1
|
Yang K, Zhang L, Ruiz-Valencia A, Song X, Vogel TM, Zhang X. Heterogeneity in the Composition and Catabolism of Indigenous Microbiomes in Subsurface Soils Cocontaminated with BTEX and Chlorinated Aliphatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4540-4550. [PMID: 39993154 DOI: 10.1021/acs.est.4c10071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The effectiveness of in situ bioremediation can be affected by an insufficient understanding of high site/soil heterogeneity, especially in cocontaminated soils and sediments. In this study, samples from multiple locations within a relatively small area (20 × 20 m2) contaminated with benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) were compared to examine their physicochemical and microbial properties. Unsupervised clustering analysis of 16S rRNA gene amplicon and metagenome shotgun sequencing data indicates that the indigenous community differentiated into three distinct patterns. In Cluster 1, Pseudomonas, with multiple monooxygenases and glutathione S-transferase (GST), was enriched in samples contaminated with high concentrations of BTEX and CAHs. Cluster 2 contained a high fraction of cometabolic degraders. Cluster 3 was dominated by Ralstonia and organohalide-respiring bacteria (OHRBs) mediating the reductive dechlorination of CAHs. Significant differences in composition and function among microbiomes were attributed to the differential distribution of organic pollutants, even in such a small area. Incorporating genomic features with physicochemical data can significantly enhance the understanding of the heterogeneities in soil and their impacts on microbial communities, thereby providing valuable information for the optimization of bioremediation strategies.
Collapse
Affiliation(s)
- Kaiwen Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Azariel Ruiz-Valencia
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 418, VetAgro Sup, Universite Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Xin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Timothy M Vogel
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 418, VetAgro Sup, Universite Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Cruciata I, Scirè Calabrisotto L, Carpani G, Poppa L, Modica A, Pace A, Catania V, Quatrini P. 1,2-DCA biodegradation potential of an aquifer assessed in situ and in aerobic and anaerobic microcosms. ENVIRONMENTAL MICROBIOME 2024; 19:106. [PMID: 39696724 DOI: 10.1186/s40793-024-00650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND 1,2-dichloroethane (1,2-DCA) biodegradation can occur through aerobic or anaerobic pathways that can be exploited in bioremediation strategies. Bioremediation interventions are site specific and generally based on anaerobic pathways, nevertheless expanding knowledge on proper conditions favoring the biodegradation and especially on 1,2-DCA degrading microorganisms is crucial. In this work the intrinsic biodegradation potential of an aquifer impacted by Chlorinated Aliphatic Hydrocarbons (mainly 1,2-DCA) was evaluated by characterizing the aquifer microbiome across space and time and by setting up biostimulation treatments in microcosms under different aerobic and anaerobic conditions, in parallel. RESULTS The microbial profiling of the aquifer revealed noticeable alpha and beta diversity across the sampling sites within the aquifer and strong fluctuations over time. Surprisingly both the anaerobic and aerobic biostimulation treatments led to the successful removal of 1,2-DCA in microcosms, the enrichment of known 1,2-DCA degraders and the detection of reductive or hydrolytic dehalogenases. Ancylobacter and Starkeya were enriched in aerobic microcosms. Desulfovibrio and Desulfuromonas, known as perchloroethylene degraders, were enriched in anaerobic microcosms, suggesting they could be yet unknown 1,2-DCA respirers. CONCLUSIONS Our results demonstrate the occurrence of both aerobic and anaerobic bioremediation potential in the aquifer despite its negative redox potential. Due to the feasibility of direct oxidation with oxygen insufflation, we propose that an enhanced bioremediation strategy based on direct oxidation of 1,2-DCA could be applied to the contaminated aquifer as an ecofriendly, efficient and cost-effective approach as an alternative to anaerobic biodegradation.
Collapse
Affiliation(s)
- Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy
| | - Laura Scirè Calabrisotto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy.
