1
|
Lassoued K, Mahjoubi M, Asimakis E, Bel Mokhtar N, Stathopoulou P, Ben Hamouda R, Bousselmi O, Marasco R, Masmoudi AS, Daffonchio D, Tsiamis G, Cherif A. Diversity and networking of uni-cyanobacterial cultures and associated heterotrophic bacteria from the benthic microbial mat of a desert hydrothermal spring. FEMS Microbiol Ecol 2024; 100:fiae148. [PMID: 39557663 DOI: 10.1093/femsec/fiae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024] Open
Abstract
Thermal springs harbour microorganisms, often dominated by cyanobacteria, which form biofilms and microbial mats. These phototrophic organisms release organic exudates into their immediate surroundings, attracting heterotrophic bacteria that contribute to the diversity and functioning of these ecosystems. In this study, the microbial mats from a hydrothermal pool in the Ksar Ghilane oasis in the Grand Erg Oriental of the Desert Tunisia were collected to obtain cyanobacterial cultures formed by single cyanobacterial species. High-throughput analysis showed that while the microbial mat hosted diverse cyanobacteria, laboratory cultures selectively enriched cyanobacteria from the Leptolyngbya, Nodosilinea, and Arthronema. Per each of these genera, multiple non-axenic uni-cyanobacterial cultures were established, totalling 41 cultures. Cyanobacteria taxa mediated the assembly of distinct heterotrophic bacterial communities, with members of the Proteobacteria and Actinobacteria phyla dominating. The bacterial communities of uni-cyanobacterial cultures were densely interconnected, with heterotrophic bacteria preferentially co-occurring with each other. Our study highlighted the complex structures of non-axenic uni-cyanobacterial cultures, where taxonomically distinct cyanobacteria consistently associate with specific groups of heterotrophic bacteria. The observed associations were likely driven by common selection pressures in the laboratory, such as cultivation conditions and specific hosts, and may not necessarily reflect the microbial dynamic occurring in the spring microbial mats.
Collapse
Affiliation(s)
- Khaoula Lassoued
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
- National Institute of Agronomy of Tunisia, University of Carthage, Tunis 1082, Tunisia
| | - Mouna Mahjoubi
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Refka Ben Hamouda
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Olfa Bousselmi
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio 30100, Greece
| | - Ameur Cherif
- BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia
| |
Collapse
|
2
|
Sun P, Fan K, Jiang Y, Chu H, Chen Y, Wu Y. Accumulated temperature dictates the regional structural variation of prokaryotic periphyton at soil-water interface in paddy fields. WATER RESEARCH 2024; 265:122259. [PMID: 39154398 DOI: 10.1016/j.watres.2024.122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
As a pervasive microbial aggregate found at the water-soil interface in paddy fields, periphyton plays crucial roles in modulating nutrient biogeochemical cycling. Consequently, it effectively mitigates non-point source pollution due to its diverse composition. Despite its significance, the mechanisms governing periphyton diversity across different rice planting regions remain poorly understood. To bridge this gap, we investigated periphyton grown in 200 paddy fields spanning 25° of latitude. Initially, we analyzed local diversity and latitudinal variations in prokaryotic communities within paddy field periphyton, identifying 7 abundant taxa, 42 moderate taxa, and 39 rare taxa as the fundamental prokaryotic framework. Subsequently, to elucidate the mechanisms governing periphyton diversity across large scales, we constructed interaction models illustrating triangular relationships among local richness, assembly, and regional variation of prokaryotic subcommunities. Our findings suggest that accumulated temperature-driven environmental filtering partially influences the assembly process of prokaryotes, thereby impacting local species richness and ultimately governing regional structural variations in periphyton. Furthermore, we determined that a latitude of 39° represents the critical threshold maximizing local species richness of periphyton in paddy fields. This study advances our understanding of the factors shaping periphyton geo-imprints and provides valuable insights into predicting their responses to environmental changes, potentially influencing rice production outcomes.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Kunkun Fan
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Yuji Jiang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Haiyan Chu
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Yin Chen
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK.
| | - Yonghong Wu
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China.
