1
|
Poehlein A, Zeldes B, Flaiz M, Böer T, Lüschen A, Höfele F, Baur KS, Molitor B, Kröly C, Wang M, Zhang Q, Fan Y, Chao W, Daniel R, Li F, Basen M, Müller V, Angenent LT, Sousa DZ, Bengelsdorf FR. Advanced aspects of acetogens. BIORESOURCE TECHNOLOGY 2025; 427:131913. [PMID: 39626805 DOI: 10.1016/j.biortech.2024.131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 03/21/2025]
Abstract
Acetogens are a diverse group of anaerobic bacteria that are capable of carbon dioxide reduction and have for long fascinated scientists due to their unique metabolic prowess. Historically, acetogens have been recognized for their remarkable ability to grow and to produce acetate from different one-carbon sources, including carbon dioxide, carbon monoxide, formate, methanol, and methylated organic compounds. The key metabolic pathway in acetogens responsible for converting these one-carbon sources is the Wood-Ljungdahl pathway. This review offers a comprehensive overview of the latest discoveries that are related to acetogens. It delves into a variety of topics, including newly isolated acetogens, their taxonomy and physiology and highlights novel metabolic properties. Additionally, it explores metabolic engineering strategies that are designed to expand the product range of acetogens or to understand specific traits of their metabolism. Lastly, the review presents innovative gas fermentation techniques within the context of industrial applications.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Maximilian Flaiz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Tim Böer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Franziska Höfele
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Kira S Baur
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72074, Germany
| | - Christian Kröly
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands; Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Meng Wang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China
| | - Quan Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China.
| | - Yixuan Fan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Wei Chao
- Beijing Shougang LanzaTech Technology Co. Ltd, Tianshunzhuang North Road, Shijingshan District, Beijing, China
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Frank R Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
| |
Collapse
|
2
|
Atencio B, Malavin S, Rubin-Blum M, Ram R, Adar E, Ronen Z. Site-specific incubations reveal biofilm diversity and functional adaptations in deep, ancient desert aquifers. Front Microbiol 2025; 16:1533115. [PMID: 40190731 PMCID: PMC11968702 DOI: 10.3389/fmicb.2025.1533115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Deep pristine aquifers are ecological hotspots with diverse microbial life, where microorganisms exist either attached (sessile) to solid substrates or suspended in groundwater (planktonic). Characterizing the attached microbial communities is of paramount importance, especially in the context of biofouling. However, obtaining samples of attached microbes that thrive under natural (undisturbed) conditions is challenging. Our study addresses this by retrieving sessile microbes on-site. We installed columns filled with site-specific rock cuttings at the wellhead, allowing fresh groundwater to flow continuously for approximately 60 days. We hypothesized that the attached microbial communities would differ structurally from planktonic microbes due to the aquifer's lithological and mineralogical composition. This study involved an exploratory examination of the microbial communities in different aquifers with distinct mineralogies, including quartzitic sandstone, calcareous, chert, and highly heterogeneous (clastic) aquifers in Israel's Negev Desert. Metagenomic analysis revealed both shared and distinct microbial communities among attached and planktonic forms in the various environments, likely shaped by the aquifers' physical, lithological, and mineralogical properties. A wealth of carbon-fixation pathways and energy-conservation strategies in the attached microbiome provide evidence for the potential productivity of these biofilms. We identified widespread genetic potential for biofilm formation (e.g., via pili, flagella, and extracellular polymeric substance production) and the interactome (e.g., quorum-sensing genes). Our assessment of these functions provides a genomic framework for groundwater management and biofouling treatment.