- Department of Engineering, University of Palermo, Palermo, Italy.
| | - Giovanna Carpani
- Environmental and Biological Laboratories, Eni S.p.A, San Donato Milanese, MI, Italy
| | | | - Alfonso Modica
- Environmental Laboratory Services, Eni Rewind S.p.A, Priolo Gargallo, SR, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy
| | - Valentina Catania
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Botti A, Musmeci E, Negroni A, Capuozzo R, Fava F, Biagi E, Zanaroli G. Site-specific response of sediment microbial community to supplementation of polyhydroxyalkanoates as biostimulants for PCB reductive dechlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165485. [PMID: 37442469 DOI: 10.1016/j.scitotenv.2023.165485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The use of biodegradable plastics is constantly raising, increasing the likeliness for these polymers to end up in the environment. Environmental applications foreseeing the intentional release of biodegradable plastics have been also recently proposed, e.g., for polyhydroxyalkanoates (PHAs) acting as slow hydrogen releasing compounds to stimulate microbial reductive dehalogenation processes. However, the effects of their release into the environment on the ecosystems still need to be thoroughly explored. In this work, the use of PHAs to enhance the microbial reductive dechlorination of polychlorobiphenyls (PCBs) and their impact on the metabolic and compositional features of the resident microbial community have been investigated in laboratory microcosms of a polluted marine sediment from Mar Piccolo (Taranto, Italy), and compared with recent findings on a different contaminated marine sediment from Pialassa della Baiona (Ravenna, Italy). A decreased biostimulation efficiency of PHAs on PCBs reductive dechlorination was observed in the sediment from Mar Piccolo, with respect to the sediment from Pialassa della Baiona, suggesting that the sediments' physical-chemical characteristics and/or the biodiversity and composition of its microbial community might play a key role in determining the outcome of this biostimulation strategy. Regardless of the sediment origin, PHAs were found to have a specific and pervasive effect on the sediment microbial community, reducing its biodiversity, defining a newly arranged microbial core of primary degraders and consequently affecting, in a site-specific way, the abundance of subdominant bacteria, possibly cross-feeders. Such potential to dramatically change the structure of autochthonous microbial communities should be carefully considered, since it might have secondary effects, e.g., on the natural biogeochemical cycles.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Rosaria Capuozzo
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
4
|
Liu X, Zhang L, Shen R, Lu Q, Zeng Q, Zhang X, He Z, Rossetti S, Wang S. Reciprocal Interactions of Abiotic and Biotic Dechlorination of Chloroethenes in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14036-14045. [PMID: 37665676 DOI: 10.1021/acs.est.3c04262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination. Organohalide-respiring bacteria (OHRB)-mediated dechlorination enhanced abiotic CEs-to-acetylene potential by providing dichloroethenes (DCEs) and trichloroethene (TCE) since chlorination extent determined CEs-to-acetylene potential with an order of trans-DCE > cis-DCE > TCE > tetrachloroethene/PCE. In contrast, FeS was shown to inhibit OHRB-mediated dechlorination, inhibition of which could be alleviated by the addition of soil humic substances. Moreover, sulfate-reducing bacteria and fermenting microorganisms affected FeS-mediated abiotic dechlorination by re-generation of FeS and providing short chain fatty acids, respectively. A new scenario was proposed to elucidate major abiotic and biotic processes and their reciprocal interactions in determining the fate of CEs in soil. Our results may guide the sustainable management of CE-contaminated sites by providing insights into interactions of the abiotic and biotic dechlorination in soil.
