1
|
Guo C, Lu Y. Cometabolism of ferrihydrite reduction and methyl-dismutating methanogenesis by Methanosarcina mazei. Appl Environ Microbiol 2025; 91:e0223824. [PMID: 39945533 PMCID: PMC11921357 DOI: 10.1128/aem.02238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/29/2024] [Indexed: 03/20/2025] Open
Abstract
Recent discoveries have shown that some Methanosarcina species can reduce Fe(III), reshaping our understanding of Methanosarcina ecophysiology. However, the specific minerals reduced, the products formed, and the underlying metabolic mechanisms remain elusive. Here, we report on the cometabolic process of Fe(III) reduction and methylotrophic methanogenesis in Methanosarcina mazei zm-15. Biogeochemical and mineralogical analyses were conducted to investigate Fe(III) reduction from three mineral preparations-ferrihydrite, goethite, and hematite. The results revealed that 38% of the 6 mM Fe(III) in ferrihydrite was reduced within 4 days, and this percentage increased to 75% with the addition of 100 µM anthraquinone-2,6-disulfonate (AQDS). Active Fe(III) reduction occurred immediately and preceded rapid methanogenesis. The addition of ferrihydrite and AQDS together significantly enhanced the maximal CH₄ production rate. However, Fe(III) reduction did not occur in goethite or hematite, even with the addition of 100 µM AQDS. Vivianite was identified as the major product from ferrihydrite reduction. Transcriptomic analysis revealed that gene expression related to the oxidation branch of the methyl-dismutating pathway and the membrane-associated electron transport chain (ETC) was significantly upregulated, whereas the expressions of genes associated with the reduction branch of the methyl-dismutating pathway were downregulated. In conclusion, M. mazei zm-15 demonstrates a strong ability to reduce poorly crystalline ferrihydrite, but not highly crystalline goethite and hematite. During the cometabolism of Fe(III) reduction and CH₄ production from methanol, the methyl-oxidation and membrane ETC pathways are enhanced, while the methyl-reduction pathway is downregulated. The mechanism of electron relay from cells to ferrihydrite, however, remains unclear and warrants further investigation.IMPORTANCEThe recent discovery that certain Methanosarcina species can grow by reducing Fe(III) challenges the traditional understanding of methanogens. However, the underlying metabolic mechanisms remain largely unexplored. Using a combination of biogeochemical, mineralogical, and microbiological approaches, we investigated the ability of Methanosarcina mazei zm-15. It exhibited a strong capacity to reduce poorly crystalline ferrihydrite but not highly crystalline goethite and hematite. The formation of vivianite from ferrihydrite reduction is likely due to the high rate of Fe(III) reduction and the presence of excess phosphorus in incubations. During the cometabolism of Fe(III) reduction and CH4 production from methanol, the methyl-oxidation and membrane electron transport pathways are upregulated, while the methyl-reduction pathway is downregulated. Our research uncovers a differential regulation of metabolic pathways during the cometabolism of Fe(III) reduction and CH4 production from methanol. The findings shed new light on the adaptive strategies employed by M. mazei in environments with the presence of Fe(III) and suggestthat Methanosarcina can play a significant role in methane production and iron cycling in natural environments.
