1
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Imaging-based profiling for elucidation of antibacterial mechanisms of action. Biotechnol Appl Biochem 2025; 72:542-569. [PMID: 39467068 DOI: 10.1002/bab.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
In this review, we aim to summarize experimental data and approaches to identifying cellular targets or mechanisms of action of antibacterials based on imaging techniques. Imaging-based profiling methods, such as bacterial cytological profiling, dynamic bacterial morphology imaging, and others, have become a useful research tool for mechanistic studies of new antibiotics as well as combinations with conventional ones and other therapeutic options. The main methodological and experimental details and obtained results are summarized and discussed. The review covers the literature up to February 2024.
Collapse
Affiliation(s)
- Anna A Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton P Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Zhao W, Hou K, Shen Y, Hu X. A conditional denoising VAE-based framework for antimicrobial peptides generation with preserving desirable properties. Bioinformatics 2025; 41:btaf069. [PMID: 39932977 PMCID: PMC11850229 DOI: 10.1093/bioinformatics/btaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
MOTIVATION The widespread use of antibiotics has led to the emergence of resistant pathogens. Antimicrobial peptides (AMPs) combat bacterial infections by disrupting the integrity of cell membranes, making it challenging for bacteria to develop resistance. Consequently, AMPs offer a promising solution to addressing antibiotic resistance. However, the limited availability of natural AMPs cannot meet the growing demand. While deep learning technologies have advanced AMP generation, conventional models often lack stability and may introduce unforeseen side effects. RESULTS This study presents a novel denoising VAE-based model guided by desirable physicochemical properties for AMP generation. The model integrates key features (e.g. molecular weight, isoelectric point, hydrophobicity, etc.), and employs position encoding along with a Transformer architecture to enhance generation accuracy. A customized loss function, combining reconstruction loss, KL divergence, and property preserving loss ensure effective model training. Additionally, the model incorporates a denoising mechanism, enabling it to learn from perturbed inputs, thus maintaining performance under limited training data. Experimental results demonstrate that the proposed model can generate AMPs with desirable functional properties, offering a viable approach for AMP design and analysis, which ultimately contributes to the fight against antibiotic resistance. AVAILABILITY AND IMPLEMENTATION The data and source codes are available both in GitHub (https://github.com/David-WZhao/PPGC-DVAE) and Zenodo (DOI 10.5281/zenodo.14730711).
Collapse
Affiliation(s)
- Weizhong Zhao
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China
- School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China
- National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Kaijieyi Hou
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Yiting Shen
- Detroit Green Technology Institute, Hubei University of Technology, Wuhan, Hubei 430079, PR China
| | - Xiaohua Hu
- College of Computing & Informatics, Drexel University, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Yuan H, Xun H, Wang J, Wang J, Yao X, Tang F. Integrated Metabolomic and Transcriptomic Analysis Reveals the Underlying Antibacterial Mechanisms of the Phytonutrient Quercetin-Induced Fatty Acids Alteration in Staphylococcus aureus ATCC 27217. Molecules 2024; 29:2266. [PMID: 38792126 PMCID: PMC11123838 DOI: 10.3390/molecules29102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The utilization of natural products in food preservation represents a promising strategy for the dual benefits of controlling foodborne pathogens and enhancing the nutritional properties of foods. Among the phytonutrients, flavonoids have been shown to exert antibacterial effects by disrupting bacterial cell membrane functionality; however, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of quercetin on the cell membrane permeability of Staphylococcus aureus ATCC 27217. A combined metabolomic and transcriptomic approach was adopted to examine the regulatory mechanism of quercetin with respect to the fatty acid composition and associated genes. Kinetic analysis and molecular docking simulations were conducted to assess quercetin's inhibition of β-ketoacyl-acyl carrier protein reductase (FabG), a potential target in the bacterial fatty acid biosynthesis pathway. Metabolomic and transcriptomic results showed that quercetin increased the ratio of unsaturated to saturated fatty acids and the levels of membrane phospholipids. The bacteria reacted to quercetin-induced stress by attempting to enhance fatty acid biosynthesis; however, quercetin directly inhibited FabG activity, thereby disrupting bacterial fatty acid biosynthesis. These findings provide new insights into the mechanism of quercetin's effects on bacterial cell membranes and suggest potential applications for quercetin in bacterial inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China; (H.Y.); (H.X.); (J.W.); (J.W.); (X.Y.)
