1
|
Sun Z, Adeleke BS, Shi Y, Li C. The seed microbiomes of staple food crops. Microb Biotechnol 2023; 16:2236-2249. [PMID: 37815330 PMCID: PMC10686132 DOI: 10.1111/1751-7915.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
The scientific community increasingly recognized that seed microbiomes are important for plant growth and nutrition. The versatile roles and modulating properties that microbiomes hold in the context of seeds seem to be an inherited approach to avert adverse conditions. These discoveries attracted extensive interest, especially in staple food crops (SFCs) where grain was consumed as food. Along with the rapid expansion of population and industrialization that posed a severe challenge to the yield of SFCs, microbiologists and botanists began to explore and engineer seed microbiomes, for safer and more fruitful grain production. To utilize seed microbiomes, we present an overall review of the most updated scientific literature on three representative SFCs (wheat, rice and maize) using the 5W1H (Which, Where, What, Why, When and How) method that provides a comprehensive understanding of the issue. These include which factors determine the composition of seed microbiomes? Where do seed microbiomes come from? What are these seed microbes? Why do these microbes choose seeds as their destination and when do microbes settle down and become seed communists? In addition, how do seed microbiomes work and can be manipulated effectively? Therefore, answering the aforementioned questions regarding SFCs seed microbiomes remain fundamental in bridging endophytic research gaps and harnessing their ecological services.
Collapse
Affiliation(s)
- Zhongke Sun
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Food Laboratory of ZhongyuanLuoheChina
| | - Bartholomew Saanu Adeleke
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Department of Biological Sciences, School of ScienceOlusegun Agagu University of Science and TechnologyOkitipupaNigeria
| | - Yini Shi
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| | - Chengwei Li
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| |
Collapse
|
2
|
Rétif F, Kunz C, Calabro K, Duval C, Prado S, Bailly C, Baudouin E. Seed fungal endophytes as biostimulants and biocontrol agents to improve seed performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1260292. [PMID: 37941673 PMCID: PMC10628453 DOI: 10.3389/fpls.2023.1260292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Seed germination is a major determinant of plant development and final yield establishment but strongly reliant on the plant's abiotic and biotic environment. In the context of global climate change, classical approaches to improve seed germination under challenging environments through selection and use of synthetic pesticides reached their limits. A currently underexplored way is to exploit the beneficial impact of the microorganisms associated with plants. Among plant microbiota, endophytes, which are micro-organisms living inside host plant tissues without causing any visible symptoms, are promising candidates for improving plant fitness. They possibly establish a mutualistic relationship with their host, leading to enhanced plant yield and improved tolerance to abiotic threats and pathogen attacks. The current view is that such beneficial association relies on chemical mediations using the large variety of molecules produced by endophytes. In contrast to leaf and root endophytes, seed-borne fungal endophytes have been poorly studied although they constitute the early-life plant microbiota. Moreover, seed-borne fungal microbiota and its metabolites appear as a pertinent lever for seed quality improvement. This review summarizes the recent advances in the identification of seed fungal endophytes and metabolites and their benefits for seed biology, especially under stress. It also addresses the mechanisms underlying fungal effects on seed physiology and their potential use to improve crop seed performance.'
Collapse
Affiliation(s)
- Félix Rétif
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| | - Caroline Kunz
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927, Paris, France
| | - Kevin Calabro
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
| | - Clémence Duval
- Seedlab, Novalliance, Zone Anjou Actiparc, Longué-Jumelles, France
| | - Soizic Prado
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France
| | - Christophe Bailly
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| | - Emmanuel Baudouin
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), Paris, France
| |
Collapse
|
3
|
Al-Zaban MI, Alrokban AH, Mahmoud MA. Development of a real-time PCR and multiplex PCR assay for the detection and identification of mycotoxigenic fungi in stored maize grains. Mycology 2023; 14:227-238. [PMID: 37583456 PMCID: PMC10424615 DOI: 10.1080/21501203.2023.2213704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/09/2023] [Indexed: 08/17/2023] Open
Abstract
This study aimed to identify important mycotoxigenic fungi and accurate detection of mycotoxin in stored maize grains using molecular methods. The current study also optimised the real-time PCR (RT-PCR) assay. The melting curve was established to identify isolated fungal species of Aspergillus (4), Fusarium (3), Penicillium (3), and Alternaria (one). A multiplex polymerase chain reaction (mPCR) technique was developed for the detection and characterisation of mycotoxin producing fungi, mycotoxin metabolic pathway genes, and the determination of eleven mycotoxins in stored maize grains using high-performance liquid chromatography (HPLC). The mPCR results indicated positive signals for potentially mycotoxigenic fungal species tested of Aspergillus, Fusarium, Penicillium, and Alternaria. A protocol for multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was tested to distinguish between free and contaminated, stored maize with aflatoxin B1 (AFB1). The expression pattern of four aflatoxin biosynthetic pathway genes, AFB1 (aflQ, aflP, aflO, and aflD), was a good marker for contaminated, stored maize grains. HPLC analysis showed that maize grain samples were contaminated with mycotoxins, and the concentration was above the detection level. The results indicate that the polyphasic approach might provide a sensitive, rapid, and accurate method for detecting and identifying mycotoxigenic fungal species and mycotoxins in stored maize grains.