Collapse
Affiliation(s)
- Chaojie Guo
- College of Urban and Environmental Science, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Science, Peking University, Beijing, China
| |
Collapse
|
2
|
Singh A, Schnürer A, Dolfing J, Westerholm M. Syntrophic entanglements for propionate and acetate oxidation under thermophilic and high-ammonia conditions. THE ISME JOURNAL 2023; 17:1966-1978. [PMID: 37679429 PMCID: PMC10579422 DOI: 10.1038/s41396-023-01504-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Propionate is a key intermediate in anaerobic digestion processes and often accumulates in association with perturbations, such as elevated levels of ammonia. Under such conditions, syntrophic ammonia-tolerant microorganisms play a key role in propionate degradation. Despite their importance, little is known about these syntrophic microorganisms and their cross-species interactions. Here, we present metagenomes and metatranscriptomic data for novel thermophilic and ammonia-tolerant syntrophic bacteria and the partner methanogens enriched in propionate-fed reactors. A metagenome for a novel bacterium for which we propose the provisional name 'Candidatus Thermosyntrophopropionicum ammoniitolerans' was recovered, together with mapping of its highly expressed methylmalonyl-CoA pathway for syntrophic propionate degradation. Acetate was degraded by a novel thermophilic syntrophic acetate-oxidising candidate bacterium. Electron removal associated with syntrophic propionate and acetate oxidation was mediated by the hydrogen/formate-utilising methanogens Methanoculleus sp. and Methanothermobacter sp., with the latter observed to be critical for efficient propionate degradation. Similar dependence on Methanothermobacter was not seen for acetate degradation. Expression-based analyses indicated use of both H2 and formate for electron transfer, including cross-species reciprocation with sulphuric compounds and microbial nanotube-mediated interspecies interactions. Batch cultivation demonstrated degradation rates of up to 0.16 g propionate L-1 day-1 at hydrogen partial pressure 4-30 Pa and available energy was around -20 mol-1 propionate. These observations outline the multiple syntrophic interactions required for propionate oxidation and represent a first step in increasing knowledge of acid accumulation in high-ammonia biogas production systems.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle-upon-Tyne, NE18QH, UK
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
3
|
Jin Y, Lu Y. Syntrophic Propionate Oxidation: One of the Rate-Limiting Steps of Organic Matter Decomposition in Anoxic Environments. Appl Environ Microbiol 2023; 89:e0038423. [PMID: 37097179 PMCID: PMC10231205 DOI: 10.1128/aem.00384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Syntrophic propionate oxidation is one of the rate-limiting steps during anaerobic decomposition of organic matter in anoxic environments. Syntrophic propionate-oxidizing bacteria (SPOB) are members of the "rare biosphere" living at the edge of the thermodynamic limit in most natural habitats. Hitherto, only 10 bacterial species capable of syntrophic propionate oxidization have been identified. SPOB employ different metabolisms for propionate oxidation (e.g., methylmalonyl-CoA pathway and C6 dismutation pathway) and show diverse life strategies (e.g., obligately and facultatively syntrophic lifestyle). The flavin-based electron bifurcation/confurcation (FBEB/C) systems have been proposed to help solve the thermodynamic dilemma during the formation of the low-potential products H2 and formate. Molecular ecological approaches, such as DNA stable isotope probing (DNA-SIP) and metagenomics, have been used to detect SPOB in natural environments. Furthermore, the biogeographical pattern of SPOB has been recently described in paddy soils. A comprehensive understanding of SPOB is essential for better predicting and managing organic matter decomposition and carbon cycling in anoxic environments. In this review, we described the critical role of syntrophic propionate oxidation in anaerobic decomposition of organic matter, phylogenetic and metabolic diversity, life strategies and ecophysiology, composition of syntrophic partners, and pattern of biogeographic distribution of SPOB in natural environments. We ended up with a few perspectives for future research.
Collapse
Affiliation(s)
- Yidan Jin
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Stevens KM, Warnecke T. Histone variants in archaea - An undiscovered country. Semin Cell Dev Biol 2023; 135:50-58. [PMID: 35221208 DOI: 10.1016/j.semcdb.2022.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/20/2022] [Accepted: 02/20/2022] [Indexed: 12/23/2022]
Abstract
Exchanging core histones in the nucleosome for paralogous variants can have important functional ramifications. Many of these variants, and their physiological roles, have been characterized in exquisite detail in model eukaryotes, including humans. In comparison, our knowledge of histone biology in archaea remains rudimentary. This is true in particular for our knowledge of histone variants. Many archaea encode several histone genes that differ in sequence, but do these paralogs make distinct, adaptive contributions to genome organization and regulation in a manner comparable to eukaryotes? Below, we review what we know about histone variants in archaea at the level of structure, regulation, and evolution. In all areas, our knowledge pales when compared to the wealth of insight that has been gathered for eukaryotes. Recent findings, however, provide tantalizing glimpses into a rich and largely undiscovered country that is at times familiar and eukaryote-like and at times strange and uniquely archaeal. We sketch a preliminary roadmap for further exploration of this country; an undertaking that may ultimately shed light not only on chromatin biology in archaea but also on the origin of histone-based chromatin in eukaryotes.