| |
Collapse
|
4
|
Sarkar S, Kumari A, Tiwari M, Tiwari V. Interaction and simulation studies suggest the possible molecular targets of intrinsically disordered amyloidogenic antimicrobial peptides in Acinetobacter baumannii. J Biomol Struct Dyn 2024; 42:2747-2764. [PMID: 37144752 DOI: 10.1080/07391102.2023.2208219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Acinetobacter baumannii is one of the causing agents of nosocomial infections. A wide range of antibiotics fails to work against these pathogens. Hence, there is an urgent requirement to develop other therapeutics to solve this problem. Antimicrobial peptides (AMPs) are a diverse group of naturally occurring peptides that have the ability to kill diverse groups of microorganisms. The major challenge of using AMPs as therapeutics is their unstable nature and the fact that most of their molecular targets are still unknown. In this study, we have selected intrinsically disordered and amyloidogenic AMPs, showing activity against A. baumannii, that is, Bactenecin, Cath BF, Citropin 1.1, DP7, NA-CATH, Tachyplesin, and WAM-1. To identify the probable target of these AMPs in A. baumannii, calculation of docking score, binding energy, dissociation constant, and molecular dynamics analysis was performed with selected seventeen possible molecular targets. The result showed that the most probable molecular targets of most of the intrinsically disordered amyloidogenic AMPs were UDP-N-acetylenol-pyruvoyl-glucosamine reductase (MurB), followed by 33-36 kDa outer membrane protein (Omp 33-36), UDP-N-acetylmuramoyl-l-alanyl-d-glutamate-2,6-diaminopimelate ligase (MurE), and porin Subfamily Protein (PorinSubF). Further, molecular dynamics analysis concluded that the target of antimicrobial peptide Bactenecin is MurB of A. baumannii, and identified other molecular targets of selected AMPs. Additionally, the oligomerization capacity of the selected AMPs was also investigated, and it was shown that the selected AMPs form oligomeric states, and interact with their molecular targets in that state. Experimental validation using purified AMPs and molecular targets needs to be done to confirm the interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sayani Sarkar
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Aruna Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
5
|
Graczyk S, Pasławski R, Grzeczka A, Pasławska U, Świeczko-Żurek B, Malisz K, Popat K, Sionkowska A, Golińska P, Rai M. Antimicrobial and Antiproliferative Coatings for Stents in Veterinary Medicine-State of the Art and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6834. [PMID: 37959431 PMCID: PMC10649059 DOI: 10.3390/ma16216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Microbial colonization in veterinary stents poses a significant and concerning issue in veterinary medicine. Over time, these pathogens, particularly bacteria, can colonize the stent surfaces, leading to various complications. Two weeks following the stent insertion procedure, the colonization becomes observable, with the aggressiveness of bacterial growth directly correlating with the duration of stent placement. Such microbial colonization can result in infections and inflammations, compromising the stent's efficacy and, subsequently, the animal patient's overall well-being. Managing and mitigating the impact of these pathogens on veterinary stents is a crucial challenge that veterinarians and researchers are actively addressing to ensure the successful treatment and recovery of their animal patients. In addition, irritation of the tissue in the form of an inserted stent can lead to overgrowth of granulation tissue, leading to the closure of the stent lumen, as is most often the case in the trachea. Such serious complications after stent placement require improvements in the procedures used to date. In this review, antibacterial or antibiofilm strategies for several stents used in veterinary medicine have been discussed based on the current literature and the perspectives have been drawn. Various coating strategies such as coating with hydrogel, antibiotic, or other antimicrobial agents have been reviewed.
Collapse
Affiliation(s)
- Szymon Graczyk
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Robert Pasławski
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Arkadiusz Grzeczka
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Urszula Pasławska
- Institute of Veterinary Medicine, Department of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (R.P.); (A.G.); (U.P.)
| | - Beata Świeczko-Żurek
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Klaudia Malisz
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdansk, Poland; (B.Ś.-Ż.); (K.M.)
| | - Ketul Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| | - Mahendra Rai
- Department of Chemistry, Federal University of Piaui (UFPI), Teresina 64049-550, Brazil;
| |
Collapse
|
6
|
Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Mar Drugs 2023; 21:503. [PMID: 37888438 PMCID: PMC10608444 DOI: 10.3390/md21100503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
| | | | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Rangel K, Lechuga GC, Provance DW, Morel CM, De Simone SG. An Update on the Therapeutic Potential of Antimicrobial Peptides against Acinetobacter baumannii Infections. Pharmaceuticals (Basel) 2023; 16:1281. [PMID: 37765087 PMCID: PMC10537560 DOI: 10.3390/ph16091281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The rise in antibiotic-resistant strains of clinically important pathogens is a major threat to global health. The World Health Organization (WHO) has recognized the urgent need to develop alternative treatments to address the growing list of priority pathogens. Antimicrobial peptides (AMPs) rank among the suggested options with proven activity and high potential to be developed into effective drugs. Many AMPs are naturally produced by living organisms protecting the host against pathogens as a part of their innate immunity. Mechanisms associated with AMP actions include cell membrane disruption, cell wall weakening, protein synthesis inhibition, and interference in nucleic acid dynamics, inducing apoptosis and necrosis. Acinetobacter baumannii is a critical pathogen, as severe clinical implications have developed from isolates resistant to current antibiotic treatments and conventional control procedures, such as UV light, disinfectants, and drying. Here, we review the natural AMPs representing primary candidates for new anti-A. baumannii drugs in post-antibiotic-era and present computational tools to develop the next generation of AMPs with greater microbicidal activity and reduced toxicity.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme Curty Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
| | - Salvatore G. De Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
8
|
Tyler TJ, Durek T, Craik DJ. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023; 28:molecules28073189. [PMID: 37049950 PMCID: PMC10096437 DOI: 10.3390/molecules28073189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.
