processing mechanism explains the presence of the two-chain CsTx-16 family in the venom. The high diversity of linear peptides in the venom of a spider and this unique synthesis process is at least genus specific as verified with Cupiennius getazi.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.
| |
Collapse
|
23
|
Fuscaldi LL, de Avelar Júnior JT, dos Santos DM, Boff D, de Oliveira VLS, Gomes KAGG, Cruz RDC, de Oliveira PL, Magalhães PP, Cisalpino PS, Farias LDM, de Souza-Fagundes EM, Delp J, Leist M, Resende JM, Amaral FA, Pimenta AMDC, Fernandes SOA, Cardoso VN, de Lima ME. Shortened derivatives from native antimicrobial peptide LyeTx I: In vitro and in vivo biological activity assessment. Exp Biol Med (Maywood) 2021; 246:414-425. [PMID: 33175610 PMCID: PMC7885047 DOI: 10.1177/1535370220966963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2020] [Indexed: 11/15/2022] Open
Abstract
In the continuing search for novel antibiotics, antimicrobial peptides are promising molecules, due to different mechanisms of action compared to classic antibiotics and to their selectivity for interaction with microorganism cells rather than with mammalian cells. Previously, our research group has isolated the antimicrobial peptide LyeTx I from the venom of the spider Lycosa erythrognatha. Here, we proposed to synthesize three novel shortened derivatives from LyeTx I (LyeTx I mn; LyeTx I mnΔK; LyeTx I mnΔKAc) and to evaluate their toxicity and biological activity as potential antimicrobial agents. Peptides were synthetized by Fmoc strategy and circular dichroism analysis was performed, showing that the three novel shortened derivatives may present membranolytic activity, like the original LyeTx I, once they folded as an alpha helix in 2.2.2-trifluorethanol and sodium dodecyl sulfate. In vitro assays revealed that the shortened derivative LyeTx I mnΔK presents the best score between antimicrobial (↓ MIC) and hemolytic (↑ EC50) activities among the synthetized shortened derivatives, and LUHMES cell-based NeuriTox test showed that it is less neurotoxic than the original LyeTx I (EC50 [LyeTx I mnΔK] ⋙ EC50 [LyeTx I]). In vivo data, obtained in a mouse model of septic arthritis induced by Staphylococcus aureus, showed that LyeTx I mnΔK is able to reduce infection, as demonstrated by bacterial recovery assay (∼10-fold reduction) and scintigraphic imaging (less technetium-99m labeled-Ceftizoxime uptake by infectious site). Infection reduction led to inflammatory process and pain decreases, as shown by immune cells recruitment reduction and threshold nociception increment, when compared to positive control group. Therefore, among the three shortened peptide derivatives, LyeTx I mnΔK is the best candidate as antimicrobial agent, due to its smaller amino acid sequence and toxicity, and its greater biological activity.
Collapse
Affiliation(s)
- Leonardo Lima Fuscaldi
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Joaquim Teixeira de Avelar Júnior
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Daniel Moreira dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Daiane Boff
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Vívian Louise Soares de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Karla Aparecida Guimarães Gusmão Gomes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Rosana de Carvalho Cruz
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Patrícia Luciana de Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Paula Prazeres Magalhães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Patricia Silva Cisalpino
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Luiz de Macêdo Farias
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Elaine Maria de Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Johannes Delp
- In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz 78457, Germany
- Cooperative Doctorate College InViTe, University of Konstanz, Konstanz 78457, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz 78457, Germany
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, R. Domingos Vieira, 590, Belo Horizonte, MG 30150-242, Brazil
| |
Collapse
|
24
|
Melo-Braga MN, De Marco Almeida F, Dos Santos DM, de Avelar Júnior JT, Dos Reis PVM, de Lima ME. Antimicrobial Peptides From Lycosidae (Sundevall, 1833) Spiders. Curr Protein Pept Sci 2021; 21:527-541. [PMID: 31951167 DOI: 10.2174/1389203721666200116091911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 01/27/2023]
Abstract
Antimicrobial peptides (AMPs) have been found in all organism taxa and may play an essential role as a host defense system. AMPs are organized in various conformations, such as linear peptides, disulfide bond-linked peptides, backbone-linked peptides and circular peptides. AMPs apparently act primarily on the plasma membrane, although an increasing number of works have shown that they may also target various intracellular sites. Spider venoms are rich sources of biomolecules that show several activities, including modulation or blockage of ion channels, anti-insect, anti-cancer, antihypertensive and antimicrobial activities, among others. In spider venoms from the Lycosidae family there are many linear AMPs with a wide range of activities against several microorganisms. Due to these singular activities, some Lycosidae AMPs have been modified to improve or decrease desirable or undesirable effects, respectively. Such modifications, especially with the aim of increasing their antibiotic activity, have led to the filing of many patent applications. This review explores the abundance of Lycosidae venom AMPs and some of their derivatives, and their use as new drug models.