Collapse
Affiliation(s)
- Kathryn M Stevens
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Wang Z, Zhang W, Xing X, Li X, Zheng D, Bao H, Xing L. Effects of ferroferric oxide on propionate methanogenesis in sequencing batch reactors: Microbial community structure and metagenomic analysis. BIORESOURCE TECHNOLOGY 2022; 363:127909. [PMID: 36089127 DOI: 10.1016/j.biortech.2022.127909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of ferroferric oxide (Fe3O4) on propionate methanogenesis in anaerobic sequencing batch reactor (ASBR). Compared to ASBRC (without Fe3O4 addition), the addition of 10 g/L Fe3O4 (ASBRFe) decreased the maximum methane production rate by 69.6 % when propionate was used as the sole substrate. The addition of Fe3O4 reduced the contents of humic substances, riboflavin and nicotinamide adenine dinucleotide in extracellular polymeric substances. Therefore, Fe3O4 inhibited interspecies electron transfer of microorganisms through electronic mediators. Microbial community analysis revealed that Fe3O4 addition increased the relative abundance of acetate oxidizing bacterium (Mesotoga), but decreased the abundance of hydrogenotrophic methanogen (Methanobacterium). Further metagenomics analysis indicated that Fe3O4 increased the abundance of acetate oxidation genes and decreased that of hydrogenotrophic methanogenesis, quorum sensing and V/A-type ATPase genes. Thus, Fe3O4 reduced propionate methanogenesis during anaerobic digestion. The overall results indicate that Fe3O4 addition inhibits methanogenesis for treatment of propionate-contaminated wastewater in ASBR.
Collapse
Affiliation(s)
- Zifan Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weikang Zhang
- Tong Yuan Design Group Co., Ltd., Jinan 250000, China
| | - Xiujuan Xing
- Everbright Water (Jinan) Co., Ltd., Jinan 250000, China
| | - Xiu Li
- Chengdu Botanical Garden, Chengdu 610000, China
| | - Derui Zheng
- Shandong Urban and Rural Planning Design Research Institute Co., Ltd., Jinan 250000, China
| | - Huanyu Bao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lizhen Xing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
6
|
Dyksma S, Gallert C. Effect of magnetite addition on transcriptional profiles of syntrophic Bacteria and Archaea during anaerobic digestion of propionate in wastewater sludge. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:664-678. [PMID: 35615789 DOI: 10.1111/1758-2229.13080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 05/23/2023]
Abstract
Anaerobic digestion (AD) is an important technology for the effective conversion of waste and wastewater to methane. Here, syntrophic bacteria transfer molecular hydrogen (H2 ), formate, or directly supply electrons (direct interspecies electron transfer, DIET) to the methanogens. Evidence is accumulating that the methanation of short-chain fatty acids can be enhanced by the addition of conductive material to the anaerobic digester, which has often been attributed to the stimulation of DIET. Since little is known about the transcriptional response of a complex AD microbial community to the addition of conductive material, we added magnetite to propionate-fed laboratory-scale reactors that were inoculated with wastewater sludge. Compared to the control reactors, the magnetite-amended reactors showed improved methanation of propionate. A genome-centric metatranscriptomics approach identified the active SCFA-oxidizing bacteria that affiliated with Firmicutes, Desulfobacterota and Cloacimonadota. The transcriptional profiles revealed that the syntrophic bacteria transferred acetate, H2 and formate to acetoclastic and hydrogenotrophic methanogens, whereas transcription of potential determinants for DIET such as conductive pili and outer-membrane cytochromes did not significantly change with magnetite addition. Overall, changes in the transcriptional profiles of syntrophic Bacteria and Archaea in propionate-fed lab-scale reactors amended with magnetite refute a major role of DIET in the studied system.