Collapse
Affiliation(s)
- Tristan J. Tyler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Yue L, Cao H, Qi J, Yuan J, Wang X, Wang Y, Shan B, Ke H, Li H, Luan N, Liu C. Pretreatment with 3-methyladenine ameliorated Pseudomonas aeruginosa-induced acute pneumonia by inhibiting cell death of neutrophils in a mouse infection model. Int J Med Microbiol 2023; 313:151574. [PMID: 36736016 DOI: 10.1016/j.ijmm.2023.151574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections worldwide. Clinical isolates that are resistant to multiple antimicrobials make it intractable. The interactions between P. aeruginosa and host cell death have multiple effects on bacterial clearance and inflammation; however, the potential intervention effects remain to be defined. Herein, we demonstrated that intravenous administration of 3-methyladenine before, but not after, P. aeruginosa infection enhanced autophagy-independent survival, which was accompanied by a decrease in the bacterial load, alleviation of pathology and reduction in inflammatory cytokines, in an acute pneumonia mouse model. Interestingly, these beneficial effects were not dependent on neutrophil recruitment or phagocytosis, but on the enhanced killing capacity induced by inhibiting the cell death of 3-MA pretreated neutrophils. These findings demonstrate a novel protective role of 3-MA pretreatment in P. aeruginosa-induced acute pneumonia.
Collapse
Affiliation(s)
- Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jialong Qi
- The First People's Hospital of Yunnan Province & Affiliated Hospital of Kunming University of Science and Technology, Kunming 650034, China
| | - Jin Yuan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Xin Wang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Bin Shan
- Department of Clinical Lab, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Huaxin Ke
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
10
|
Peng J, Wang Y, Wu Z, Mao C, Li L, Cao H, Qiu Z, Guo G, Liang G, Shen F. Antimicrobial Peptide Cec4 Eradicates Multidrug-Resistant Acinetobacter baumannii in vitro and in vivo. Drug Des Devel Ther 2023; 17:977-992. [PMID: 37020803 PMCID: PMC10069437 DOI: 10.2147/dddt.s405579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Acinetobacter baumannii has become a major difficulty in the treatment of bacteria-associated infection. The previously reported antimicrobial peptide Cec4 exhibited good and stable activity against A. baumannii in vitro, but the mechanisms and effects in vivo are elusive. Methods The effects of Cec4 on bacterial membrane permeability, membrane potential and bacterial reactive oxygen species were measured. The cell membrane localization of antimicrobial peptides was studied by fluorescence labelling. The ability of bacteria to develop resistance to antimicrobial peptides was studied by continuous induction, and transcriptome difference was analysed. The in vivo toxicity of Cec4 against nematodes and mice was studied, and the in vivo therapeutic potential of Cec4 against A. baumannii was assessed. Results Cec4 effectively cleared multidrug-resistant A. baumannii by altering bacterial cell membrane permeability, changing bacterial cell membrane polarity, and increasing bacterial intracellular reactive oxygen species. Cec4 affected the expression of the secretion system, outer membrane, and efflux pump genes of A. baumannii. In addition, the bacteria did not acquire stable drug-resistant ability. Cec4 at 1.024 mg/mL did not affect the proliferation of HeLa and HepG2 cells, and Cec4 at 45 mg/kg had little effect on the mortality of Caenorhabditis elegans, even the liver and kidney tissues of mouse. Most importantly, Cec4 could effectively improve the survival rates and reduce the bacterial load of various tissues in the mouse model of infection. Conclusion In conclusion, Cec4 can damage the cell membrane of bacteria, and the bacteria is not easy to produce resistance to Cec4. Besides, Cec4 has good potential for the treatment of multidrug-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Jian Peng
- Department of Intensive Care Unit, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yue Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Zhaoyin Wu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Chengju Mao
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Lu Li
- Department of Intensive Care Unit, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
| | - Huijun Cao
- Department of Cardiac Surgery, the affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
| | - Zhilang Qiu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Guo Guo
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Guiyou Liang
- Department of Cardiac Surgery, the affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Feng Shen
- Department of Intensive Care Unit, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People’s Republic of China
- Correspondence: Feng Shen; Guiyou Liang, Email ;
| |
Collapse
|
11
|
Essential Paralogous Proteins as Potential Antibiotic Multitargets in Escherichia coli. Microbiol Spectr 2022; 10:e0204322. [PMID: 36445138 PMCID: PMC9769728 DOI: 10.1128/spectrum.02043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial resistance threatens our current standards of care for the treatment and prevention of infectious disease. Antibiotics that have multiple targets have a lower propensity for the development of antibiotic resistance than those that have single targets and therefore represent an important tool in the fight against antimicrobial resistance. In this work, groups of essential paralogous proteins were identified in the important Gram-negative pathogen Escherichia coli that could represent novel targets for multitargeting antibiotics. These groups include targets from a broad range of essential macromolecular and biosynthetic pathways, including cell wall synthesis, membrane biogenesis, transcription, translation, DNA replication, fatty acid biosynthesis, and riboflavin and isoprenoid biosynthesis. Importantly, three groups of clinically validated antibiotic multitargets were identified using this method: the two subunits of the essential topoisomerases, DNA gyrase and topoisomerase IV, and one pair of penicillin-binding proteins. An additional eighteen protein groups represent potentially novel multitargets that could be explored in drug discovery efforts aimed at developing compounds having multiple targets in E. coli and other bacterial pathogens. IMPORTANCE Many types of bacteria have gained resistance to existing antibiotics used in medicine today. Therefore, new antibiotics with novel mechanisms must continue to be developed. One tool to prevent the development of antibiotic resistance is for a single drug to target multiple processes in a bacterium so that more than one change must arise for resistance to develop. The work described here provides a comprehensive search for proteins in the bacterium Escherichia coli that could be targets for such multitargeting antibiotics. Several groups of proteins that are already targets of clinically used antibiotics were identified, indicating that this approach can uncover clinically relevant antibiotic targets. In addition, eighteen currently unexploited groups of proteins were identified, representing new multitargets that could be explored in antibiotic research and development.