| |
Collapse
|
3
|
Wang C, Wang Q, Ben W, Qiao M, Ma B, Bai Y, Qu J. Machine learning predicts the growth of cyanobacterial genera in river systems and reveals their different environmental responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174383. [PMID: 38960197 DOI: 10.1016/j.scitotenv.2024.174383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Cyanobacterial blooms are a common and serious problem in global freshwater environments. However, the response mechanisms of various cyanobacterial genera to multiple nutrients and pollutants, as well as the factors driving their competitive dominance, remain unclear or controversial. The relative abundance and cell density of two dominant cyanobacterial genera (i.e., Cyanobium and Microcystis) in river ecosystems along a gradient of anthropogenic disturbance were predicted by random forest with post-interpretability based on physicochemical indices. Results showed that the optimized predictions all reached strong fitting with R2 > 0.75, and conventional water quality indices played a dominant role. One-dimensional and two-dimensional partial dependence plot (PDP) revealed that the responses of Cyanobium and Microcystis to nutrients and temperature were similar, but they showed differences in preferrable nutrient utilization and response to pollutants. Further prediction and PDP for the ratio of Cyanobium and Microcystis unveiled that their distinct responses to PAHs and SPAHs were crucial drivers for their competitive dominance over each other. This study presents a new way for analyzing the response of cyanobacterial genera to multiple environmental factors and their dominance relationships by interpretable machine learning, which is suitable for the identification and interpretation of high-dimensional nonlinear ecosystems with complex interactions.
Collapse
Affiliation(s)
- Chenchen Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Yang Q, Yu H, Yang C, Zhao Z, Ju Z, Wang J, Bai Z. Enhanced phytoremediation of cadmium-contaminated soil using chelating agents and plant growth regulators: effect and mechanism. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240672. [PMID: 39323552 PMCID: PMC11421895 DOI: 10.1098/rsos.240672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The heavy metal cadmium (Cd) is a major threat to food safety and human health. Phytoremediation is the most widely used remediation technology, and how to improve the remediation efficiency of phytoremediation has become a key issue. In this study, we constructed an intensive phytoremediation technology for remediation of Cd-contaminated soil with biodegradable chelating agent and plant growth regulator combined with maize and investigated the mechanism of this technology. The results showed that the best remediation effect was achieved in the treatment with 10-6 mol l-1 gibberellic acid (GA3) and 6 mmol kg-1 aspartate diethoxysuccinic acid (AES) combined with maize. In this treatment, the total biomass and extraction efficiency of maize were 3.6 and 8.67 times higher than those of the control, respectively, and the antioxidant enzyme activities of maize were also increased. The soil was enriched with dominant bacterial genera that promote plant growth and metabolism and tolerance to heavy metal stress, which in turn promoted maize growth and Cd accumulation. Structural equation modelling results indicated a large effect of plant Cd concentration and plant antioxidant enzyme activity on plant Cd extraction. The enhanced phytoremediation technology showed good potential for safe use of Cd-contaminated soil.
Collapse
Affiliation(s)
- Qiao Yang
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Hao Yu
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Chen Yang
- College of Resource and Environment, Shanxi Agricultural University, Taigu030801, People’s Republic of China
| | - Zhongqiu Zhao
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhengshan Ju
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing100035, People’s Republic of China
- Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing100035, People’s Republic of China
| | - Jinman Wang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| | - Zhongke Bai
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing100083, People’s Republic of China
| |
Collapse
|
5
|
Jiang L, Yi M, Jiang Z, Wu Y, Cao J, Liu Z, Wang Z, Lu M, Ke X, Wang M. Effect of Pond-Based Rice Floating Bed on the Microbial Community Structure and Quality of Water in Pond of Mandarin Fish Fed Using Artificial Diet. BIOLOGY 2024; 13:549. [PMID: 39056741 PMCID: PMC11274348 DOI: 10.3390/biology13070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The culture of mandarin fish using artificial feed has been gaining increasing attention in China. Ensuring good water quality in the ponds is crucial for successful aquaculture. Recently, the trial of pond-based rice floating beds (PRFBs) in aquaculture ponds has shown promising results. This research assessed the impact of PRFBs on the microbial community structure and overall quality of the aquaculture pond, thereby enhancing our understanding of its functions. The results revealed that the PRFB group exhibited lower levels of NH4+-N, NO2--N, NO3--N, TN, TP, and Alk in pond water compared to the control group. The microbial diversity indices in the PRFB group showed a declining trend, while these indices were increasing in the control group. At the phylum level, there was a considerable increase in Proteobacteria abundance in the PRFB group throughout the culture period, suggesting that PRFBs may promote the proliferation of Proteobacteria. In the PRFB group, there was a remarkable decrease in bacterial populations related to carbon, nitrogen, and phosphorus metabolism, including genera Rhodobacter, Rhizorhapis, Dinghuibacter, Candidatus Aquiluna, and Chryseomicrobium as well as the CL500_29_marine_group. Overall, the research findings will provide a basis for the application of aquaculture of mandarin fish fed an artificial diet and rice floating beds.