Collapse
Affiliation(s)
- Betzabe Atencio
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Stas Malavin
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Department of Marine Biology, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Maxim Rubin-Blum
- Department of Marine Biology, Israel Oceanographic and Limnological Research, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Roi Ram
- Geological Survey of Israel, Jerusalem, Israel
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | - Eilon Adar
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| |
Collapse
|
3
|
Hsu D, Flynn JR, Schuler CJ, Santelli CM, Toner BM, Bond DR, Gralnick JA. Isolation and genomic analysis of " Metallumcola ferriviriculae" MK1, a Gram-positive, Fe(III)-reducing bacterium from the Soudan Underground Mine, an iron-rich Martian analog site. Appl Environ Microbiol 2024; 90:e0004424. [PMID: 39007603 PMCID: PMC11337815 DOI: 10.1128/aem.00044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
The Soudan Underground Mine State Park, found in the Vermilion Iron Range in northern Minnesota, provides access to a ~ 2.7 billion-year-old banded iron formation. Exploratory boreholes drilled between 1958 and 1962 on the 27th level (713 m underground) of the mine intersect calcium and iron-rich brines that have recently been subject to metagenomic analysis and microbial enrichments. Using concentrated brine samples pumped from a borehole depth of up to 55 m, a novel Gram-positive bacterium was enriched under anaerobic, acetate-oxidizing, and Fe(III) citrate-reducing conditions. The isolated bacterium, designated strain MK1, is non-motile, rod-shaped, spore-forming, anaerobic, and mesophilic, with a growth range between 24°C and 30°C. The complete circular MK1 genome was found to be 3,720,236 bp and encodes 25 putative multiheme cytochromes, including homologs to inner membrane cytochromes in the Gram-negative bacterium Geobacter sulfurreducens and cytoplasmic membrane and periplasmic cytochromes in the Gram-positive bacterium Thermincola potens. However, MK1 does not encode homologs of the peptidoglycan (CwcA) and cell surface-associated (OcwA) multiheme cytochromes proposed to be required by T. potens to perform extracellular electron transfer. The 16S rRNA gene sequence of MK1 indicates that its closest related isolate is Desulfitibacter alkalitolerans strain sk.kt5 (91% sequence identity), which places MK1 in a novel genus within the Desulfitibacteraceae family and Moorellales order. Within the Moorellales order, only Calderihabitans maritimus strain KKC1 has been reported to reduce Fe(III), and only D. alkalitolerans can also grow in temperatures below 40°C. Thus, MK1 represents a novel species within a novel genus, for which we propose the name "Metallumcola ferriviriculae" strain MK1, and provides a unique opportunity to study a cytochrome-rich, mesophilic, Gram-positive, spore-forming Fe(III)-reducing bacterium.IMPORTANCEThe Soudan Underground Mine State Park gives access to understudied regions of the deep terrestrial subsurface that potentially predate the Great Oxidation Event. Studying organisms that have been relatively unperturbed by surface conditions for as long as 2.7 billion years may give us a window into ancient life before oxygen dominated the planet. Additionally, studying microbes from anoxic and iron-rich environments can help us better understand the requirements of life in analogous environments, such as on Mars. The isolation and characterization of "Metallumcola ferriviriculae" strain MK1 give us insights into a novel genus and species that is distinct both from its closest related isolates and from iron reducers characterized to date. "M. ferriviriculae" strain MK1 may also act as a model organism to study how the processes of sporulation and germination are affected by insoluble extracellular acceptors, as well as the impact of spores in the deep terrestrial biosphere.
Collapse
Affiliation(s)
- David Hsu
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Jack R. Flynn
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Christopher J. Schuler
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Cara M. Santelli
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Brandy M. Toner
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Daniel R. Bond
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
4
|
Akaçin İ, Ersoy Ş, Doluca O, Güngörmüşler M. Using custom-built primers and nanopore sequencing to evaluate CO-utilizer bacterial and archaeal populations linked to bioH 2 production. Sci Rep 2023; 13:17025. [PMID: 37813931 PMCID: PMC10562470 DOI: 10.1038/s41598-023-44357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
The microbial community composition of five distinct thermophilic hot springs was effectively described in this work, using broad-coverage nanopore sequencing (ONT MinION sequencer). By examining environmental samples from the same source, but from locations with different temperatures, bioinformatic analysis revealed dramatic changes in microbial diversity and archaeal abundance. More specifically, no archaeal presence was reported with universal bacterial primers, whereas a significant archaea presence and also a wider variety of bacterial species were reported. These results revealed the significance of primer preference for microbiomes in extreme environments. Bioinformatic analysis was performed by aligning the reads to 16S microbial databases for identification using three different alignment methods, Epi2Me (Fastq 16S workflow), Kraken, and an in-house BLAST tool, including comparison at the genus and species levels. As a result, this approach to data analysis had a significant impact on the genera identified, and thus, it is recommended that use of multiple analysis tools to support findings on taxonomic identification using the 16S region until more precise bioinformatics tools become available. This study presents the first compilation of the ONT-based inventory of the hydrogen producers in the designated hot springs in Türkiye.