Collapse
|
12
|
Lu S, Lin J, Jin J, Zhang L, Guan Y, Chen H, Wu Y, Zhang W, Luan X. Tachyplesin I and its derivatives: A pharmaco-chemical perspective on their antimicrobial and antitumor potential. Expert Opin Drug Discov 2022; 17:1407-1423. [PMID: 36503335 DOI: 10.1080/17460441.2023.2157402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Increasing evidence suggests that intratumor microbiota are an intrinsic component in the tumor microenvironment across multiple cancer types, and that there is a close relationship between microbiota and tumor progression. Therefore, how to address the interaction between bacteria and malignances has become a growing concern. Tachyplesin I (TPI), a peptide with dual antimicrobial and antitumor effects, holds great promise as a therapeutic alternative for the aforementioned diseases, with the advantage of broad-spectrum activities, quick killing efficacy, and a low tendency to induce resistance. AREAS COVERED This review comprehensively summarizes the pharmacological mechanisms of TPI with an emphasis on its antimicrobial and antitumor potential. Furthermore, it presents advances in TPI derivatives and gives a perspective on their future development. The article is based on literature searches using PubMed and SciFinder to retrieve the most up-to-date information of TPI. EXPERT OPINION Bacterial infections and cancer both pose a serious threat to health due to their symbiotic interactions and drug resistance. TPI is anticipated to be a novel agent to control pathogenic bacteria and various tumors through multiple mechanisms of action. Indeed, the continuous advancements in chemical modification and innovative applications of TPI give hope for future improvements in therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Yingyun Guan
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Municipality, Shanghai, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China.,School of Pharmacy, Naval Medical University, Municipality, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| |
Collapse
|
13
|
Hong J, Li X, Jiang M, Hong R. Co-expression Mechanism Analysis of Different Tachyplesin I-Resistant Strains in Pseudomonas aeruginosa Based on Transcriptome Sequencing. Front Microbiol 2022; 13:871290. [PMID: 35464984 PMCID: PMC9022664 DOI: 10.3389/fmicb.2022.871290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Tachyplesin I is a cationic antimicrobial peptide with 17 amino acids. The long-term continuous exposure to increased concentrations of tachyplesin I induced resistance in Pseudomonas aeruginosa. The global gene expression profiling of tachyplesin I–resistant P. aeruginosa strains PA-60 and PA-99 and the sensitive strain P. aeruginosa CGMCC1.2620 (PA1.2620) were conducted by transcriptome sequencing to analyze the common underlying mechanism of resistance to tachyplesin I in low- or high-resistance mutants. The co-expression patterns, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, sRNA target genes, and single-nucleotide polymorphism (SNP) change were analyzed for the co-expressed genes in this study. A total of 661 differentially co-expressed genes under treatments of PA1.2620 vs. PA-99 and PA1.2620 vs. PA-60 (HL) were divided into 12 kinds of expression patterns. GO and KEGG pathway enrichment analyses indicated that the enrichment of co-expressed genes was mainly associated with oxidoreductase activity, mismatched DNA binding, mismatch repair, RNA degradation of GO terms, aminoacyl-tRNA biosynthesis, and aminobenzoate degradation pathways, and so forth. The co-expressed resistance-related genes were mainly involved in antibiotic efflux and antibiotic inactivation. Seven co-expressed genes had SNP changes. Some co-expressed sRNAs were involved in P. aeruginosa resistance to tachyplesin I by regulating target genes and pathways related to resistance. The common resistance mechanism of P. aeruginosa among different mutants to tachyplesin I was mainly associated with the expression alteration of several genes and sRNA-regulated target genes related to resistance; few genes had base mutations. The findings of this study might provide guidance for understanding the resistance mechanism of P. aeruginosa to tachyplesin I.