Collapse
Affiliation(s)
- Lijin Jiang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhiyong Jiang
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China; (Z.J.); (Y.W.)
| | - Yuli Wu
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China; (Z.J.); (Y.W.)
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhang Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Xiaoli Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| |
Collapse
|
6
|
Te SH, Kok JWK, Luo R, You L, Sukarji NH, Goh KC, Sim ZY, Zhang D, He Y, Gin KYH. Coexistence of Synechococcus and Microcystis Blooms in a Tropical Urban Reservoir and Their Links with Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1613-1624. [PMID: 36653016 PMCID: PMC9894078 DOI: 10.1021/acs.est.2c04943] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Bacteria play a crucial role in driving ecological processes in aquatic ecosystems. Studies have shown that bacteria-cyanobacteria interactions contributed significantly to phytoplankton dynamics. However, information on the contribution of bacterial communities to blooms remains scarce. Here, we tracked changes in the bacterial community during the development of a cyanobacterial bloom in an equatorial estuarine reservoir. Two forms of blooms were observed simultaneously corresponding to the lotic and lentic characteristics of the sampling sites where significant spatial variabilities in physicochemical water quality, cyanobacterial biomass, secondary metabolites, and cyanobacterial/bacterial compositions were detected. Microcystis dominated the upstream sites during peak periods and were succeeded by Synechococcus when the bloom subsided. For the main body of the reservoir, a mixed bloom featuring coccoid and filamentous cyanobacteria (Microcystis, Synechococcus, Planktothricoides, Nodosilinea, Raphidiopsis, and Prochlorothrix) was observed. Concentrations of the picocyanobacteria Synechococcus remained high throughout the study, and their positive correlations with cylindrospermopsin and anatoxin-a suggested that they could produce cyanotoxins, which pose more damaging impacts than previously supposed. Succession of different cyanobacteria (Synechococcus and Microcystis) following changes in nutrient composition and ionic strength was demonstrated. The microbiomes associated with blooms were unique to the dominant cyanobacteria. Generic and specialized bloom biomarkers for the Microcystis and downstream mixed blooms were also identified. Microscillaceae, Chthoniobacteraceae, and Roseomonas were the major heterotrophic bacteria associated with Microcystis bloom, whereas Phycisphaeraceae and Methylacidiphilaceae were the most prominent groups for the Synechococcus bloom. Collectively, bacterial community can be greatly deviated by the geological condition, monsoon season, cyanobacterial density, and dominant cyanobacteria.