Collapse
Affiliation(s)
- Xiaokun Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Lian Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria, 00185 Roma, Italy
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Hung CM, Chen CW, Huang CP, Sheu DS, Dong CD. Microbial community structure and potential function associated with poly-3-hydroxybutyrate biopolymer-boosted activation of peroxymonosulfate for waste-activated sludge decontamination. BIORESOURCE TECHNOLOGY 2023; 369:128450. [PMID: 36496120 DOI: 10.1016/j.biortech.2022.128450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Excess waste-activated sludge (WAS) is a major biosolid management problem due to its biohazardous and recalcitrant content of phthalate esters (PAEs). This study aimed to assess the combined use of biopolymer, poly-3-hydroxybutyrate and peroxymonosulfate to degrade PAEs and decontaminate WAS. Poly-3-hydroxybutyrate was biosynthesized by Cupriavidus sp. L7L. The combined poly-3-hydroxybutyrate and peroxymonosulfate process removed 86 % of PAEs from WAS in 12 h. The carbonyl groups of poly-3-hydroxybutyrate were conducive to peroxymonosulfate activation leading to PAE degradation followed the radical pathway and surface-mediated electron transfer. Poly-3-hydroxybutyrate and peroxymonosulfate also enriched the PAE-biodegrading microbes in WAS. The microbial population and the functional composition in response to peroxymonosultate treatment was identified, with the genus Sulfurisoma being the most abundant. This synergistic treatment, i.e., advanced oxidation process, was augmented by highly promising microbial polyesters, exhibited important implications for WAS pretreatment toward circular bioeconomy that encompasses carbon-neutral biorefinery and mitigate pollution.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
6
|
Botti A, Biagi E, Musmeci E, Breglia A, Degli Esposti M, Fava F, Zanaroli G. Effect of polyhydroxyalkanoates on the microbial reductive dechlorination of polychlorinated biphenyls and competing anaerobic respirations in a marine microbial culture. MARINE POLLUTION BULLETIN 2023; 186:114458. [PMID: 36493518 DOI: 10.1016/j.marpolbul.2022.114458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The effect of polyhydroxyalkanoates (PHAs) with different composition on the reductive dechlorination activity of a polychlorinated biphenyls (PCBs) dechlorinating marine microbial community and on the activity of sulfate-reducing (SRB) and methanogenic bacteria (MB), were investigated in marine sediment microcosms and compared with the main monomer, 3-hydroxybutyric acid (3HB). Despite PHAs were fermented more slowly than 3HB, all electron donors stimulated constantly sulfate-reduction, methanogenesis and, only transiently, PCB reductive dechlorination. No relevant differences were observed with different compositions of PHAs. According to electron balances, the majority of the supplied electrons (50 %) were consumed by SRB and to less extent by MB (9-31 %), while a small percentage (0.01 %) was delivered to OHRB. In the studied conditions PHAs were confirmed as potential slow‑hydrogen releasing compounds in marine environment but their fermentation rate was sufficiently high to mainly stimulate the competitors of organohalide respring bacteria for electron donors.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Alessia Breglia
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Micaela Degli Esposti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
7
|
Dutta N, Usman M, Ashraf MA, Luo G, Zhang S. A critical review of recent advances in the bio-remediation of chlorinated substances by microbial dechlorinators. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
8
|
Tumolo M, Volpe A, Leone N, Cotugno P, De Paola D, Losacco D, Locaputo V, de Pinto MC, Uricchio VF, Ancona V. Enhanced Natural Attenuation of Groundwater Cr(VI) Pollution Using Electron Donors: Yeast Extract vs. Polyhydroxybutyrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159622. [PMID: 35954976 PMCID: PMC9367865 DOI: 10.3390/ijerph19159622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 02/08/2023]
Abstract
Remediation interventions based on the native bacteria’s capability to reduce Cr(VI) represent a valid strategy in terms of economic and environmental sustainability. In this study, a bioremediation test was carried out using viable microcosms set with groundwater and deep soil (4:1), collected from the saturated zone of an industrial site in Southern Italy that was polluted by ~130 µg L−1 of Cr(VI). Conditions simulating the potential natural attenuation were compared to the enhanced natural attenuation induced by supplying yeast extract or polyhydroxybutyrate. Sterile controls were set up to study the possible Cr(VI) abiotic reduction. No pollution attenuation was detected in the unamended viable reactors, whereas yeast extract provided the complete Cr(VI) removal in 7 days, and polyhydroxybutyrate allowed ~70% pollutant removal after 21 days. The incomplete abiotic removal of Cr(VI) was observed in sterile reactors amended with yeast extract, thus suggesting the essential role of native bacteria in Cr(VI) remediation. This was in accordance with the results of Pearson’s coefficient test, which revealed that Cr(VI) removal was positively correlated with microbial proliferation (n = 0.724), and also negatively correlated with pH (n = −0.646), dissolved oxygen (n = −0.828) and nitrate (n = −0.940). The relationships between the Cr(VI) removal and other monitored parameters were investigated by principal component analysis, which explained 76.71% of the total variance.