Collapse
Affiliation(s)
- Mayasar I. Al-Zaban
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahlam H. Alrokban
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Central Laboratory of Biotechnology (CLB), Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
4
|
Abdelfattah A, Tack AJM, Lobato C, Wassermann B, Berg G. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol 2023; 31:346-355. [PMID: 36481186 DOI: 10.1016/j.tim.2022.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/10/2022]
Abstract
Despite evidence that the microbiome extends host genetic and phenotypic traits, information on how the microbiome is transmitted and maintained across generations remains fragmented. For seed-bearing plants, seeds harbor a distinct microbiome and play a unique role by linking one generation to the next. Studies on microbial inheritance, a process we suggest including both vertical transmission and the subsequent migration of seed microorganisms to the new plant, thus become essential for our understanding of host evolutionary potential and host-microbiome coevolution. We propose dividing the inheritance process into three stages: (i) plant to seed, (ii) seed dormancy, and (iii) seed to seedling. We discuss the factors affecting the assembly of the microbiome during the three stages, highlight future research directions, and emphasize the implications of microbial inheritance for fundamental science and society.
Collapse
Affiliation(s)
- Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany; Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden; Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria.
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, Stockholm, SE-106 91, Sweden
| | - Carolina Lobato
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany; Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria; Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam OT Golm, Germany
| |
Collapse
|
5
|
Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed RZ, Hasanuzzaman M. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. PLANTA 2022; 257:27. [PMID: 36583789 DOI: 10.1007/s00425-022-04052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.
Collapse
Affiliation(s)
- Shalini Rai
- Department of Biotechnology, SHEPA, Varanasi, India.
| | - Ayman F Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia.
- Department of Plant Pathology, Plant Pathology and Biotechnology Laboratory and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Alka Sagar
- Department of Microbiology, MIET, Meerut, India
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - R Z Sayyed
- Asian PGPR Society, Auburn Venture, Auburn, AL, USA.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University (SAU), Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|
6
|
Becerra‐Sanchez F, Taylor G. Reducing post‐harvest losses and improving quality in sweet corn (
Zea mays
L.): challenges and solutions for less food waste and improved food security. Food Energy Secur 2021. [DOI: 10.1002/fes3.277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Felipe Becerra‐Sanchez
- Department of Plant Sciences University of California Davis CA USA
- School of Biological Sciences University of Southampton Southampton UK
| | - Gail Taylor
- Department of Plant Sciences University of California Davis CA USA
- School of Biological Sciences University of Southampton Southampton UK
| |
Collapse
|
7
|
Wilson SA, Mohammadi Shad Z, Oduola AA, Zhou Z, Jiang H, Carbonero F, Atungulu GG. Decontamination of mycotoxigenic fungi on shelled corn using selective infrared heating technique. Cereal Chem 2021. [DOI: 10.1002/cche.10394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shantae A. Wilson
- Department of Food Science Division of Agriculture University of Arkansas Fayetteville AR USA
| | - Zeinab Mohammadi Shad
- Department of Food Science Division of Agriculture University of Arkansas Fayetteville AR USA
| | - Abass A. Oduola
- Department of Food Science Division of Agriculture University of Arkansas Fayetteville AR USA
| | - Zonghui Zhou
- College of Light Industry and Food Engineering Guangxi University Nanning P. R. China
| | - Hongrui Jiang
- College of Light Industry and Food Engineering Guangxi University Nanning P. R. China
| | - Franck Carbonero
- Department of Food Science Division of Agriculture University of Arkansas Fayetteville AR USA
- Department of Nutrition and Exercise Physiology and School of Food Science Washington State University Spokane WA USA
| | - Griffiths G. Atungulu
- Department of Food Science Division of Agriculture University of Arkansas Fayetteville AR USA
| |
Collapse
|
8
|
Frazzoli C, Mantovani A. Toxicological risk factors in the burden of malnutrition: The case of nutrition (and risk) transition in sub-Saharan Africa. Food Chem Toxicol 2020; 146:111789. [PMID: 33011353 DOI: 10.1016/j.fct.2020.111789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/16/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Toxicant exposures may worsen the micronutrient status, especially during the womb-to-childhood development, impairing organism programming and increasing the risk for health disorders in adulthood. Growing evidence calls for an integrated risk analysis of the interplay of environment, behavior and lifestyle, where a) imbalanced diet and micronutrient deficiencies may increase the vulnerability to toxicants and alter body defence systems and b) intake of antinutrients and contaminants may increase nutritional requirements. Such scenarios are especially evident in communities undergoing a fast nutrition transition, such as in many countries of sub-Saharan Africa. Specific challenges of toxicological risk analysis in sub-Saharan Africa still need a thorough assessment, including: rapid changes of lifestyle and consumers' preferences; dumping of foods and consumer' products; risk management under weak or non-existent awareness, legislation enforcement and infrastructures. The significant and growing literature from Africa-led scientific research should be used to build quality-controlled data repositories supporting regulatory top-down actions. Meanwhile, bottom-up actions (eg consumer's empowerment) could exploit social and economic drivers toward a qualified African presence in the global and local markets. A science-based combination of top-down and bottom-up actions on preventable toxicological risk factors will contribute fighting the new forms of malnutrition and prevent multi-factorial diseases. Exposures to toxicants should be included in the integrated approach proposed by WHO to address the urgent health challenge of simultaneously reduce the risk or burden of both malnutrition (ie deficiency of one or more essential nutrients) and overweight, obesity, and diet-related NCDs.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-metabolic Diseases, and Ageing, Istituto Superiore di Sanita', Rome, Italy.
| | - Alberto Mantovani
- Department of Food Safety, Nutrition, and Veterinary Public Health, Istituto Superiore di Sanita', Rome, Italy
| |
Collapse
|