Collapse
Affiliation(s)
- Jun Hong
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Xinyang Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Mengyao Jiang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Ruofei Hong
- School of International Education, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
14
|
Varakala SD, Reshma RS, Schnell R, Dharmarajan S. Lead derivatization of ethyl 6-bromo-2-((dimethylamino)methyl)-5-hydroxy-1-phenyl-1H-indole-3-carboxylate and 5-bromo-2-(thiophene-2-carboxamido) benzoic acid as FabG inhibitors targeting ESKAPE pathogens. Eur J Med Chem 2022; 228:113976. [PMID: 34815129 DOI: 10.1016/j.ejmech.2021.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/04/2022]
Abstract
Our previous studies on FabG have identified two compounds 5-bromo-2-(thiophene-2-carboxamido) benzoic acid (A) and ethyl 6-bromo-2-((dimethylamino)methyl)-5-hydroxy-1-phenyl-1H-indole-3-carboxylate(B) as best hits with allosteric mode of inhibition. FabG is an integral part of bacterial fatty acid biosynthetic system FAS II shown to be an essential gene in most ESKAPE Pathogens. The current work is focussed on lead expansion of these two hit molecules which ended up with forty-three analogues (twenty-nine analogues from lead compound A and fourteen compounds from lead compound B). The enzyme inhibition studies revealed that compound 15 (effective against EcFabG, AbFabG, StFabG, MtFabG1) and 19 (inhibiting EcFabG and StFabG) had potency of broad-spectrum inhibition on FabG panel.
Collapse
Affiliation(s)
- Saiprasad Dasugari Varakala
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, 500078, India
| | | | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165, Stockholm, Sweden.
| | - Sriram Dharmarajan
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, 500078, India.
| |
Collapse
|
15
|
Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021; 26:molecules26247453. [PMID: 34946535 PMCID: PMC8708364 DOI: 10.3390/molecules26247453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
16
|
Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021. [DOI: https://doi.org/10.3390/molecules26247453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
17
|
Kumar V, Chugh A. Peptide-mediated leishmaniasis management strategy: Tachyplesin emerges as an effective anti-leishmanial peptide against Leishmania donovani. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183629. [PMID: 33933430 DOI: 10.1016/j.bbamem.2021.183629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/23/2023]
Abstract
Visceral leishmaniasis is one of the neglected tropical diseases caused by an intracellular parasite, Leishmania donovani. Drug resistance, adverse side effects and long treatment regimes are important limitations in achieving the effective elimination of visceral leishmaniasis. In the absence of any vaccine, chemotherapy remains a viable treatment for leishmaniasis. For effective killing of leishmania parasite, the drug molecule needs to cross the cell membrane. In the present study, marine membrane-active peptide Tachyplesin has been used against Leishmania donovani. Further, the mechanism of action and importance of cysteine amino acids of Tachyplesin in anti-leishmanial activity has been assessed. The cargo-carrying ability of Tachyplesin in L. donovani has been established. Thus, dual-use of Tachyplesin as an anti-leishmanial peptide as well as a cargo delivery vehicle makes the marine peptide an attractive therapeutic target against visceral leishmaniasis.
Collapse
Affiliation(s)
- Vivek Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
18
|
Vella P, Rudraraju RS, Lundbäck T, Axelsson H, Almqvist H, Vallin M, Schneider G, Schnell R. A FabG inhibitor targeting an allosteric binding site inhibits several orthologs from Gram-negative ESKAPE pathogens. Bioorg Med Chem 2021; 30:115898. [PMID: 33388594 DOI: 10.1016/j.bmc.2020.115898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Abstract
The spread of antibiotic resistance within the ESKAPE group of human pathogenic bacteria poses severe challenges in the treatment of infections and maintenance of safe hospital environments. This motivates efforts to validate novel target proteins within these species that could be pursued as potential targets for antibiotic development. Genetic data suggest that the enzyme FabG, which is part of the bacterial fatty acid biosynthetic system FAS-II, is essential in several ESKAPE pathogens. FabG catalyzes the NADPH dependent reduction of 3-keto-acyl-ACP during fatty acid elongation, thus enabling lipid supply for production and maintenance of the cell envelope. Here we report on small-molecule screening on the FabG enzymes from A. baumannii and S. typhimurium to identify a set of µM inhibitors, with the most potent representative (1) demonstrating activity against six FabG-orthologues. A co-crystal structure with FabG from A. baumannii (PDB:6T65) confirms inhibitor binding at an allosteric site located in the subunit interface, as previously demonstrated for other sub-µM inhibitors of FabG from P. aeruginosa. We show that inhibitor binding distorts the oligomerization interface in the FabG tetramer and displaces crucial residues involved in the interaction with the co-substrate NADPH. These observations suggest a conserved allosteric site across the FabG family, which can be potentially targeted for interference with fatty acid biosynthesis in clinically relevant ESKAPE pathogens.