Collapse
Affiliation(s)
- Marina Tumolo
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
- Department of Biology, University of Bari, 70126 Bari, BA, Italy
- Correspondence: (M.T.); (V.A.)
| | - Angela Volpe
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | - Natalia Leone
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | - Pietro Cotugno
- Department of Chemistry, University of Bari, 70126 Bari, BA, Italy
| | - Domenico De Paola
- Institute of Biosciences and Bioresources, Italian National Research Council (IBBR-CNR), 70126 Bari, BA, Italy
| | - Daniela Losacco
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
- Department of Biology, University of Bari, 70126 Bari, BA, Italy
| | - Vito Locaputo
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | | | - Vito Felice Uricchio
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | - Valeria Ancona
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
- Correspondence: (M.T.); (V.A.)
| |
Collapse
|
9
|
Rossi MM, Alfano S, Amanat N, Andreini F, Lorini L, Martinelli A, Petrangeli Papini M. A Polyhydroxybutyrate (PHB)-Biochar Reactor for the Adsorption and Biodegradation of Trichloroethylene: Design and Startup Phase. Bioengineering (Basel) 2022; 9:bioengineering9050192. [PMID: 35621470 PMCID: PMC9137886 DOI: 10.3390/bioengineering9050192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, polyhydroxy butyrate (PHB) and biochar from pine wood (PWB) are used in a mini-pilot scale biological reactor (11.3 L of geometric volume) for trichloroethylene (TCE) removal (80 mgTCE/day and 6 L/day of flow rate). The PHB-biochar reactor was realized with two sequential reactive areas to simulate a multi-reactive permeable barrier. The PHB acts as an electron donor source in the first “fermentative” area. First, the thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses were performed. The PHB-powder and pellets have different purity (96% and 93% w/w) and thermal properties. These characteristics may affect the biodegradability of the biopolymer. In the second reactive zone, the PWB works as a Dehalococcoides support and adsorption material since its affinity for chlorinated compounds and the positive effect of the “coupled adsorption and biodegradation” process has been already verified. A specific dechlorinating enriched culture has been inoculated in the PWB zone to realize a coupled adsorption and biodegradation process. Organic acids were revealed since the beginning of the test, and during the monitoring period the reductive dichlorination anaerobic pathway was observed in the first zone; no chlorinated compounds were detected in the effluent thanks to the PWB adsorption capacity.
Collapse
Affiliation(s)
- Marta M. Rossi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
- Correspondence:
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Neda Amanat
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | | | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| |
Collapse
|
10
|
Ciampi P, Esposito C, Bartsch E, Alesi EJ, Petrangeli Papini M. 3D dynamic model empowering the knowledge of the decontamination mechanisms and controlling the complex remediation strategy of a contaminated industrial site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148649. [PMID: 34328981 DOI: 10.1016/j.scitotenv.2021.148649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/04/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of the geology and hydrogeology of the polluted site emblematize a key requirement for environmental remediation, through assembling and synthesizing findings from various sources of physical evidence. In an increasingly virtual era, digital and geo-referenced metadata may serve as tools for collecting, merging, matching, and understanding multi-source information. The main goal of this paper is to emphasize the significance of a 3D hydrogeochemical model to the portrayal and the understanding of contamination dynamics and decontamination mechanisms at a highly contaminated industrial site. Some remediation measures are active on-site, due to the evidence-based presence of chlorinated solvents in groundwater. These are attributable to a slow-release source of pollutants in the saturated zone associated with very low permeability sediments. Therefore, in this research, a new technique for the remediation of secondary sources of dense non-aqueous phase liquid (DNAPL) contamination was investigated for the first time on a full-scale application. The combination of groundwater circulation wells (IEG-GCW®) and a continuous electron donor production device was set up to boost in situ bioremediation (ISB). A multi-phase approach was followed handling and releasing data during various remediation stages, from site characterization via pilot testing to full-scale remediation, thus allowing users to monitor, analyze, and manipulate information in 3D space-time. Multi-source and multi-temporal scenarios reveal the impact of ongoing hydraulic dynamics and depict the decontamination mechanisms in response to the interventions implemented over time, by quantifying the overall performance of the adopted strategies in terms of removal of secondary sources of pollution still active at the site.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Ernst Bartsch
- IEG Technologie GmbH, Hohlbachweg 2, D-73344 Gruibingen, Baden-Württemberg, Germany.