Collapse
Affiliation(s)
- Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| | - Claudia Gallert
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| |
Collapse
|
7
|
Westerholm M, Calusinska M, Dolfing J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev 2022; 46:fuab057. [PMID: 34875063 PMCID: PMC8892533 DOI: 10.1093/femsre/fuab057] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, SE-75007 Uppsala, Sweden
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Wynne Jones 2.11, Ellison Place, Newcastle-upon-Tyne NE1 8QH, UK
| |
Collapse
|
8
|
Liu C, Huang H, Duan X, Chen Y. Integrated Metagenomic and Metaproteomic Analyses Unravel Ammonia Toxicity to Active Methanogens and Syntrophs, Enzyme Synthesis, and Key Enzymes in Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14817-14827. [PMID: 34657430 DOI: 10.1021/acs.est.1c00797] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
During anaerobic digestion, the active microbiome synthesizes enzymes by transcription and translation, and then enzymes catalyze multistep bioconversions of substrates before methane being produced. However, little information is available on how ammonia affects truly active microbes containing the expressed enzymes, enzyme synthesis, and key enzymes. In this study, an integrated metagenomic and metaproteomic investigation showed that ammonia suppressed not only the obligate acetotrophic methanogens but also the syntrophic propionate and butyrate oxidation taxa and their assistant bacteria (genus Desulfovibrio), which declined the biotransformations of propionate and butyrate → acetate → methane. Although the total population of the hydrolyzing and acidifying bacteria was not affected by ammonia, the bacteria with ammonia resistance increased. Our study also revealed that ammonia restrained the enzyme synthesis process by inhibiting the RNA polymerase (subunits A' and D) during transcription and the ribosome (large (L3, L12, L13, L22, and L25) and small (S3, S3Ae, and S7) ribosomal subunits) and aminoacyl-tRNA synthesis (aspartate-tRNA synthetase) in translation. Further investigation suggested that methylmalonyl-CoA mutase, acetyl-CoA C-acetyltransferase, and CH3-CoM reductase, which regulate propionate and butyrate oxidation and acetoclastic methanation, were significantly downregulated by ammonia. This study provides intrinsic insights into the fundamental mechanisms of how ammonia inhibits anaerobic digestion.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
9
|
Cong S, Xu Y, Lu Y. Growth Coordination Between Butyrate-Oxidizing Syntrophs and Hydrogenotrophic Methanogens. Front Microbiol 2021; 12:742531. [PMID: 34603271 PMCID: PMC8481629 DOI: 10.3389/fmicb.2021.742531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Syntrophy is a thermodynamically required mutualistic cooperation between fatty acid-oxidizing bacteria and methanogens that plays the important role in organic decomposition and methanogenesis in anoxic environments. In this study, three experiments were conducted to evaluate the cell-to-cell interaction in a thermophilic coculture consisting of Syntrophothermus lipocalidus and Methanocella conradii and a mesophilic coculture consisting of Syntrophomonas wolfei and Methanococcus maripaludis. First, syntrophs and methanogens were inoculated at different initial cell ratios to evaluate the growth synchronization. The quantitative PCR analysis revealed that the organism with a lower relative abundance at the beginning always grew faster, and the cell ratio converged over time to relative constant values in both the thermophilic and mesophilic cocultures. Next, intermittent ultrasound and constant shaking treatments were used to evaluate the influence of physical disturbance on microbial aggregation in the mesophilic coculture. The fluorescence in situ hybridization and scanning electron microscopy revealed that the tendency of syntrophic aggregation was not affected by the physical disturbances, although the activity was slightly depressed. Syntrophomonas dominated in the initial microbial aggregates, which, however, did not grow until Methanococcus was attached and increased to a significant extent, indicating the local growth synchronization during the formation and maturation of syntrophic aggregates. Last, microfluidic experiments revealed that whether or not Syntrophomonas or Methanococcus was loaded first, the second organism preferred moving to the place where the first organism was located, suggesting the cell-to-cell attraction between Syntrophomonas and Methanococcus. Collectively, our study demonstrated the growth synchronization and cell-to-cell attraction between the butyrate-oxidizing bacteria and methanogens for optimizing the syntrophic cooperation.