Collapse
Affiliation(s)
- İlayda Akaçin
- Division of Bioengineering, Graduate School, Izmir University of Economics, Sakarya Caddesi No: 156, 35330, Balçova, Izmir, Türkiye
| | - Şeymanur Ersoy
- Division of Bioengineering, Graduate School, Izmir University of Economics, Sakarya Caddesi No: 156, 35330, Balçova, Izmir, Türkiye
| | - Osman Doluca
- Division of Bioengineering, Graduate School, Izmir University of Economics, Sakarya Caddesi No: 156, 35330, Balçova, Izmir, Türkiye
- Department of Biomedical Engineering, Faculty of Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330, Balçova, Izmir, Türkiye
| | - Mine Güngörmüşler
- Division of Bioengineering, Graduate School, Izmir University of Economics, Sakarya Caddesi No: 156, 35330, Balçova, Izmir, Türkiye.
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330, Balçova, Izmir, Türkiye.
| |
Collapse
|
5
|
Zavarzina DG, Merkel AY, Klyukina AA, Elizarov IM, Pikhtereva VA, Rusakov VS, Chistyakova NI, Ziganshin RH, Maslov AA, Gavrilov SN. Iron or sulfur respiration-an adaptive choice determining the fitness of a natronophilic bacterium Dethiobacter alkaliphilus in geochemically contrasting environments. Front Microbiol 2023; 14:1108245. [PMID: 37520367 PMCID: PMC10376724 DOI: 10.3389/fmicb.2023.1108245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Haloalkaliphilic microorganisms are double extremophiles functioning optimally at high salinity and pH. Their typical habitats are soda lakes, geologically ancient yet widespread ecosystems supposed to harbor relict microbial communities. We compared metabolic features and their determinants in two strains of the natronophilic species Dethiobacter alkaliphilus, the only cultured representative of the class "Dethiobacteria" (Bacillota). The strains of D. alkaliphilus were previously isolated from geographically remote Mongolian and Kenyan soda lakes. The type strain AHT1T was described as a facultative chemolithoautotrophic sulfidogen reducing or disproportionating sulfur or thiosulfate, while strain Z-1002 was isolated as a chemolithoautotrophic iron reducer. Here, we uncovered the iron reducing ability of strain AHT1T and the ability of strain Z-1002 for thiosulfate reduction and anaerobic Fe(II) oxidation. Key catabolic processes sustaining the growth of both D. alkaliphilus strains appeared to fit the geochemical settings of two contrasting natural alkaline environments, sulfur-enriched soda lakes and iron-enriched serpentinites. This hypothesis was supported by a meta-analysis of Dethiobacterial genomes and by the enrichment of a novel phylotype from a subsurface alkaline aquifer under Fe(III)-reducing conditions. Genome analysis revealed multiheme c-type cytochromes to be the most probable determinants of iron and sulfur redox transformations in D. alkaliphilus. Phylogeny reconstruction showed that all the respiratory processes in this organism are likely provided by evolutionarily related early forms of unconventional octaheme tetrathionate and sulfite reductases and their structural analogs, OmhA/OcwA Fe(III)-reductases. Several phylogenetically related determinants of anaerobic Fe(II) oxidation were identified in the Z-1002 genome, and the oxidation process was experimentally demonstrated. Proteomic profiling revealed two distinct sets of multiheme cytochromes upregulated in iron(III)- or thiosulfate-respiring cells and the cytochromes peculiar for Fe(II) oxidizing cells. We suggest that maintaining high variation in multiheme cytochromes is an effective adaptive strategy to occupy geochemically contrasting alkaline environments. We propose that sulfur-enriched soda lakes could be secondary habitats for D. alkaliphilus compared to Fe-rich serpentinites, and that the ongoing evolution of Dethiobacterales could retrace the evolutionary path that may have occurred in prokaryotes at a turning point in the biosphere's history, when the intensification of the sulfur cycle outweighed the global significance of the iron cycle.