Collapse
Affiliation(s)
- Marcella Nunes Melo-Braga
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia De Marco Almeida
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joaquim Teixeira de Avelar Júnior
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pablo Victor Mendes Dos Reis
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Santa Casa-Belo Horizonte: Ensino e Pesquisa, Belo Horizonte, MG, Brazil
| |
Collapse
|
25
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
26
|
Yacoub T, Rima M, Karam M, Sabatier JM, Fajloun Z. Antimicrobials from Venomous Animals: An Overview. Molecules 2020; 25:molecules25102402. [PMID: 32455792 PMCID: PMC7287856 DOI: 10.3390/molecules25102402] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
The inappropriate or excessive use of antimicrobial agents caused an emerging public health problem due to the resulting resistance developed by microbes. Therefore, there is an urgent need to develop effective antimicrobial strategies relying on natural agents with different mechanisms of action. Nature has been known to offer many bioactive compounds, in the form of animal venoms, algae, and plant extracts that were used for decades in traditional medicine. Animal venoms and secretions have been deeply studied for their wealth in pharmaceutically promising molecules. As such, they were reported to exhibit many biological activities of interest, such as antibacterial, antiviral, anticancer, and anti-inflammatory activities. In this review, we summarize recent findings on the antimicrobial activities of crude animal venoms/secretions, and describe the peptides that are responsible of these activities.
Collapse
Affiliation(s)
- Tania Yacoub
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, P.O. box 100 Tripoli, Lebanon; (T.Y.); (M.K.)
| | - Mohamad Rima
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS U7104, Université de Strasbourg, 67400 Illkirch, France;
| | - Marc Karam
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, P.O. box 100 Tripoli, Lebanon; (T.Y.); (M.K.)
| | - Jean-Marc Sabatier
- Université Aix-Marseille, Institut de NeuroPhysiopathologie, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille CEDEX 15, France
- Correspondence: (J.-M.S.); (Z.F.)
| | - Ziad Fajloun
- Faculty of Sciences 3, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, El Mittein Street, 1300 Tripoli, Lebanon
- Correspondence: (J.-M.S.); (Z.F.)
| |
Collapse
|
27
|
Ul-Hasan S, Rodríguez-Román E, Reitzel AM, Adams RM, Herzig V, Nobile CJ, Saviola AJ, Trim SA, Stiers EE, Moschos SA, Keiser CN, Petras D, Moran Y, Colston TJ. The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP). Toxicon X 2019; 4:100016. [PMID: 32550573 PMCID: PMC7286055 DOI: 10.1016/j.toxcx.2019.100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Venom is a known source of novel antimicrobial natural products. The substantial, increasing number of these discoveries have unintentionally culminated in the misconception that venom and venom-producing glands are largely sterile environments. Culture-dependent and -independent studies on the microbial communities in venom microenvironments reveal the presence of archaea, algae, bacteria, fungi, protozoa, and viruses. Venom-centric microbiome studies are relatively sparse to date with the adaptive advantages that venom-associated microbes might offer to their hosts, or that hosts might provide to venom-associated microbes, remaining largely unknown. We highlight the potential for the discovery of venom microbiomes within the adaptive landscape of venom systems. The considerable number of convergently evolved venomous animals, juxtaposed with the comparatively few known studies to identify microbial communities in venom, provides new possibilities for both biodiversity and therapeutic discoveries. We present an evidence-based argument for integrating microbiology as part of venomics (i.e., venom-microbiomics) and introduce iVAMP, the Initiative for Venom Associated Microbes and Parasites (https://ivamp-consortium.github.io/), as a growing collaborative consortium. We express commitment to the diversity, inclusion and scientific collaboration among researchers interested in this emerging subdiscipline through expansion of the iVAMP consortium.