Collapse
Affiliation(s)
- Shuqi Cong
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yiqin Xu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Singh A, Schnürer A, Westerholm M. Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level. Environ Microbiol 2021; 23:1620-1637. [PMID: 33400377 DOI: 10.1111/1462-2920.15388] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/15/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023]
Abstract
Inefficient syntrophic propionate degradation causes severe operating disturbances and reduces biogas productivity in many high-ammonia anaerobic digesters, but propionate-degrading microorganisms in these systems remain unknown. Here, we identified candidate ammonia-tolerant syntrophic propionate-oxidising bacteria using propionate enrichment at high ammonia levels (0.7-0.8 g NH3 L-1 ) in continuously-fed reactors. We reconstructed 30 high-quality metagenome-assembled genomes (MAGs) from the propionate-fed reactors, which revealed two novel species from the families Peptococcaceae and Desulfobulbaceae as syntrophic propionate-oxidising candidates. Both MAGs possess genomic potential for the propionate oxidation and electron transfer required for syntrophic energy conservation and, similar to ammonia-tolerant acetate degrading syntrophs, both MAGs contain genes predicted to link to ammonia and pH tolerance. Based on relative abundance, a Peptococcaceae sp. appeared to be the main propionate degrader and has been given the provisional name "Candidatus Syntrophopropionicum ammoniitolerans". This bacterium was also found in high-ammonia biogas digesters, using quantitative PCR. Acetate was degraded by syntrophic acetate-oxidising bacteria and the hydrogenotrophic methanogenic community consisted of Methanoculleus bourgensis and a yet to be characterised Methanoculleus sp. This work provides knowledge of cooperating syntrophic species in high-ammonia systems and reveals that ammonia-tolerant syntrophic propionate-degrading populations share common features, but diverge genomically and taxonomically from known species.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| |
Collapse
|
11
|
Khafipour A, Jordaan EM, Flores-Orozco D, Khafipour E, Levin DB, Sparling R, Cicek N. Response of Microbial Community to Induced Failure of Anaerobic Digesters Through Overloading With Propionic Acid Followed by Process Recovery. Front Bioeng Biotechnol 2020; 8:604838. [PMID: 33363133 PMCID: PMC7759631 DOI: 10.3389/fbioe.2020.604838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023] Open
Abstract
In order to effectively use microbial-based strategies to manage anaerobic digesters, it is necessary to distinguish between community shifts that are part of the natural dynamic of the system and shifts caused by environmental or operational disturbances. The objective of this research study was to evaluate the significance of changes in the microbial community of anaerobic digesters during failure in correlation to operational parameters such as an organic acid overload. Five continuously stirred 0.5 L reactors were set-up as semi-continuously-fed, mesophilic dairy manure digesters with a 30-day hydraulic retention time. After a 120-day stabilization period, two digesters were kept as controls, while the organic loading rates in the triplicate set were increased step-wise to ultimately provide a shock-load leading to failure using propionic acid spikes. Acidosis resulting in near cessation of biogas and termination of methane production occurred between 4 and 7 weeks, after which all the digesters continued to be fed only dairy manure. The shock loading of propionic acid led to an accumulation of mainly acetate and propionate, with low levels of iso-butyrate, butyrate, iso-valerate, and valerate. High-throughput Illumina sequencing of the V4 region of the bacterial and archaeal 16S rRNA gene in digester samples showed a significant change in the microbial community composition during propionic acid overload, followed by a return to the original composition with regular feedstock. Bacterial genera whose relative abundance decreased during the inhibition stage included Sedimentibacter, Syntrophomonas, TSCOR003.O20, and Marinilabiaceae, while the relative abundance of Lachnospiraceae, Ruminococcus, Mogibacteriaceae, Pyramidobacter, and Bacteroides increased. The relative abundance of dominant methanogens, Methanosarcina and Methanobacterium, although initially resistant, were decreased (from 91.71 to 12.14% and from 2.98 to 0.73%, respectively) during inhibition, while Methanobrevibacter and Methanosphaera that were prominent in the manure feedstock increased from 17.36 to 79.45% and from 0.14 to 1.12%, respectively. Shifts in bacterial and archaeal compositions, back to their pre-shock steady state after failure, highlight the digester's microbial resilience and recovery potential.