Collapse
Affiliation(s)
- Shu Harn Te
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Jerome Wai Kit Kok
- Department
of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, 117576 Singapore
| | - Rong Luo
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Luhua You
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Nur Hanisah Sukarji
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Kwan Chien Goh
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Zhi Yang Sim
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Dong Zhang
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
| | - Yiliang He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- National
University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, 138602 Singapore
- Department
of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, 117576 Singapore
| |
Collapse
|
7
|
Butarelli ACDA, Ferreira LSDS, Riyuzo R, Dall'Agnol HMB, Piroupo CM, da Silva AM, Setubal JC, Dall'Agnol LT. Diversity assessment of photosynthesizers: comparative analysis of pre-cultivated and natural microbiome of sediments from Cerrado biome in Maranhão, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77359-77374. [PMID: 35675015 DOI: 10.1007/s11356-022-21229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microorganisms are important components of most ecosystems and have important roles regarding biogeochemical cycles and the basis of the trophic chain. However, they sometimes are present in low abundance compared to other heterotrophic organisms. The Chapada das Mesas National Park (PNCM) is a Conservation Unit in Brazilian Cerrado biome, which is considered a hotspot for biodiversity conservation and possesses important rivers, waterfalls, and springs with economical and touristic importance. The aim of this study was to perform a comparative analysis of enriched and total microbiome of sediments to understand the impact of pre-cultivation in discovery of underrepresented groups like photosynthesizers. All sediment samples were cultivated in BG-11 medium under illumination to enrich for photosynthetic microorganisms and both the raw samples and the enriched ones were submitted to DNA extraction and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene on the Ion Torrent platform. The reads were analyzed using QIIME2 software and the Phyloseq package. The enrichment allowed detection and identification of many genera of cyanobacteria in the Chapada das Mesas National Park (PNCM), which would probably not be possible without the combination of approaches. A total of 58 groups of photosynthetic microorganisms were classified in the samples from the enrichments and their relative abundance based on amplified 16S rRNA sequences were estimated, highlighting the genus Synechocystis which represented 10.10% of the abundance of the phylum Cyanobacteria and the genus Dunaliella, which represented 45.66% of the abundance of algae as the most abundant groups at the PNCM. In the enrichments, microorganisms from the phyla Proteobacteria (45.2%), Bacteroidetes (18%), and Planctomycetes (3.3%) were also identified, since there are ecological associations between the photosynthetic community and other groups of heterotrophic microorganisms. As for the functional analysis, metabolic functions associated with methanotrophy and methylotrophy, hydrocarbon degradation, phototrophy, and nitrogen fixation were predicted. The results highlight a great diversity of photosynthetic microorganisms in Cerrado and the importance of using a combination of approaches when analyzing target groups which are usually underrepresented such as cyanobacteria and microalgae.
Collapse
Affiliation(s)
- Ana Carolina de Araújo Butarelli
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, 05508-120, Brazil
| | - Lucas Salomão de Sousa Ferreira
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, 05508-120, Brazil
| | - Raquel Riyuzo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Hivana Melo Barbosa Dall'Agnol
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65080-805, Brazil
| | - Carlos Morais Piroupo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Aline Maria da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Leonardo Teixeira Dall'Agnol
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, Cidade Universitária Dom Delgado, Av. dos Portugueses, 1966,Vila Bacanga, São Luís, MA, 65080-805, Brazil.
| |
Collapse
|
8
|
Ou-Yang T, Yang SQ, Zhao L, Ji LL, Shi JQ, Wu ZX. Temporal heterogeneity of bacterial communities and their responses to Raphidiopsis raciborskii blooms. Microbiol Res 2022; 262:127098. [PMID: 35753182 DOI: 10.1016/j.micres.2022.127098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
To elucidate the interspecies connectivity between cyanobacteria and other bacteria (noncyanobacteria), microbial diversity and composition were investigated through high-throughput sequencing (HTS) in a drinking water reservoir in Chongqing city, Southwest China, during Raphidiopsis raciborskii blooms. Significant temporal changes were observed in microbial community composition during the sampling period, primarily reflected by variations in relative bacterial abundance. The modularity analysis of the network demonstrated that the bacterial community forms co-occurrence/exclusion patterns in response to variations in environmental factors. Moreover, five modules involved in the dynamic phases of the R. raciborskii bloom were categorized into the Pre-Bloom, Bloom, Post-Bloom, and Non-Bloom Groups. The reservoir was eutrophic (i.e., the average concentrations of total nitrogen (TN) and total phosphorus (TP) were 2.32 and 0.07 mg L-1, respectively) during the investigation; however, Pearson's correlation coefficient showed that R. raciborskii was not significantly correlated with nitrogen and phosphorus. However, other environmental factors, such as water temperature, pH, and the permanganate index, were positively correlated with R. raciborskii. Importantly, Proteobacteria (α-, γ-Proteobacteria), Acidobacteria, Chloroflexi, and Firmicutes were preferentially associated with increased R. raciborskii blooms. These results suggested that the transition of R. raciborskii bloom-related microbial modules and their keystone species could be crucial in the development and collapse of R. raciborskii blooms and could provide a fundamental basis for understanding the linkage between the structure and function of the microbial community during bloom dynamics.