Collapse
Affiliation(s)
- Daria G. Zavarzina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Yu Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan M. Elizarov
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria A. Pikhtereva
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Maslov
- Faculty of Geology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey N. Gavrilov
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Khomyakova MA, Zavarzina DG, Merkel AY, Klyukina AA, Pikhtereva VA, Gavrilov SN, Slobodkin AI. The first cultivated representatives of the actinobacterial lineage OPB41 isolated from subsurface environments constitute a novel order Anaerosomatales. Front Microbiol 2022; 13:1047580. [PMID: 36439822 PMCID: PMC9686372 DOI: 10.3389/fmicb.2022.1047580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
The continental subsurface harbors microbial populations highly enriched in uncultured taxa. OPB41 is an uncultured order-level phylogenetic lineage within the actinobacterial class Coriobacteriia. OPB41 bacteria have a wide geographical distribution, but the physiology and metabolic traits of this cosmopolitan group remain elusive. From two contrasting subsurface environments, a terrestrial mud volcano and a deep subsurface aquifer, located in the central part of Eurasia, within the Caucasus petroleum region, we have isolated two pure cultures of anaerobic actinobacteria belonging to OPB41. The cells of both strains are small non-motile rods forming numerous pili-like appendages. Strain M08DHBT is mesophilic, while strain Es71-Z0120T is a true thermophile having a broad temperature range for growth (25-77°C). Strain M08DHBT anaerobically reduces sulfur compounds and utilizes an aromatic compound 3,4-dihydroxybenzoic acid. Strain Es71-Z0120T is an obligate dissimilatory Fe(III) reducer that is unable to utilize aromatic compounds. Both isolates grow lithotrophically and consume molecular hydrogen or formate using either thiosulfate, elemental sulfur, or Fe(III) as an electron acceptor. Genomes of the strains encode the putative reductive glycine pathway for autotrophic CO2 fixation, Ni-Fe hydrogenases, putative thiosulfate/polysulfide reductases, and multiheme c-type cytochromes presumably involved in dissimilatory Fe(III) reduction. We propose to assign the isolated strains to the novel taxa of the species-order levels and describe strain M08DHBT as Anaerosoma tenue gen. nov., sp. nov., and strain Es71-Z0120T as Parvivirga hydrogeniphila gen. nov., sp. nov., being members of Anaerosomatales ord. nov. This work expands the knowledge of the diversity, metabolic functions, and ecological role of the phylum Actinomycetota.
Collapse
Affiliation(s)
- Maria A. Khomyakova
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daria G. Zavarzina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria A. Pikhtereva
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey N. Gavrilov
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Zavarzina DG, Prokofeva MI, Pikhtereva VA, Klyukina AA, Maslov AA, Merkel AY, Gavrilov SN. Deferrivibrio essentukiensis sp. nov., gen. nov., a Representative of Deferrivibrionaceae fam. nov., Isolated from the Subsurface Aquifer of Caucasian Mineral Drinking Waters. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Kochetkova TV, Podosokorskaya OA, Elcheninov AG, Kublanov IV. Diversity of Thermophilic Prokaryotes Inhabiting Russian Natural Hot Springs. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Toshchakov SV, Izotova AO, Vinogradova EN, Kachmazov GS, Tuaeva AY, Abaev VT, Evteeva MA, Gunitseva NM, Korzhenkov AA, Elcheninov AG, Patrushev MV, Kublanov IV. Culture-Independent Survey of Thermophilic Microbial Communities of the North Caucasus. BIOLOGY 2021; 10:biology10121352. [PMID: 34943267 PMCID: PMC8698779 DOI: 10.3390/biology10121352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The Republic of North Ossetia-Alania, located in the southern part of the North Caucasus, possess a number of hydrothermal habitats, including both subterranean thermal reservoirs and terrestrial hot springs. At the same time, reports on microbiology of numerous geothermal sites are rather scarce for the whole North Caucasus region. In this paper, we report on the first culture-independent metabarcoding study of thermal habitats in the North Caucasus, coupled with a chemical analysis of the elemental composition of water. The results of this work include the conclusions regarding key metabolic characteristics of these habitats as well as detection of few but abundant deep lineages of uncultivated microorganisms which could be regarded as endemic. This study may represent a first step in closing the knowledge gap in extremophilic microbial communities of the North Caucasus. Abstract The Greater Caucasus is a part of seismically active Alpine–Himalayan orogenic belt and has been a center of significant volcanic activity during the Quaternary period. That led to the formation of the number of hydrothermal habitats, including subterranean thermal aquifers and surface hot springs. However, there are only a limited number of scientific works reporting on the microbial communities of these habitats. Moreover, all these reports concern only studies of specific microbial taxa, carried out using classical cultivation approaches. In this work, we present first culture-independent study of hydrotherms in the Republic of North Ossetia-Alania, located in the southern part of the North Caucasus. Using 16S metabarcoding, we analyzed the composition of the microbial communities of two subterranean thermal aquifers and terrestrial hot springs of the Karmadon valley. Analysis of correlations between the chemical composition of water and the representation of key taxa allowed us to identify the key factors determining the formation of microbial communities. In addition, we were able to identify a significant number of highly abundant deep phylogenetic lineages. Our study represents a first glance on the thermophilic microbial communities of the North Caucasus and may serve as a basis for further microbiological studies of the extreme habitats of this region.