Collapse
Affiliation(s)
- Azin Khafipour
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Elsie M Jordaan
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Flores-Orozco
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Yan M, Treu L, Zhu X, Tian H, Basile A, Fotidis IA, Campanaro S, Angelidaki I. Insights into Ammonia Adaptation and Methanogenic Precursor Oxidation by Genome-Centric Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12568-12582. [PMID: 32852203 PMCID: PMC8154354 DOI: 10.1021/acs.est.0c01945] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 05/04/2023]
Abstract
Ammonia released from the degradation of protein and/or urea usually leads to suboptimal anaerobic digestion (AD) when N-rich organic waste is used. However, the insights behind the differential ammonia tolerance of anaerobic microbiomes remain an enigma. In this study, the cultivation in synthetic medium with different carbon sources (acetate, methanol, formate, and H2/CO2) shaped a common initial inoculum into four unique ammonia-tolerant syntrophic populations. Specifically, various levels of ammonia tolerance were observed: consortia fed with methanol and H2/CO2 could grow at ammonia levels up to 7.25 g NH+-N/L, whereas the other two groups (formate and acetate) only thrived at 5.25 and 4.25 g NH+-N/L, respectively. Metabolic reconstruction highlighted that this divergent microbiome might be achieved by complementary metabolisms to maximize biomethane recovery from carbon sources, thus indicating the importance of the syntrophic community in the AD of N-rich substrates. Besides, sodium/proton antiporter operon, osmoprotectant/K+ regulator, and osmoprotectant synthesis operon may function as the main drivers of adaptation to the ammonia stress. Moreover, energy from the substrate-level phosphorylation and multiple energy-converting hydrogenases (e.g., Ech and Eha) could aid methanogens to balance the energy request for anabolic activities and contribute to thriving when exposed to high ammonia levels.