Collapse
Affiliation(s)
- Peter Vella
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden
| | | | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Helena Almqvist
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Michaela Vallin
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 165 Stockholm, Sweden.
| |
Collapse
|
19
|
Panteleev PV, Tsarev AV, Safronova VN, Reznikova OV, Bolosov IA, Sychev SV, Shenkarev ZO, Ovchinnikova TV. Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta Capitella teleta. Mar Drugs 2020; 18:md18120620. [PMID: 33291782 PMCID: PMC7761999 DOI: 10.3390/md18120620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play a key role in host defense. Among the most active and stable under physiological conditions AMPs are the peptides of animal origin that adopt a β-hairpin conformation stabilized by disulfide bridges. In this study, a novel BRICHOS-domain related AMP from the marine polychaeta Capitella teleta, named capitellacin, was produced as the recombinant analogue and investigated. The mature capitellacin exhibits high homology with the known β-hairpin AMP family—tachyplesins and polyphemusins from the horseshoe crabs. The β-hairpin structure of the recombinant capitellacin was proved by CD and NMR spectroscopy. In aqueous solution the peptide exists as monomeric right-handed twisted β-hairpin and its structure does not reveal significant amphipathicity. Moreover, the peptide retains this conformation in membrane environment and incorporates into lipid bilayer. Capitellacin exhibits a strong antimicrobial activity in vitro against a wide panel of bacteria including extensively drug-resistant strains. In contrast to other known β-hairpin AMPs, this peptide acts apparently via non-lytic mechanism at concentrations inhibiting bacterial growth. The molecular mechanism of the peptide antimicrobial action does not seem to be related to the inhibition of bacterial translation therefore other molecular targets may be assumed. The reduced cytotoxicity against human cells and high antibacterial cell selectivity as compared to tachyplesin-1 make it an attractive candidate compound for an anti-infective drug design.
Collapse
Affiliation(s)
- Pavel V. Panteleev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (P.V.P.); (A.V.T.); (V.N.S.); (O.V.R.); (I.A.B.); (S.V.S.); (Z.O.S.)
| | - Andrey V. Tsarev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (P.V.P.); (A.V.T.); (V.N.S.); (O.V.R.); (I.A.B.); (S.V.S.); (Z.O.S.)
| | - Victoria N. Safronova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (P.V.P.); (A.V.T.); (V.N.S.); (O.V.R.); (I.A.B.); (S.V.S.); (Z.O.S.)
| | - Olesia V. Reznikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (P.V.P.); (A.V.T.); (V.N.S.); (O.V.R.); (I.A.B.); (S.V.S.); (Z.O.S.)
| | - Ilia A. Bolosov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (P.V.P.); (A.V.T.); (V.N.S.); (O.V.R.); (I.A.B.); (S.V.S.); (Z.O.S.)
| | - Sergei V. Sychev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (P.V.P.); (A.V.T.); (V.N.S.); (O.V.R.); (I.A.B.); (S.V.S.); (Z.O.S.)
| | - Zakhar O. Shenkarev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (P.V.P.); (A.V.T.); (V.N.S.); (O.V.R.); (I.A.B.); (S.V.S.); (Z.O.S.)
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow, Russia; (P.V.P.); (A.V.T.); (V.N.S.); (O.V.R.); (I.A.B.); (S.V.S.); (Z.O.S.)
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8–2, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-336-44-44
| |
Collapse
|
20
|
Neshani A, Sedighian H, Mirhosseini SA, Ghazvini K, Zare H, Jahangiri A. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb Pathog 2020; 146:104238. [PMID: 32387392 DOI: 10.1016/j.micpath.2020.104238] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the increasing rate of antibiotic resistance in Acinetobacter, the World Health Organization introduced the carbapenem-resistant isolates in the priority pathogens list for which innovative new treatments are urgently needed. Antimicrobial peptides (AMPs) are one of the antimicrobial agents with high potential to produce new anti-Acinetobacter drugs. This review aims to summarize recent advances and compare AMPs with anti-Acinetobacter baumannii activity. METHODS Active AMPs against Acinetobacter were considered, and essential features, including structure, mechanism of action, anti-A. baumannii potent, and other prominent characteristics, were investigated and compared to each other. In this regard, the Google Scholar search engine and databases of PubMed, Scopus, and Web of Science were used. RESULTS Forty-six anti-Acinetobacter peptides were identified and classified into ten groups: Cathelicidins, Defensins, Frog AMPs, Melittin, Cecropins, Mastoparan, Histatins, Dermcidins, Tachyplesins, and computationally designed AMPs. According to the Minimum Inhibitory Concentration (MIC) reports, six peptides of Melittin, Histatin-8, Omega76, AM-CATH36, Hymenochirin, and Mastoparan have the highest anti-A. baumannii power against sensitive and antibiotic-resistant isolates. All anti-Acinetobacter peptides except Dermcidin have a net positive charge. Most of these peptides have alpha-helical structure; however, β-sheet and other structures have been observed among them. The mechanism of action of these antimicrobial agents is divided into two categories of membrane-based and intracellular target-based attack. CONCLUSION Evidence from this review indicates that AMPs would be likely among the main anti-A. baumannii drugs in the post-antibiotic era. Also, the application of computer science to increase anti-A. baumannii activity and reduce toxicity could be helpful.