Collapse
Affiliation(s)
- Tian Ou-Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Song-Qi Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu-Lu Ji
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jun-Qiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Zhong-Xing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Zhao D, Gao P, Xu L, Qu L, Han Y, Zheng L, Gong X. Disproportionate responses between free-living and particle-attached bacteria during the transition to oxygen-deficient zones in the Bohai Seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148097. [PMID: 34412405 DOI: 10.1016/j.scitotenv.2021.148097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The Bohai Sea has recently suffered several seasonal oxygen-deficiency, even hypoxia events during the summer. To better understand effects of dissolved oxygen (DO) concentration on the bacterial composition in particle attached (PA) and free living (FL) fractions during the transition from oxic water to low oxygen conditions, the bacterial communities under three different oxygen levels, i.e., high oxygen (HO, close to 100% O2 saturation), medium oxygen (MO, close to 75% O2 saturation), and low oxygen (LO, close to 50% O2 saturation) in the Bohai Sea were investigated using 16S rRNA amplicon sequencing. Fourteen water samples from 5 stations were collected during a cruise from August to September in 2018. The results showed that the sequences of Proteobacteria and Actinobacteriota jointly accounted for up to 74% across all 14 samples. The Shannon index in HO samples were significantly higher than in LO samples (P < 0.05), especially in PA communities. The composition of bacterial communities varied by oxygen concentration in all samples, and the effect was more pronounced in the PA fraction, which indicates that the PA fraction was more sensitive to the change in oxygen concentration, possibly due to the tighter interactions in this community than in the FL fraction. This study provides novel insights into the distribution of bacterial communities, and clues for understanding the responses of bacterial communities in the Bohai Sea during the transition from the oxic to oxygen-deficient zones.
Collapse
Affiliation(s)
- Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ping Gao
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lingyun Qu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yajing Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Liwen Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
10
|
Omidi A, Pflugmacher S, Kaplan A, Kim YJ, Esterhuizen M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021; 9:1583. [PMID: 34442662 PMCID: PMC8401979 DOI: 10.3390/microorganisms9081583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
Collapse
Affiliation(s)
- Azam Omidi
- Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg., 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada;
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Young Jun Kim
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
| | - Maranda Esterhuizen
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
- Finland and Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
11
|
Martin G, Sharma S, Ryan W, Srinivasan NK, Senko JM. Identification of Microbiological Activities in Wet Flue Gas Desulfurization Systems. Front Microbiol 2021; 12:675628. [PMID: 34262541 PMCID: PMC8273512 DOI: 10.3389/fmicb.2021.675628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Thermoelectric power generation from coal requires large amounts of water, much of which is used for wet flue gas desulfurization (wFGD) systems that minimize sulfur emissions, and consequently, acid rain. The microbial communities in wFGDs and throughout thermoelectric power plants can influence system performance, waste processing, and the long term stewardship of residual wastes. Any microorganisms that survive in wFGD slurries must tolerate high total dissolved solids concentrations (TDS) and temperatures (50–60°C), but the inocula for wFGDs are typically from fresh surface waters (e.g., lakes or rivers) of low TDS and temperatures, and whose activity might be limited under the physicochemically extreme conditions of the wFGD. To determine the extents of microbiological activities in wFGDs, we examined the microbial activities and communities associated with three wFGDs. O2 consumption rates of three wFGD slurries were optimal at 55°C, and living cells could be detected microscopically, indicating that living and active communities of organisms were present in the wFGD and could metabolize at the high temperature of the wFGD. A 16S rRNA gene-based survey revealed that the wFGD-associated microbial communities included taxa attributable to both thermophilic and mesophilic lineages. Metatranscriptomic analysis of one of the wFGDs indicated an abundance of active Burholderiaceae and several Gammaproteobacteria, and production of transcripts associated with carbohydrate metabolism, osmotic stress response, as well as phage, prophages, and transposable elements. These results illustrate that microbial activities can be sustained in physicochemically extreme wFGDs, and these activities may influence the performance and environmental impacts of thermoelectric power plants.