Collapse
Affiliation(s)
- Stepan V. Toshchakov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Ac. Kurchatov Square, 1, Moscow 123098, Russia; (A.O.I.); (E.N.V.); (M.A.E.); (N.M.G.); (A.A.K.); (M.V.P.)
- Correspondence: ; Tel.: +7-911-481-1809
| | - Anna O. Izotova
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Ac. Kurchatov Square, 1, Moscow 123098, Russia; (A.O.I.); (E.N.V.); (M.A.E.); (N.M.G.); (A.A.K.); (M.V.P.)
| | - Elizaveta N. Vinogradova
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Ac. Kurchatov Square, 1, Moscow 123098, Russia; (A.O.I.); (E.N.V.); (M.A.E.); (N.M.G.); (A.A.K.); (M.V.P.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Gennady S. Kachmazov
- Faculty of Chemistry, Biology and Biotechnology, North Ossetian State University Named after K.L. Khetagurov, Vatutina str., 44-46, Vladikavkaz 362025, Russia; (G.S.K.); (V.T.A.)
| | - Albina Y. Tuaeva
- National Research Center Kurchatov Institute-GOSNIIGENETIKA, 1st Dorozhny Pr., 1, Moscow 117545, Russia;
| | - Vladimir T. Abaev
- Faculty of Chemistry, Biology and Biotechnology, North Ossetian State University Named after K.L. Khetagurov, Vatutina str., 44-46, Vladikavkaz 362025, Russia; (G.S.K.); (V.T.A.)
| | - Martha A. Evteeva
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Ac. Kurchatov Square, 1, Moscow 123098, Russia; (A.O.I.); (E.N.V.); (M.A.E.); (N.M.G.); (A.A.K.); (M.V.P.)
| | - Natalia M. Gunitseva
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Ac. Kurchatov Square, 1, Moscow 123098, Russia; (A.O.I.); (E.N.V.); (M.A.E.); (N.M.G.); (A.A.K.); (M.V.P.)
| | - Aleksei A. Korzhenkov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Ac. Kurchatov Square, 1, Moscow 123098, Russia; (A.O.I.); (E.N.V.); (M.A.E.); (N.M.G.); (A.A.K.); (M.V.P.)
| | - Alexander G. Elcheninov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-let Oktyzbrya Av., 7/2, Moscow 119071, Russia; (A.G.E.); (I.V.K.)
| | - Maxim V. Patrushev
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Ac. Kurchatov Square, 1, Moscow 123098, Russia; (A.O.I.); (E.N.V.); (M.A.E.); (N.M.G.); (A.A.K.); (M.V.P.)
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 60-let Oktyzbrya Av., 7/2, Moscow 119071, Russia; (A.G.E.); (I.V.K.)
| |
Collapse
|
10
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
11
|
García-Lopez E, Serrano S, Calvo MA, Peña Perez S, Sanchez-Casanova S, García-Descalzo L, Cid C. Microbial Community Structure Driven by a Volcanic Gradient in Glaciers of the Antarctic Archipelago South Shetland. Microorganisms 2021; 9:microorganisms9020392. [PMID: 33672948 PMCID: PMC7917679 DOI: 10.3390/microorganisms9020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/26/2022] Open
Abstract
It has been demonstrated that the englacial ecosystem in volcanic environments is inhabited by active bacteria. To know whether this result could be extrapolated to other Antarctic glaciers and to study the populations of microeukaryotes in addition to those of bacteria, a study was performed using ice samples from eight glaciers in the South Shetland archipelago. The identification of microbial communities of bacteria and microeukaryotes using 16S rRNA and 18S rRNA high throughput sequencing showed a great diversity when compared with microbiomes of other Antarctic glaciers or frozen deserts. Even the composition of the microbial communities identified in the glaciers from the same island was different, which may be due to the isolation of microbial clusters within the ice. A gradient in the abundance and diversity of the microbial communities from the volcano (west to the east) was observed. Additionally, a significant correlation was found between the chemical conditions of the ice samples and the composition of the prokaryotic populations inhabiting them along the volcanic gradient. The bacteria that participate in the sulfur cycle were those that best fit this trend. Furthermore, on the eastern island, a clear influence of human contamination was observed on the glacier microbiome.