Collapse
Affiliation(s)
- Alireza Neshani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosna Zare
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Yu R, Wang J, So LY, Harvey PJ, Shi J, Liang J, Dou Q, Li X, Yan X, Huang YH, Xu Q, Kaas Q, Chow HY, Wong KY, Craik DJ, Zhang XH, Jiang T, Wang Y. Enhanced Activity against Multidrug-Resistant Bacteria through Coapplication of an Analogue of Tachyplesin I and an Inhibitor of the QseC/B Signaling Pathway. J Med Chem 2020; 63:3475-3484. [PMID: 32003561 DOI: 10.1021/acs.jmedchem.9b01563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tachyplesin I (TPI) is a cationic β-hairpin antimicrobial peptide with broad-spectrum, potent antimicrobial activity. In this study, the all d-amino acid analogue of TPI (TPAD) was synthesized, and its structure and activity were determined. TPAD has comparable antibacterial activity to TPI on 14 bacterial strains, including four drug-resistant bacteria. Importantly, TPAD has significantly improved stability against enzymatic degradation and decreased hemolytic activity compared to TPI, indicating that it has better therapeutic potential. The induction of bacterial resistance using low concentrations of TPAD resulted in the activation of the QseC/B two-component system. Deletion of this system resulted in at least five-fold improvement of TPAD activity, and the combined use of TPAD with LED209, a QseC/B inhibitor, significantly enhanced the bactericidal effect against three classes of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jiayi Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lok-Yan So
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Juan Shi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Qin Dou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xiayi Yan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Qingliang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
22
|
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 2019; 40:488-505. [PMID: 31592585 PMCID: PMC6822926 DOI: 10.24272/j.issn.2095-8137.2019.062] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Zhi-Ye Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
23
|
Spohn R, Daruka L, Lázár V, Martins A, Vidovics F, Grézal G, Méhi O, Kintses B, Számel M, Jangir PK, Csörgő B, Györkei Á, Bódi Z, Faragó A, Bodai L, Földesi I, Kata D, Maróti G, Pap B, Wirth R, Papp B, Pál C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun 2019; 10:4538. [PMID: 31586049 PMCID: PMC6778101 DOI: 10.1038/s41467-019-12364-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.
Collapse
Affiliation(s)
- Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Fanni Vidovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- University of California, San Francisco, Department of Microbiology and Immunology, San Francisco, CA, USA
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Zoltán Bódi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Anikó Faragó
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bernadett Pap
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
24
|
Qi J, Gao R, Liu C, Shan B, Gao F, He J, Yuan M, Xie H, Jin S, Ma Y. Potential role of the antimicrobial peptide Tachyplesin III against multidrug-resistant P. aeruginosa and A. baumannii coinfection in an animal model. Infect Drug Resist 2019; 12:2865-2874. [PMID: 31576151 PMCID: PMC6765326 DOI: 10.2147/idr.s217020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/24/2019] [Indexed: 01/05/2023] Open
Abstract
Background Tachyplesin III, an antimicrobial peptide (AMP), provides protection against multidrug-resistant (MDR) bacterial infections and shows cytotoxicity to mammalian cells. Mixed bacterial infections, of which P. aeruginosa plus A. baumannii is the most common and dangerous combination, are critical contributors to the morbidity and mortality of long-term in-hospital respiratory medicine patients. Therefore, the development of effective therapeutic approaches to mixed bacterial infections is urgently needed. Methods and results In this study, we demonstrated that compared with individual infections, mixed infections with MDR bacteria P. aeruginosa and A. baumannii cause more serious diseases, with increased pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and chemokines (MCP-1/MIP-2) and reduced mouse survival. In vitro treatment with Tachyplesin III enhanced phagocytosis in a mouse alveolar macrophage cell line (MH-S). Strikingly, in vivo, Tachyplesin III demonstrated a potential role against mixed-MDR bacterial coinfection. The bacterial burden in bronchoalveolar lavage fluid (BALF) was significantly reduced in the Tachyplesin III-treated group. In addition, a systemic reduction in pro-inflammatory cytokines and decreased lung injury occurred with Tachyplesin III therapy. Conclusion Therefore, our study demonstrated that Tachyplesin III represents a potential therapeutic treatment against mixed-MDR bacterial infection in vivo, which sheds light on the development of therapeutic strategies against mixed-MDR bacterial infections.