Collapse
Affiliation(s)
- Gregory Martin
- Department of Biology, The University of Akron, Akron, OH, United States
| | - Shagun Sharma
- Department of Biology, The University of Akron, Akron, OH, United States.,Integrated Bioscience Program, The University of Akron, Akron, OH, United States
| | - William Ryan
- Department of Biology, The University of Akron, Akron, OH, United States
| | | | - John M Senko
- Department of Biology, The University of Akron, Akron, OH, United States.,Integrated Bioscience Program, The University of Akron, Akron, OH, United States.,Department of Geosciences, The University of Akron, Akron, OH, United States
| |
Collapse
|
12
|
Wongkiew S, Koottatep T, Polprasert C, Prombutara P, Jinsart W, Khanal SK. Bioponic system for nitrogen and phosphorus recovery from chicken manure: Evaluation of manure loading and microbial communities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 125:67-76. [PMID: 33684666 DOI: 10.1016/j.wasman.2021.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bioponics integrates the biological treatment of nutrient-rich waste streams with hydroponics. However, there are several challenges of bioponics, especially nutrient availability and qualities, which affect plant yield. In this study, chicken manure based-nutrient film technique bioponics was examined at manure loadings of 200, 300, and 400 g dry wt. per bioponic system (total of 18 plants). Bioponics effectively released nitrogen and phosphorus (total ammonia nitrogen of 5.8-8.0 mgN/L, nitrate of 7.0-11.2 mgN/L, and phosphate of 48.7-74.2 mgP/L) for efficient growth of lettuce (Lactuca sativa; total yield of 1208-2030 g wet wt. per 18 plants). Nitrogen and phosphorus use efficiencies were 35.1-41.8% and 6.8-8.0%, respectively, and were comparable to aquaponics. Next-generation sequencing was used to examine the microbial communities in digested chicken manure and plant roots in bioponics. Results showed that several microbial genera were associated with organic degradation (e.g., Nocardiopsis spp., Cellvibrio spp.), nitrification (Nitrospira spp.), phosphorus solubilization, and plant growth promotion (e.g., WD2101_soil_group, and Bacillus spp.). Nocardiopsis spp., Romboutsia spp. and Saccharomonospora spp. were found at high abundances and a high degree of co-occurrences among the microbiota, suggesting that the microbial organic decomposition to nitrogen and phosphorus release could be the key factors to achieve better nutrient recovery in bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wanida Jinsart
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
13
|
Draft Genome Sequences of Four Bacterial Species as Part of an Experiential Microbiology Project at SUNY Geneseo. Microbiol Resour Announc 2020; 9:9/47/e01085-20. [PMID: 33214303 PMCID: PMC7679096 DOI: 10.1128/mra.01085-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report four draft genome sequences related to the genera Bacillus and Escherichia, recovered from surfaces associated with human interaction, and Sediminibacterium, recovered from an aquatic environment. This study was part of an undergraduate microbial bioinformatics course at the State University of New York at Geneseo.
Collapse
|
14
|
Adyasari D, Hassenrück C, Montiel D, Dimova N. Microbial community composition across a coastal hydrological system affected by submarine groundwater discharge (SGD). PLoS One 2020; 15:e0235235. [PMID: 32598345 PMCID: PMC7323985 DOI: 10.1371/journal.pone.0235235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022] Open
Abstract
Mobile Bay, the fourth largest estuary in the USA located in the northern Gulf of Mexico, is known for extreme hypoxia in the water column during dry season caused by NH4+-rich and anoxic submarine groundwater discharge (SGD). Nutrient dynamics in the coastal ecosystem point to potentially elevated microbial activities; however, little is known about microbial community composition and their functional roles in this area. In this study, we investigated microbial community composition, distribution, and metabolic prediction along the coastal hydrological compartment of Mobile Bay using 16S rRNA gene sequencing. We collected microbial samples from surface (river and bay water) and subsurface water (groundwater and coastal pore water from two SGD sites with peat and sandy lithology, respectively). Salinity was identified as the primary factor affecting the distribution of microbial communities across surface water samples, while DON and PO43- were the major predictor of community shift within subsurface water samples. Higher microbial diversity was found in coastal pore water in comparison to surface water samples. Gammaproteobacteria, Bacteroidia, and Oxyphotobacteria dominated the bacterial community. Among the archaea, methanogens were prevalent in the peat-dominated SGD site, while the sandy SGD site was characterized by a higher proportion of ammonia-oxidizing archaea. Cyanobium PCC-6307 and unclassified Thermodesulfovibrionia were identified as dominant taxa strongly associated with trends in environmental parameters in surface and subsurface samples, respectively. Microbial communities found in the groundwater and peat layer consisted of taxa known for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). This finding suggested that microbial communities might also play a significant role in mediating nitrogen transformation in the SGD flow path and in affecting the chemical composition of SGD discharging to the water column. Given the ecological importance of microorganisms, further studies at higher taxonomic and functional resolution are needed to accurately predict chemical biotransformation processes along the coastal hydrological continuum, which influence water quality and environmental condition in Mobile Bay.