Collapse
|
12
|
Gavrilov SN, Zavarzina DG, Elizarov IM, Tikhonova TV, Dergousova NI, Popov VO, Lloyd JR, Knight D, El-Naggar MY, Pirbadian S, Leung KM, Robb FT, Zakhartsev MV, Bretschger O, Bonch-Osmolovskaya EA. Novel Extracellular Electron Transfer Channels in a Gram-Positive Thermophilic Bacterium. Front Microbiol 2021; 11:597818. [PMID: 33505370 PMCID: PMC7829351 DOI: 10.3389/fmicb.2020.597818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Biogenic transformation of Fe minerals, associated with extracellular electron transfer (EET), allows microorganisms to exploit high-potential refractory electron acceptors for energy generation. EET-capable thermophiles are dominated by hyperthermophilic archaea and Gram-positive bacteria. Information on their EET pathways is sparse. Here, we describe EET channels in the thermophilic Gram-positive bacterium Carboxydothermus ferrireducens that drive exoelectrogenesis and rapid conversion of amorphous mineral ferrihydrite to large magnetite crystals. Microscopic studies indicated biocontrolled formation of unusual formicary-like ultrastructure of the magnetite crystals and revealed active colonization of anodes in bioelectrochemical systems (BESs) by C. ferrireducens. The internal structure of micron-scale biogenic magnetite crystals is reported for the first time. Genome analysis and expression profiling revealed three constitutive c-type multiheme cytochromes involved in electron exchange with ferrihydrite or an anode, sharing insignificant homology with previously described EET-related cytochromes thus representing novel determinants of EET. Our studies identify these cytochromes as extracellular and reveal potentially novel mechanisms of cell-to-mineral interactions in thermal environments.
Collapse
Affiliation(s)
- Sergey N Gavrilov
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Daria G Zavarzina
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Ivan M Elizarov
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Tamara V Tikhonova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia I Dergousova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Kurchatov Complex NBICS-Technologies, National Research Center "Kurchatov Institute," Moscow, Russia
| | - Jonathan R Lloyd
- Dalton Nuclear Institute, FSE Research Institutes, The University of Manchester, Manchester, United Kingdom
| | - David Knight
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Sahand Pirbadian
- University of Southern California, Los Angeles, CA, United States
| | - Kar Man Leung
- University of Southern California, Los Angeles, CA, United States
| | - Frank T Robb
- School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | | | | | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Omae K, Oguro T, Inoue M, Fukuyama Y, Yoshida T, Sako Y. Diversity analysis of thermophilic hydrogenogenic carboxydotrophs by carbon monoxide dehydrogenase amplicon sequencing using new primers. Extremophiles 2021; 25:61-76. [PMID: 33415441 PMCID: PMC7811984 DOI: 10.1007/s00792-020-01211-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
The microbial H2-producing (hydrogenogenic) carbon monoxide (CO)-oxidizing activity by the membrane-associated CO dehydrogenase (CODH)/energy-converting hydrogenase (ECH) complex is an important metabolic process in the microbial community. However, the studies on hydrogenogenic carboxydotrophs had to rely on inherently cultivation and isolation methods due to their rare abundance, which was a bottleneck in ecological study. Here, we provided gene-targeted sequencing method for the diversity estimation of thermophilic hydrogenogenic carboxydotrophs. We designed six new degenerate primer pairs which effectively amplified the coding regions of CODH genes forming gene clusters with ECH genes (CODHech genes) in Firmicutes which includes major thermophilic hydrogenogenic carboxydotrophs in terrestrial thermal habitats. Amplicon sequencing by these primers using DNAs from terrestrial hydrothermal sediments and CO-gas-incubated samples specifically detected multiple CODH genes which were identical or phylogenetically related to the CODHech genes in Firmictes. Furthermore, we found that phylogenetically distinct CODHech genes were enriched in CO-gas-incubated samples, suggesting that our primers detected uncultured hydrogenogenic carboxydotrophs as well. The new CODH-targeted primers provided us with a fine-grained (~ 97.9% in nucleotide sequence identity) diversity analysis of thermophilic hydrogenogenic carboxydotrophs by amplicon sequencing and will bolster the ecological study of these microorganisms.