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344 Gruibingen, Baden-Württemberg, Germany.
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
11
|
Rossi MM, Dell’Armi E, Lorini L, Amanat N, Zeppilli M, Villano M, Petrangeli Papini M. Combined Strategies to Prompt the Biological Reduction of Chlorinated Aliphatic Hydrocarbons: New Sustainable Options for Bioremediation Application. Bioengineering (Basel) 2021; 8:bioengineering8080109. [PMID: 34436112 PMCID: PMC8389326 DOI: 10.3390/bioengineering8080109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Groundwater remediation is one of the main objectives to minimize environmental impacts and health risks. Chlorinated aliphatic hydrocarbons contamination is prevalent and presents particularly challenging scenarios to manage with a single strategy. Different technologies can manage contamination sources and plumes, although they are usually energy-intensive processes. Interesting alternatives involve in-situ bioremediation strategies, which allow the chlorinated contaminant to be converted into non-toxic compounds by indigenous microbial activity. Despite several advantages offered by the bioremediation approaches, some limitations, like the relatively low reaction rates and the difficulty in the management and control of the microbial activity, can affect the effectiveness of a bioremediation approach. However, those issues can be addressed through coupling different strategies to increase the efficiency of the bioremediation strategy. This mini review describes different strategies to induce the reduction dechlorination reaction by the utilization of innovative strategies, which include the increase or the reduction of contaminant mobility as well as the use of innovative strategies of the reductive power supply. Subsequently, three future approaches for a greener and more sustainable intervention are proposed. In particular, two bio-based materials from renewable resources are intended as alternative, long-lasting electron-donor sources (e.g., polyhydroxyalkanoates from mixed microbial cultures) and a low-cost adsorbent (e.g., biochar from bio-waste). Finally, attention is drawn to novel bio-electrochemical systems that use electric current to stimulate biological reactions.
Collapse
|
12
|
Block KR, O'Brien JM, Edwards WJ, Marnocha CL. Vertical structure of the bacterial diversity in meromictic Fayetteville Green Lake. Microbiologyopen 2021; 10:e1228. [PMID: 34459548 PMCID: PMC8330806 DOI: 10.1002/mbo3.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
The permanently stratified water columns in euxinic meromictic lakes produce niche environments for phototrophic sulfur oxidizers and diverse sulfur metabolisms. While Green Lake (Fayetteville, New York, NY) is known to host a diverse community of ecologically important sulfur bacteria, analyses of its microbial communities, to date, have been largely based on pigment analysis and smaller datasets from Sanger sequencing techniques. Here, we present the results of next-generation sequencing of the eubacterial community in the context of the water column geochemistry. We observed abundant purple and green sulfur bacteria, as well as anoxygenic photosynthesis-capable cyanobacteria within the upper monimolimnion. Amidst the phototrophs, we found other sulfur-cycling bacteria including sulfur disproportionators and chemotrophic sulfur oxidizers, further detailing our understanding of the sulfur cycle and microbial ecology of euxinic, meromictic lakes.