Collapse
Affiliation(s)
- Dini Adyasari
- Department of Biogeochemistry and Geology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Christiane Hassenrück
- Department of Biogeochemistry and Geology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Daniel Montiel
- Department of Geological Sciences, Coastal Hydrogeology Laboratory, University of Alabama, Alabama, AL, United States of America
- Geosyntec Consultants, Clearwater, FL, United States of America
| | - Natasha Dimova
- Department of Geological Sciences, Coastal Hydrogeology Laboratory, University of Alabama, Alabama, AL, United States of America
| |
Collapse
|
15
|
Zhao M, Ma YT, He SY, Mou X, Wu L. Dynamics of bacterioplankton community structure in response to seasonal hydrological disturbances in Poyang Lake, the largest wetland in China. FEMS Microbiol Ecol 2020; 96:5863183. [DOI: 10.1093/femsec/fiaa064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 06/25/2020] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Bacterioplankton communities play a critical role in biogeochemical cycling in freshwater environments, but how the hydrological regime impacts the assembly of bacterioplankton communities remains unclear. This study examined differences in bacterioplankton community structures between wet (July and September) and dry (October and November) seasons in two consecutive years (2016 and 2017) in Poyang Lake, the largest seasonal freshwater lake in China. Our results revealed no overall difference in bacterioplankton compositions and their predicted functions among spatially separated sites. However, bacterioplankton communities did show significant temporal shifts, mainly between samples in November and other months. Transitions from the dry to the wet season were observed in October in both sampling years. Meanwhile, insignificant spatial but significant temporal differences were also found for physicochemical variables. Moreover, redundancy analysis indicates that compared with water depth, water temperature was found to better explain changes in the bacterioplankton community. These findings consistently indicate that the bacterioplankton community in Poyang Lake is relatively less sensitive to annual hydrology shifts than water temperature and nutrient conditions.
Collapse
Affiliation(s)
- Man Zhao
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Yan-tian Ma
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Shi-yao He
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, OH 44242, USA
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| |
Collapse
|
16
|
Weiss G, Kovalerchick D, Lieman-Hurwitz J, Murik O, De Philippis R, Carmeli S, Sukenik A, Kaplan A. Increased algicidal activity of Aeromonas veronii in response to Microcystis aeruginosa: interspecies crosstalk and secondary metabolites synergism. Environ Microbiol 2020; 21:1140-1150. [PMID: 30761715 DOI: 10.1111/1462-2920.14561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022]
Abstract
Toxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp. colonies collected in Lake Kinneret. Spent Aeromonas media inhibits the growth of Microcystis aeruginosa MGK isolated from Lake Kinneret. The inhibition was much stronger when Aeromonas growth medium contained spent media from MGK suggesting that Aeromonas recognized its presence and produced secondary metabolites that inhibit Microcystis growth. Fractionations of the crude extract and analyses of the active fractions identified several secondary metabolites including lumichrome in Aeromonas media. Application of lumichrome at concentrations as low as 4 nM severely inhibited Microcystis growth. Inactivation of aviH in the lumichrome biosynthetic pathway altered the lumichrome level in Aeromonas and the extent of MGK growth inhibition. Conversely, the initial lag in Aeromonas growth was significantly longer when provided with Microcystis spent media but Aeromonas was able to resume normal growth. The longer was pre-exposure to Microcystis spent media the shorter was the lag phase in Aeromonas growth indicating the presence of, and acclimation to, secondary MGK metabolite(s) the nature of which was not revealed. Our study may help to control toxic Microcystis blooms taking advantage of chemical languages used in the interspecies communication.
Collapse
Affiliation(s)
- Gad Weiss
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Dimitry Kovalerchick
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,Plants and Environmental Sciences, Metabomed Ltd, Yavne, 81220, Israel
| | - Judy Lieman-Hurwitz
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Omer Murik
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Roberto De Philippis
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies (DAGRI), University of Florence, 50144, Florence, Italy
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Assaf Sukenik
- Plants and Environmental Sciences, The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Aaron Kaplan
- Plants and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|