Collapse
Affiliation(s)
- Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tatsuki Oguro
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
14
|
Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium. Sci Rep 2020; 10:21661. [PMID: 33303863 PMCID: PMC7729950 DOI: 10.1038/s41598-020-78605-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/27/2020] [Indexed: 11/14/2022] Open
Abstract
Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO3), with CO2/bicarbonate as the electron acceptor and the only carbon source, producing green rust and acetate. In order to reproduce Proterozoic environmental conditions during the deposition of banded iron formation (BIF), we incubated the microbial consortium in a bioreactor that contained an unmixed anoxic layer of siderite, perfectly mixed N2/CO2-saturated liquid medium and microoxic (2% O2) headspace. Long-term incubation (56 days) led to the formation of magnetite (Fe3O4) instead of green rust as the main product of Fe(II) oxidation, the precipitation of newly formed metabolically induced siderite in the anoxic zone, and the deposition of hematite (Fe2O3) on bioreactor walls over the oxycline boundary. Acetate was the only metabolic product of CO2/bicarbonate reduction. Thus, we have demonstrated the ability of autotrophic thermophilic microbial consortium to perform a short cycle of iron minerals transformation: siderite–magnetite–siderite, accompanied by magnetite and hematite accumulation. This cycle is believed to have driven the evolution of the early biosphere, leading to primary biomass production and deposition of the main iron mineral association of BIF.
Collapse
|
15
|
Mu A, Thomas BC, Banfield JF, Moreau JW. Subsurface carbon monoxide oxidation capacity revealed through genome-resolved metagenomics of a carboxydotroph. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:525-533. [PMID: 32633030 DOI: 10.1111/1758-2229.12868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities play important roles in the biogeochemical cycling of carbon in the Earth's deep subsurface. Previously, we demonstrated changes to the microbial community structure of a deep aquifer (1.4 km) receiving 150 tons of injected supercritical CO2 (scCO2 ) in a geosequestration experiment. The observed changes support a key role in the aquifer microbiome for the thermophilic CO-utilizing anaerobe Carboxydocella, which decreased in relative abundance post-scCO2 injection. Here, we present results from more detailed metagenomic profiling of this experiment, with genome resolution of the native carboxydotrophic Carboxydocella. We demonstrate a switch in CO-oxidation potential by Carboxydocella through analysis of its carbon monoxide dehydrogenase (CODH) gene before and after the geosequestration experiment. We discuss the potential impacts of scCO2 on subsurface flow of carbon and electrons from oxidation of the metabolic intermediate carbon monoxide (CO).
Collapse
Affiliation(s)
- Andre Mu
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - John W Moreau
- School of Earth Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Inoue M, Izumihara H, Fukuyama Y, Omae K, Yoshida T, Sako Y. Carbon monoxide-dependent transcriptional changes in a thermophilic, carbon monoxide-utilizing, hydrogen-evolving bacterium Calderihabitans maritimus KKC1 revealed by transcriptomic analysis. Extremophiles 2020; 24:551-564. [PMID: 32388815 PMCID: PMC7306483 DOI: 10.1007/s00792-020-01175-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
Calderihabitans maritimus KKC1 is a thermophilic, carbon monoxide (CO)-utilizing, hydrogen-evolving bacterium that harbors seven cooS genes for anaerobic CO dehydrogenases and six hyd genes for [NiFe] hydrogenases and capable of using a variety of electron acceptors coupled to CO oxidation. To understand the relationships among these unique features and the transcriptional adaptation of the organism to CO, we performed a transcriptome analysis of C. maritimus KKC1 grown under 100% CO and N2 conditions. Of its 3114 genes, 58 and 32 genes were significantly upregulated and downregulated in the presence of CO, respectively. A cooS–ech gene cluster, an “orphan” cooS gene, and bidirectional hyd genes were upregulated under CO, whereas hydrogen-uptake hyd genes were downregulated. Transcriptional changes in anaerobic respiratory genes supported the broad usage of electron acceptors in C. maritimus KKC1 under CO metabolism. Overall, the majority of the differentially expressed genes were oxidoreductase-like genes, suggesting metabolic adaptation to the cellular redox change upon CO oxidation. Moreover, our results suggest a transcriptional response mechanism to CO that involves multiple transcription factors, as well as a CO-responsive transcriptional activator (CooA). Our findings shed light on the diverse mechanisms for transcriptional and metabolic adaptations to CO in CO-utilizing and hydrogen-evolving bacteria.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hikaru Izumihara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuto Fukuyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kimiho Omae