Collapse
Affiliation(s)
- Sabah Ul-Hasan
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Eduardo Rodríguez-Román
- Center for Microbiology and Cell Biology, Venezuelan Institute for Scientific Research. Caracas, 1020A, Venezuela
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Rachelle M.M. Adams
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, 43212, USA
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Anthony J. Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Steven A. Trim
- Venomtech Ltd, Discovery Park, Sandwich, Kent, CT13 9ND, UK
| | - Erin E. Stiers
- Department of Biological Science, Clemson University, Clemson, SC, 29634, USA
| | - Sterghios A. Moschos
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, NE1 8ST, UK
| | - Carl N. Keiser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, USA
- Scripps Institution of Oceanography, University of California, San Diego, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Timothy J. Colston
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
28
|
Wu T, Wang M, Wu W, Luo Q, Jiang L, Tao H, Deng M. Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. J Venom Anim Toxins Incl Trop Dis 2019; 25:e146318. [PMID: 31210759 PMCID: PMC6551028 DOI: 10.1590/1678-9199-jvatitd-14-63-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Spider venoms are known to contain proteins and polypeptides that perform various
functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic,
and hemagglutinic activities. Currently, several classes of natural molecules
from spider venoms are potential sources of chemotherapeutics against tumor
cells. Some of the spider peptide toxins produce lethal effects on tumor cells
by regulating the cell cycle, activating caspase pathway or inactivating
mitochondria. Some of them also target the various types of ion channels
(including voltage-gated calcium channels, voltage-gated sodium channels, and
acid-sensing ion channels) among other pain-related targets. Herein we review
the structure and pharmacology of spider-venom peptides that are being used as
leads for the development of therapeutics against the pathophysiological
conditions including cancer and pain.
Collapse
Affiliation(s)
- Ting Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qianxuan Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
29
|
Silva CND, Silva FRD, Dourado LFN, Reis PVMD, Silva RO, Costa BLD, Nunes PS, Amaral FA, Santos VLD, de Lima ME, Silva Cunha Júnior AD. A New Topical Eye Drop Containing LyeTxI-b, A Synthetic Peptide Designed from A Lycosa erithrognata Venom Toxin, Was Effective to Treat Resistant Bacterial Keratitis. Toxins (Basel) 2019; 11:toxins11040203. [PMID: 30987317 PMCID: PMC6520776 DOI: 10.3390/toxins11040203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/02/2022] Open
Abstract
Bacterial keratitis is an ocular infection that can lead to severe visual disability. Staphylococcus aureus is a major pathogen of the eye. We recently demonstrated the strong antimicrobial activity of LyeTxI-b, a synthetic peptide derived from a Lycosa erithrognatha toxin. Herein, we evaluated a topical formulation (eye drops) containing LyeTxI-b to treat resistant bacterial keratitis. Keratitis was induced with intrastromal injection of 4 × 105 cells (4 µL) in New Zealand female white rabbits. Minimum inhibitory concentration (MIC) and biofilm viability were determined. LyeTxI-b ocular toxicity was evaluated through chorioallantoic membrane and Draize tests. One drop of the formulation (LyeTxI-b 28.9 µmol/L +0.5% CMC in 0.9% NaCl) was instilled into each eye four times a day, for a week. Slit-lamp biomicroscopy analysis, corneal histopathological studies and cellular infiltrate quantification through myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) detection were performed. LyeTxI-b was very effective in the treatment of keratitis, with no signs of ocular toxicity. Planktonic bacteria MIC was 3.6 µmol/L and LyeTxI-b treatment reduced biofilm viability in 90%. LyeTxI-b eliminated bacteria and reduced inflammatory cellular activity in the eyes. Healthy and treated animals showed similar NAG and MPO levels. LyeTxI-b is a potent new drug to treat resistant bacterial keratitis, showing effective antimicrobial and anti-inflammatory activity.
Collapse
Affiliation(s)
- Carolina Nunes da Silva
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901 MG, Brazil.
| | - Flavia Rodrigues da Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde-PPGCAS, Universidade Federal de Sergipe, Lagarto 49400-000 SE, Brazil.
| | | | - Pablo Victor Mendes Dos Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901 MG, Brazil.
| | | | - Bruna Lopes da Costa
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901 MG, Brazil.
| | - Paula Santos Nunes
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde-PPGCAS, Universidade Federal de Sergipe, Lagarto 49400-000 SE, Brazil.
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901 MG, Brazil.
| | - Vera Lúcia Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901 MG, Brazil.
| | - Maria Elena de Lima
- Programa de Pós-graduação em Ciências da Saúde, Biomedicina e Medicina, Ensino e Pesquisa da Santa Casa de Belo Horizonte, Grupo Santa Casa de Belo Horizonte, Belo Horizonte 30150-250, MG, Brazil.