Collapse
Affiliation(s)
- Miao Yan
- Department of Environmental
Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kongens Lyngby, Denmark
| | - Laura Treu
- Department of Biology, University
of Padova, Via U. Bassi
58/b, 35121 Padova, Italy
| | - Xinyu Zhu
- Department of Environmental
Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kongens Lyngby, Denmark
| | - Hailin Tian
- Department of Environmental
Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kongens Lyngby, Denmark
- NUS Environmental Research Institute, National
University of Singapore, 1 Create Way, 138602, Singapore
| | - Arianna Basile
- Department of Biology, University
of Padova, Via U. Bassi
58/b, 35121 Padova, Italy
| | - Ioannis A. Fotidis
- Department of Environmental
Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kongens Lyngby, Denmark
- School of Civil Engineering, Southeast University, 210096 Nanjing, China
| | - Stefano Campanaro
- Department of Biology, University
of Padova, Via U. Bassi
58/b, 35121 Padova, Italy
- CRIBI Biotechnology Center, University of Padua, 35131 Padua, Italy
| | - Irini Angelidaki
- Department of Environmental
Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Zhang CJ, Pan J, Liu Y, Duan CH, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. MICROBIOME 2020; 8:94. [PMID: 32552798 PMCID: PMC7302380 DOI: 10.1186/s40168-020-00876-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/26/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Methanogens are crucial to global methane budget and carbon cycling. Methanogens from the phylum Euryarchaeota are currently classified into one class and seven orders, including two novel methanogen taxa, Methanofastidiosa and Methanomassiliicoccales. The relative importance of the novel methanogens to methane production in the natural environment is poorly understood. RESULTS Here, we used a combined metagenomic and metatranscriptomic approach to investigate the metabolic activity of methanogens in mangrove sediments in Futian Nature Reserve, Shenzhen. We obtained 13 metagenome-assembled genomes (MAGs) representing one class (Methanofastidiosa) and five orders (Methanomassiliicoccales, Methanomicrobiales, Methanobacteriales, Methanocellales, and Methanosarcinales) of methanogens, including the two novel methanogens. Comprehensive annotation indicated the presence of an H2-dependent methylotrophic methanogenesis pathway in Methanofastidiosa and Methanomassiliicoccales. Based on the functional gene analysis, hydrogenotrophic and methylotrophic methanogenesis are the dominant pathways in mangrove sediments. MAG mapping revealed that hydrogenotrophic Methanomicrobiales were the most abundant methanogens and that methylotrophic Methanomassiliicoccales were the most active methanogens in the analyzed sediment profile, suggesting their important roles in methane production. CONCLUSIONS Partial or near-complete genomes of two novel methanogen taxa, Methanofastidiosa and Methanomassiliicoccales, in natural environments were recovered and analyzed here for the first time. The presented findings highlight the ecological importance of the two novel methanogens and complement knowledge of how methane is produced in mangrove ecosystem. This study implies that two novel methanogens play a vital role in carbon cycle. Video Abstract.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chang-Hai Duan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
14
|
Zhang L, Long B, Wu J, Cheng Y, Zhang B, Zeng Y, Huang S, Zeng M. Evolution of microbial community during dry storage and recovery of aerobic granular sludge. Heliyon 2019; 5:e03023. [PMID: 31890963 PMCID: PMC6926229 DOI: 10.1016/j.heliyon.2019.e03023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/18/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Aerobic granular sludge (AGS) was imbedded in agar and stored at 4 °C for 30 days, and then the stored granules were recovered in a sequencing batch reactor fed real wastewater within 11 days. Variations in microbial community compositions were investigated during dry storage and recovery of AGS, aiming to elucidate the mechanism of granular stability loss and recovery. The storage and recovery of AGS involved microbial community evolution. The dominant bacterial genera of the mature AGS were Zoogloea (relative abundance of 22.39%), Thauera (16.03%) and Clostridium_sensu_stricto (11.17%), and those of the stored granules were Acidovorax (26.79%), Macellibacteroides (12.83%) and Pseudoxanthomonas (5.69%), respectively. However, the dominant genera were Streptococcus (43.64%), Clostridium_sensu_stricto (12.3.6%) and Lactococcus (11.47%) in the recovered AGS. Methanogens were always the dominant archaeal species in mature AGS (93.01%), stored granules (99.99%) and the recovered AGS (94.84%). Facultative anaerobes and anaerobes proliferated and dominated in the stored granules, and their metabolic activities gradually led to granular structure destruction and property deterioration. However, the stored granules served as carriers for the microbes originated from the real septic tank wastewater during recovery. They proliferated rapidly and secreted a large number of extracellular polymeric substances which helped to recover the granular structure in 11 days.