Collapse
Affiliation(s)
| | - Joy M. O'Brien
- Department of BiologyNiagara UniversityLewistonNew YorkUSA
| | | | | |
Collapse
|
13
|
Ghezzi D, Filippini M, Cappelletti M, Firrincieli A, Zannoni D, Gargini A, Fedi S. Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23017-23035. [PMID: 33438126 DOI: 10.1007/s11356-020-12236-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In an aquifer-aquitard system in the subsoil of the city of Ferrara (Emilia-Romagna region, northern Italy) highly contaminated with chlorinated aliphatic toxic organics such as trichloroethylene (TCE) and tetrachloroethylene (PCE), a strong microbial-dependent dechlorination activity takes place during migration of contaminants through shallow organic-rich layers with peat intercalations. The in situ microbial degradation of chlorinated ethenes, formerly inferred by the utilization of contaminant concentration profiles and Compound-Specific Isotope Analysis (CSIA), was here assessed using Illumina sequencing of V4 hypervariable region of 16S rRNA gene and by clone library analysis of dehalogenase metabolic genes. Taxon-specific investigation of the microbial communities catalyzing the chlorination process revealed the presence of not only dehalogenating genera such as Dehalococcoides and Dehalobacter but also of numerous other groups of non-dehalogenating bacteria and archaea thriving on diverse metabolisms such as hydrolysis and fermentation of complex organic matter, acidogenesis, acetogenesis, and methanogenesis, which can indirectly support the reductive dechlorination process. Besides, the diversity of genes encoding some reductive dehalogenases was also analyzed. Geochemical and 16S rRNA and RDH gene analyses, as a whole, provided insights into the microbial community complexity and the distribution of potential dechlorinators. Based on the data obtained, a possible network of metabolic interactions has been hypothesized to obtain an effective reductive dechlorination process.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Laboratory of NanoBiotechnology, IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Maria Filippini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Alessandro Gargini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
14
|
Navarrete-Euan H, Rodríguez-Escamilla Z, Pérez-Rueda E, Escalante-Herrera K, Martínez-Núñez MA. Comparing Sediment Microbiomes in Contaminated and Pristine Wetlands along the Coast of Yucatan. Microorganisms 2021; 9:877. [PMID: 33923859 PMCID: PMC8073884 DOI: 10.3390/microorganisms9040877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Microbial communities are important players in coastal sediments for the functioning of the ecosystem and the regulation of biogeochemical cycles. They also have great potential as indicators of environmental perturbations. To assess how microbial communities can change their composition and abundance along coastal areas, we analyzed the composition of the microbiome of four locations of the Yucatan Peninsula using 16S rRNA gene amplicon sequencing. To this end, sediment from two conserved (El Palmar and Bocas de Dzilam) and two contaminated locations (Sisal and Progreso) from the coast northwest of the Yucatan Peninsula in three different years, 2017, 2018 and 2019, were sampled and sequenced. Microbial communities were found to be significantly different between the locations. The most noticeable difference was the greater relative abundance of Planctomycetes present at the conserved locations, versus FBP group found with greater abundance in contaminated locations. In addition to the difference in taxonomic groups composition, there is a variation in evenness, which results in the samples of Bocas de Dzilam and Progreso being grouped separately from those obtained in El Palmar and Sisal. We also carry out the functional prediction of the metabolic capacities of the microbial communities analyzed, identifying differences in their functional profiles. Our results indicate that landscape of the coastal microbiome of Yucatan sediment shows changes along the coastline, reflecting the constant dynamics of coastal environments and their impact on microbial diversity.