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
17
|
Mössbauer and EPR study of ferrihydrite and siderite biotransformations by a syntrophic culture of alkaliphilic bacteria. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Kochetkova TV, Mardanov AV, Sokolova TG, Bonch-Osmolovskaya EA, Kublanov IV, Kevbrin VV, Beletsky AV, Ravin NV, Lebedinsky AV. The first crenarchaeon capable of growth by anaerobic carbon monoxide oxidation coupled with H2 production. Syst Appl Microbiol 2020; 43:126064. [DOI: 10.1016/j.syapm.2020.126064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/01/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
|
19
|
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:99-148. [PMID: 32386607 DOI: 10.1016/bs.aambs.2019.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Omae K, Fukuyama Y, Yasuda H, Mise K, Yoshida T, Sako Y. Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan. Arch Microbiol 2019; 201:969-982. [PMID: 31030239 PMCID: PMC6687684 DOI: 10.1007/s00203-019-01661-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
In hydrothermal environments, carbon monoxide (CO) utilisation by thermophilic hydrogenogenic carboxydotrophs may play an important role in microbial ecology by reducing toxic levels of CO and providing H2 for fuelling microbial communities. We evaluated thermophilic hydrogenogenic carboxydotrophs by microbial community analysis. First, we analysed the correlation between carbon monoxide dehydrogenase (CODH)–energy-converting hydrogenase (ECH) gene cluster and taxonomic affiliation by surveying an increasing genomic database. We identified 71 genome-encoded CODH–ECH gene clusters, including 46 whose owners were not reported as hydrogenogenic carboxydotrophs. We identified 13 phylotypes showing > 98.7% identity with these taxa as potential hydrogenogenic carboxydotrophs in hot springs. Of these, Firmicutes phylotypes such as Parageobacillus, Carboxydocella, Caldanaerobacter, and Carboxydothermus were found in different environmental conditions and distinct microbial communities. The relative abundance of the potential thermophilic hydrogenogenic carboxydotrophs was low. Most of them did not show any symbiotic networks with other microbes, implying that their metabolic activities might be low.
Collapse
Affiliation(s)
- Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Hisato Yasuda
- Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kenta Mise
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan.
| |
Collapse
|
21
|
Abstract
Microbial adaptation to extreme conditions takes many forms, including specialized metabolism which may be crucial to survival in adverse conditions. Here, we analyze the diversity and environmental importance of systems allowing microbial carbon monoxide (CO) metabolism. CO is a toxic gas that can poison most organisms because of its tight binding to metalloproteins. Microbial CO uptake was first noted by Kluyver and Schnellen in 1947, and since then many microbes using CO via oxidation have emerged. Many strains use molecular oxygen as the electron acceptor for aerobic oxidation of CO using Mo-containing CO oxidoreductase enzymes named CO dehydrogenase. Anaerobic carboxydotrophs oxidize CO using CooS enzymes that contain Ni/Fe catalytic centers and are unrelated to CO dehydrogenase. Though rare on Earth in free form, CO is an important intermediate compound in anaerobic carbon cycling, as it can be coupled to acetogenesis, methanogenesis, hydrogenogenesis, and metal reduction. Many microbial species—both bacteria and archaea—have been shown to use CO to conserve energy or fix cell carbon or both. Microbial CO formation is also very common. Carboxydotrophs thus glean energy and fix carbon from a “metabolic leftover” that is not consumed by, and is toxic to, most microorganisms. Surprisingly, many species are able to thrive under culture headspaces sometimes exceeding 1 atmosphere of CO. It appears that carboxydotrophs are adapted to provide a metabolic “currency exchange” system in microbial communities in which CO arising either abiotically or biogenically is converted to CO
2 and H
2 that feed major metabolic pathways for energy conservation or carbon fixation. Solventogenic CO metabolism has been exploited to construct very large gas fermentation plants converting CO-rich industrial flue emissions into biofuels and chemical feedstocks, creating renewable energy while mitigating global warming. The use of thermostable CO dehydrogenase enzymes to construct sensitive CO gas sensors is also in progress.
Collapse
Affiliation(s)
- Frank T Robb
- Department of Microbiology and Immunology, and Inst of Marine and Environmental Technology, University of Maryland, Baltimore, Baltimore, MD, 21202, USA
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|