Collapse
Affiliation(s)
- Jialong Qi
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Ruiyu Gao
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Cunbao Liu
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Bin Shan
- Department of Clinical Lab, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Fulan Gao
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Jinrong He
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Mingcui Yuan
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Hanghang Xie
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| | - Shumei Jin
- Yunnan Institute of Materia Medica, Kunming, People's Republic of China
| | - Yanbing Ma
- Department of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China
| |
Collapse
|
25
|
From biomedicinal to in silico models and back to therapeutics: a review on the advancement of peptidic modeling. Future Med Chem 2019; 11:2313-2331. [PMID: 31581914 DOI: 10.4155/fmc-2018-0365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bioactive peptides participate in numerous metabolic functions of living organisms and have emerged as potential therapeutics on a diverse range of diseases. Albeit peptide design does not go without challenges, overwhelming advancements on in silico methodologies have increased the scope of peptide-based drug design and discovery to an unprecedented amount. Within an in silico model versus an experimental validation scenario, this review aims to summarize and discuss how different in silico techniques contribute at present to the design of peptide-based molecules. Published in silico results from 2014 to 2018 were selected and discriminated in major methodological groups, allowing a transversal analysis, promoting a landscape vision and asserting its increasing value in drug design.
Collapse
|
26
|
Liu C, Qi J, Shan B, Gao R, Gao F, Xie H, Yuan M, Liu H, Jin S, Wu F, Ma Y. Pretreatment with cathelicidin-BF ameliorates Pseudomonas aeruginosa pneumonia in mice by enhancing NETosis and the autophagy of recruited neutrophils and macrophages. Int Immunopharmacol 2018; 65:382-391. [PMID: 30380513 DOI: 10.1016/j.intimp.2018.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022]
Abstract
Although the antimicrobial peptide cathelicidin-BF shows minimal cytotoxicity in mammalian cells and has excellent direct killing effects on multidrug-resistant clinical pathogens such as Pseudomonas aeruginosa, its clinical application is precluded by its high sensitivity to serum proteases. Here, we demonstrate that intravenous administration of cathelicidin-BF after P. aeruginosa infection did not increase the survival rate of mice with acute pneumonia but that pretreatment with cathelicidin-BF ameliorated pneumonia by effectively activating innate immunity. Enhanced neutrophil extracellular trap (NET) activation and release (NETosis) are key processes for capturing and killing bacteria, concomitantly enhanced macrophage clearance activity, including phagocytosis and autophagy, may eliminate NETs early enough to prevent severe tissue damage. Our study not only suggests a possible approach for applying cathelicidin-BF in vivo but also provides a possible defense strategy against multidrug-resistant pathogens, i.e., efficiently activation of innate immunity.
Collapse
Affiliation(s)
- Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jialong Qi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Bin Shan
- Department of Clinical Lab, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiyu Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Fulan Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hanghang Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Mingcui Yuan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hongxian Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shumei Jin
- Yunnan Institute of Materia Medica, Kunming, China
| | - Fei Wu
- Department of Occupational Disease, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Yanbing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| |
Collapse
|
27
|
Zhang F, Guo ZL, Chen Y, Li L, Yu HN, Wang YP. Effects of C-terminal amidation and heptapeptide ring on the biological activities and advanced structure of amurin-9KY, a novel antimicrobial peptide identified from the brown frog, Rana kunyuensis. Zool Res 2018; 40:198-204. [PMID: 30127331 PMCID: PMC6591156 DOI: 10.24272/j.issn.2095-8137.2018.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain, Yantai, China. In the current study, a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP), designated as amurin-9KY, was cloned from synthesized double-strand skin cDNA of R. kunyuensis. The amurin-9KY precursor was composed of 62 amino acid (aa) residues, whereas the mature peptide was composed of 14 aa and contained two cysteines forming a C-terminal heptapeptide ring (Rana box domain) and an amidated C-terminus. These structural characters represent a novel amphibian AMP family. Although amurin-9KY exhibited high similarity to the already identified amurin-9AM from R. amurensis, little is known about the structures and activities of amurin-9 family AMPs so far. Therefore, amurin-9KY and its three derivatives (amurin-9KY1–3) were designed and synthesized. The structures and activities were examined to evaluate the influence of C-terminal amidation and the heptapeptide ring on the activities and structure of amurin-9KY. Results indicated that C-terminal amidation was essential for antimicrobial activity, whereas both C-terminal amidation and the heptapeptide ring played roles in the low hemolytic activity. Circular dichroism (CD) spectra showed that the four peptides adopted an α-helical conformation in THF/H2O (v/v 1:1) solution, but a random coil in aqueous solution. Elimination of the C-terminal heptapeptide ring generated two free cysteine residues with unpaired thiol groups, which greatly increased the concentration-dependent anti-oxidant activity. Scanning electron microscopy (SEM) was also performed to determine the possible bactericidal mechanisms.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Zhi-Lai Guo
- School of Life Sciences, Guizhou Normal University, Guiyang Guizhou 550001, China
| | - Yan Chen
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Li Li
- School of Life Sciences, Guizhou Normal University, Guiyang Guizhou 550001, China
| | - Hai-Ning Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian Liaoning 116023, China; E-mail:
| | - Yi-Peng Wang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China; E-mail:
| |
Collapse
|