Collapse
Affiliation(s)
- Herón Navarrete-Euan
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Zuemy Rodríguez-Escamilla
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Unidad Académica Yucatán, Mérida, Yucatán 97302, Mexico;
| | - Karla Escalante-Herrera
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| |
Collapse
|
15
|
Assessment of Long-Term Fermentability of PHA-Based Materials from Pure and Mixed Microbial Cultures for Potential Environmental Applications. WATER 2021. [DOI: 10.3390/w13070897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of polyhydroxyalkanoates (PHA) as slow-release electron donors for environmental remediation represents a novel and appealing application that is attracting considerable attention in the scientific community. In this context, here, the fermentation pattern of different types of PHA-based materials has been investigated in batch and continuous-flow experiments. Along with commercially available materials, produced from axenic microbial cultures, PHA produced at pilot scale by mixed microbial cultures (MMC) using waste feedstock have been also tested. As a main finding, a rapid onset of volatile fatty acids (VFA) production was observed with a low-purity MMC-deriving material, consisting of microbial cells containing 56% (on weight basis) of intracellular PHA. Indeed, with this material a sustained, long-term production of organic acids (i.e., acetic, propionic, and butyric acids) was observed. In addition, the obtained yield of conversion into acids (up to 70% gVFA/gPHA) was higher than that obtained with the other tested materials, made of extracted and purified PHA. These results clearly suggest the possibility to directly use the PHA-rich cells deriving from the MMC production process, with no need of extraction and purification procedures, as a sustainable and effective carbon source bringing remarkable advantages from an economic and environmental point of view.
Collapse
|
16
|
Xiao Z, Jiang W, Chen D, Xu Y. Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110925. [PMID: 32800212 DOI: 10.1016/j.ecoenv.2020.110925] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated hydrocarbon contamination in soils and groundwater has a severe negative impact on the human health. Microbial reductive dechlorination is a major degradation pathway of chlorinated hydrocarbon in anaerobic subsurface environments, has been extensively studied. Recent progress on the diversity of the reductive dechlorinators and the key enzymes of chlororespiration has been well reviewed. Here, we present a thorough overview of the studies related to bioremediation of chloroethenes and polychlorinated biphenyls based on enhanced in situ reductive dechlorination. The major part of this review is to provide an up-to-date summary of functional microorganisms which are either detected during in situ biostimulation or applied in bioaugmentation strategies. The applied biostimulants and corresponding reductive dechlorination products are also summarized and the future research needs are finally discussed.
Collapse
Affiliation(s)
- Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Wei Jiang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
17
|
A selected bacterial strain for the self-healing process in cementitious specimens without cell immobilization steps. Bioprocess Biosyst Eng 2020; 44:195-208. [PMID: 32892287 DOI: 10.1007/s00449-020-02435-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
The use of microorganisms capable of mediating the bioprecipitation process can be an important application in the self-healing processes of cement specimens. Thus, the present study identified and evaluated five Bacillus strains for potential application in the protocol of self-healing via bioprecipitation. Cell growth, enzyme production, and kinetic parameters conditions were evaluated during the fermentation process. Based on the analysis of 16S rDNA in conjunction with biochemical testing, results demonstrate that the strains are either Bacillus cereus or Bacillus thuringiensis. Strategically it was found that the addition of glycerol to fermentative medium was essential to increase the bacterial concentration (≈ 4.2 × 107 cells mL-1) and production of the enzyme urease (≈ 3.623,2 U.mL-1). The addition of this medium after 40 days of fermentation promoted the self-healing of cracks and increased compressive strength in ≈ 14.2% of the cementitious specimens; therefore, increasing the sustainability and engineering properties of cement-based materials.
Collapse
|
18
|
Jin D, Zhang F, Shi Y, Kong X, Xie Y, Du X, Li Y, Zhang R. Diversity of bacteria and archaea in the groundwater contaminated by chlorinated solvents undergoing natural attenuation. ENVIRONMENTAL RESEARCH 2020; 185:109457. [PMID: 32247910 DOI: 10.1016/j.envres.2020.109457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated solvents (CS)-contaminated groundwater poses serious risks to the environment and public health. Microorganisms play a vital role in efficient remediation of CS. In this study, the microbial community (bacterial and archaeal) composition of three CS-contaminated groundwater wells located at an abandoned chemical factory which covers three orders of magnitude in concentration (0.02-16.15 mg/L) were investigated via 16S rRNA gene high-throughput sequencing. The results indicated that Proteobacteria and Thaumarchaeota were the most abundant bacterial and archaeal groups at the phylum level in groundwater, respectively. The major bacterial genera (Flavobacterium sp., Mycobacterium sp. and unclassified Parcubacteria taxa, etc.) and archaeal genera (Thaumarchaeota Group C3, Miscellaneous Crenarchaeotic Group and Miscellaneous Euryarchaeotic Group, etc.) might be involved in the dechlorination processes. In addition, Pearson's correlation analyses showed that alpha diversity of the bacterial community was not significantly correlated with CS concentration, while alpha diversity of archaeal community greatly decreased with the increased contamination of CS. Moreover, partial Mantel test indicated that oxidation-reduction potential, dissolved oxygen, temperature and methane concentration were major drivers of bacterial and archaeal community composition, whereas CS concentration had no significant impact, indicating that both indigenous bacterial and archaeal community compositions are capable of withstanding elevated CS contamination. This study improves our understanding of how the natural microbial community responds to high CS-contaminated groundwater.