Collapse
Affiliation(s)
- Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Bei Long
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Junfeng Wu
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Mingyue Road, Pingdingshan, 467036, Henan, China
| | - Yuanyuan Cheng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Binchao Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Yu Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Sinong Huang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| | - Mingjing Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
15
|
Xia X, Zhang J, Song T, Lu Y. Stimulation of Smithella-dominating propionate oxidation in a sediment enrichment by magnetite and carbon nanotubes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:236-248. [PMID: 30790444 DOI: 10.1111/1758-2229.12737] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have shown that application of conductive materials including magnetite and carbon nanotubes (CNTs) can promote the methanogenic decomposition of short-chain fatty acids and even more complex organic matter in anaerobic digesters and natural habitats. The linkage to microbial identity and the mechanisms, however, remain poorly understood. Here, we evaluate the effects of nanoscale magnetite (nanoFe3 O4 ) and multiwalled CNTs on the syntrophic oxidation of propionate in an enrichment obtained from lake sediment. The microbial populations were composed mainly of Smithella, Syntrophomonas, Methanosaeta, Methanosarcina and Methanoregula. In addition to acetate, butyrate was transiently accumulated indicating that propionate was oxidized by Smithella via the dismutation pathway and part of the leaked butyrate was oxidized by Syntrophomonas. Propionate oxidation and CH4 production were significantly accelerated in the presence of nanoFe3 O4 and CNTs. While propionate oxidation was suppressed upon H2 application and suspended completely upon formate application in the control, this suppressive effect was substantially compromised in the presence of nanoFe3 O4 and CNTs. The tests on hydrogenotrophic methanogenesis of a pure culture methanogen and of the enrichment culture without propionate showed negative effect by both materials. The positive effect of nanoFe3 O4 disappeared when it was insulated by surface-coating with silica. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated the extensive formation of microbial cell-conductive material mixture aggregates. Our results suggest that direct interspecies electron transfer is likely activated by the conductive materials and operates in concert with H2 /formate-dependent electron transfer for syntrophic propionate oxidation in the sediment enrichment.
Collapse
Affiliation(s)
- Xingxuan Xia
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianchao Zhang
- Institute of Surface-Earth System Science, Tianjin University, 300072, China
| | - Tianze Song
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yahai Lu
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Hidalgo-Ahumada CAP, Nobu MK, Narihiro T, Tamaki H, Liu WT, Kamagata Y, Stams AJM, Imachi H, Sousa DZ. Novel energy conservation strategies and behaviour of Pelotomaculum schinkii driving syntrophic propionate catabolism. Environ Microbiol 2018; 20:4503-4511. [PMID: 30126076 DOI: 10.1111/1462-2920.14388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 11/29/2022]
Abstract
Under methanogenic conditions, short-chain fatty acids are common byproducts from degradation of organic compounds and conversion of these acids is an important component of the global carbon cycle. Due to the thermodynamic difficulty of propionate degradation, this process requires syntrophic interaction between a bacterium and partner methanogen; however, the metabolic strategies and behaviour involved are not fully understood. In this study, the first genome analysis of obligately syntrophic propionate degraders (Pelotomaculum schinkii HH and P. propionicicum MGP) and comparison with other syntrophic propionate degrader genomes elucidated novel components of energy metabolism behind Pelotomaculum propionate oxidation. Combined with transcriptomic examination of P. schinkii behaviour in co-culture with Methanospirillum hungatei, we found that formate may be the preferred electron carrier for P. schinkii syntrophy. Propionate-derived menaquinol may be primarily re-oxidized to formate, and energy was conserved during formate generation through newly proposed proton-pumping formate extrusion. P. schinkii did not overexpress conventional energy metabolism associated with a model syntrophic propionate degrader Syntrophobacter fumaroxidans MPOB (i.e., CoA transferase, Fix and Rnf). We also found that P. schinkii and the partner methanogen may also interact through flagellar contact and amino acid and fructose exchange. These findings provide new understanding of syntrophic energy acquisition and interactions.
Collapse
Affiliation(s)
- Catalina A P Hidalgo-Ahumada
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Wageningen, The Netherlands
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL, 61801, USA
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Wageningen, The Netherlands.,Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Wageningen, The Netherlands
| |
Collapse
|