| | | |
Collapse
|
30
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
31
|
Silva FRD, Paiva MRBD, Dourado LFN, Silva RO, Silva CND, Costa BLD, Toledo CR, de Lima ME, Silva-Cunha AD. Intravitreal injection of the synthetic peptide LyeTx I b, derived from a spider toxin, into the rabbit eye is safe and prevents neovascularization in a chorio-allantoic membrane model. J Venom Anim Toxins Incl Trop Dis 2018; 24:31. [PMID: 30479614 PMCID: PMC6249906 DOI: 10.1186/s40409-018-0168-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Background The great diversity of molecules found in spider venoms include amino acids, polyamines, proteins and peptides, among others. Some of these compounds can interact with different neuronal receptors and ion channels including those present in the ocular system. To study potential toxicity and safety of intravitreal injection in rabbits of LyeTx I b, a synthetic peptide derived from the toxin LyeTx I found in venom from the spider Lycosa eritrognatha and to evaluate the angiogenic activity on a CAM model. Methods ARPE-19 cells were treated with LyeTx I b (0.36; 0.54; 0.72; 2.89; 4.34 or 9.06 μM). In this study, New Zealand rabbits were used. LyeTx I b (2.89 μM) labeled with FITC dissolved in PBS, or only PBS, were injected into vitreous humor. Electroretinogram (ERG) was recorded 1 day before injection and at 7, 14 and 28 days post-injection. Clinical examination of the retina was conducted through tonometer and eye fundus after ERG. Eyes were enucleated and retinas were prepared for histology in order to assess retinal structure. CAMs were exposed to LyeTx I b (0.54; 0.72; 2.17 or 2.89 μM). Results ARPE-19 cells exposed to LyeTx I b showed cell viability at the same levels of the control. The fluorescence of LyeTx I b labeled with FITC indicated its retinal localization. Our findings indicate ERG responses from rats injected in the eye with LyeTx I b were very similar to the corresponding responses of those animals injected only with vehicle. Clinical examination found no alterations of intraocular pressure or retinal integrity. No histological damage in retinal layers was observed. CAM presented reduced neovascularization when exposed to LyeTx I b. Conclusions Intravitreal injection of LyeTx I b is safe for use in the rabbit eye and prevents neovascularization in the CAM model, at Bevacizumab levels. These findings support intravitreal LyeTx I b as a good candidate to develop future alternative treatment for the retina in neovascularization diseases.
Collapse
Affiliation(s)
- Flavia Rodrigues da Silva
- 1Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, 2nd Floor, Room 2031, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Mayara Rodrigues Brandão de Paiva
- 1Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, 2nd Floor, Room 2031, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Lays Fernanda Nunes Dourado
- 1Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, 2nd Floor, Room 2031, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Rummenigge Oliveira Silva
- 1Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, 2nd Floor, Room 2031, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Carolina Nunes da Silva
- 1Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, 2nd Floor, Room 2031, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Bruna Lopes da Costa
- 1Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, 2nd Floor, Room 2031, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Cibele Rodrigues Toledo
- 1Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, 2nd Floor, Room 2031, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Maria Elena de Lima
- 2Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Armando da Silva-Cunha
- 1Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627, 2nd Floor, Room 2031, Pampulha, Belo Horizonte, Minas Gerais 31270-901 Brazil
| |
Collapse
|
32
|
The synthetic peptide LyeTxI-b derived from Lycosa erythrognatha spider venom is cytotoxic to U-87 MG glioblastoma cells. Amino Acids 2018; 51:433-449. [PMID: 30449002 DOI: 10.1007/s00726-018-2678-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023]
Abstract
Antimicrobial peptides present a broad spectrum of therapeutic applications, including their use as anticancer peptides. These peptides have as target microbial, normal, and cancerous cells. The oncological properties of these peptides may occur by membranolytic mechanisms or non-membranolytics. In this work, we demonstrate for the first time the cytotoxic effects of the cationic alpha-helical antimicrobial peptide LyeTx I-b on glioblastoma lineage U87-MG. The anticancer property of this peptide was associated with a membranolytic mechanism. Loss of membrane integrity occurred after incubation with the peptide for 15 min, as shown by trypan blue uptake, reduction of calcein-AM conversion, and LDH release. Morphological studies using scanning electron microscopy demonstrated disruption of the plasma membrane from cells treated with LyeTx I-b, including the formation of holes or pores. Transmission electron microscopy analyses showed swollen nuclei with mild DNA condensation, cell volume increase with an electron-lucent cytoplasm and organelle vacuolization, but without the rupture of nuclear or plasmatic membranes. Morphometric analyses revealed a high percentage of cells in necroptosis stages, followed by necrosis and apoptosis at lower levels. Necrostatin-1, a known inhibitor of necroptosis, partially protected the cells from the toxicity of the peptide in a concentration-dependent manner. Imaging flow cytometry confirmed that 59% of the cells underwent necroptosis after 3-h incubation with the peptide. It is noteworthy that LyeTx I-b showed only mild cytotoxicity against normal fibroblasts of human and monkey cell lines and low hemolytic activity in human erythrocytes. All data together point out the anticancer potential of this peptide.
Collapse
|