Collapse
Affiliation(s)
- Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yi Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiao Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfeng Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoming Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, 30655, Germany
| |
Collapse
|
19
|
Reductive/Oxidative Sequential Bioelectrochemical Process for Perchloroethylene Removal. WATER 2019. [DOI: 10.3390/w11122579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An innovative bioelectrochemical reductive/oxidative sequential process was developed and tested on a laboratory scale to obtain the complete mineralization of perchloroethylene (PCE) in a synthetic medium. The sequential bioelectrochemical process consisted of two separate tubular bioelectrochemical reactors that adopted a novel reactor configuration, avoiding the use of an ion exchange membrane to separate the anodic and cathodic chamber and reducing the cost of the reactor. In the reductive reactor, a dechlorinating mixed inoculum received reducing power to perform the reductive dechlorination of perchloroethylene (PCE) through a cathode chamber, while the less chlorinated daughter products were removed in the oxidative reactor, which supported an aerobic dechlorinating culture through in situ electrochemical oxygen evolution. Preliminary fluid dynamics and electrochemical tests were performed to characterize both the reductive and oxidative reactors, which were electrically independent of each other, with each having its own counterelectrode. The first continuous-flow potentiostatic run with the reductive reactor (polarized at −450 mV vs SHE) resulted in obtaining 100% ± 1% removal efficiency of the influent PCE, while the oxidative reactor (polarized at +1.4 V vs SHE) oxidized the vinyl chloride and ethylene from the reductive reactor, with removal efficiencies of 100% ± 2% and 92% ± 1%, respectively.
Collapse
|
20
|
Xu G, Lu Q, Yu L, Wang S. Tetrachloroethene primes reductive dechlorination of polychlorinated biphenyls in a river sediment microcosm. WATER RESEARCH 2019; 152:87-95. [PMID: 30665163 DOI: 10.1016/j.watres.2018.12.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Halo-priming is an effective approach to initiate microbial reductive dechlorination of polychlorinated biphenyls (PCBs) at contaminated sites, of which the application has been restricted by introducing extra pollutants generated from priming organohalides. In this study, tetrachloroethene (PCE) was demonstrated to be an effective priming compound to enhance PCB dechlorination both in a PCB-dechlorinating pure culture and a river sediment microcosm. In the isolated PCB-dechlorinating Dehalococcoides mccartyi CG1, PCB dechlorination activities were stimulated by adding 0.05-0.2 mM PCE, and were inhibited when further increasing PCE concentrations. Both in vivo and in vitro experiments showed that PCBs and PCE were synchronously dechlorinated in D. mccartyi CG1. In a river sediment microcosm, which was established to mimic in situ biostimulation of PCB dechlorination, 0.2 mM PCE could significantly improve para-chlorine removal from both PCB180 (2345-245-CB) and Aroclor 1260, and increase the relative abundance of indigenous dechlorinating Dehalococcoides for more than 20 times (from <0.1% to 2.3-5.0%). At the same time, PCE as a priming compound was completely dechlorinated to non-toxic ethene. Overall, this study provided an efficient strategy to stimulate in situ bioremediation of PCBs.
Collapse
Affiliation(s)
- Guofang Xu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| |
Collapse
|