1
|
Zhang X, Guo W, Zhang Z, Gao P, Tang P, Liu T, Yao X, Li J. Insights into the mobility and bacterial hosts of antibiotic resistance genes under dinotefuran selection pressure in aerobic granular sludge based on metagenomic binning and functional modules. ENVIRONMENTAL RESEARCH 2025; 268:120807. [PMID: 39798650 DOI: 10.1016/j.envres.2025.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules. It was found that DIN stress increased the total abundance of ARGs, mobile genetic elements (MGEs), and VFGs in the AGS system, with the highest abundance of fabG (4.6%), tnpA (55.6%) and LPS (39.0%), respectively. The proliferation of the enteric pathogens Salmonella enterica and Escherichia coli in the system indicates that DIN induces exposure of harmless bacteria to the infected environment. The genera Nitrospira (1169 ARG subtypes) and Dechloromonas (663 ARG subtypes) were identified as the potentially antibiotic-resistant bacteria carrying the most ARGs and MGEs in the metagenome-assembled genomes. Co-localization patterns of some ARGs, MGEs, and the SOS response-related gene lexA were observed on metagenome-assembled contigs under high levels of DIN exposure, suggesting DIN stimulated ROS production (101.8% increase over control), altered cell membrane permeability, and increased the potential for horizontal gene transfer (HGT). Furthermore, the DNA damage caused by DIN in AGS led to the activation of the antioxidant system and the SOS repair response, which in turn promoted the expression of the type IV secretion system and HGT through the flagellar channel. This study extends the previously unappreciated DIN understanding of the spread and associated risks of ARGs and VFGs in the AGS system of WWTPs. It elucidates how DIN facilitates HGT, offering a scientific basis for controlling emerging contaminant-induced resistance.
Collapse
Affiliation(s)
- Xin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Zuyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Peng Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Tingting Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xingrong Yao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Yuan M, Nie L, Huang Z, Xu S, Qiu X, Han L, Kang Y, Li F, Yao J, Li Q, Li H, Li D, Zhu X, Li Z. Capture of armA by a novel ISCR element, ISCR28. Int J Antimicrob Agents 2024; 64:107250. [PMID: 38908532 DOI: 10.1016/j.ijantimicag.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
ISCR28 is a fully functional and active member of the IS91-like family of insertion sequences. ISCR28 is 1,708-bp long and contains a 1,293-bp long putative open reading frame that codes a transposase. Sixty ISCR28-containing sequences from GenBank generated 27 non-repeat genetic contexts, all of which represented naturally occurring biological events that had occurred in a wide range of gram-negative organisms. Insertion of ISCR28 into target DNA preferred the presence of a 5'-GXXT-3' sequence at its terIS (replication terminator) end. Loss of the first 4 bp of its oriIS (origin of replication) likely caused ISCR28 to be trapped in ISApl1-based transposons or similar structures. Loss of terIS and fusion with a mobile element upstream likely promoted co-transfer of ISCR28 and the downstream resistance genes. ArmA and its downstream intact ISCR28 can be excised from recombinant pKD46 plasmids forming circular intermediates, further elucidating its activity as a transposase.
Collapse
Affiliation(s)
- Min Yuan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Nie
- Department of Laboratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhenzhou Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaotong Qiu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lichao Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yutong Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qixin Li
- Department of Laboratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huan Li
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiong Zhu
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China.
| | - Zhenjun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
3
|
Tao G, Tan H, Chen Q. The First Report of Escherichia coli and Klebsiella pneumoniae Strains That Produce Both NDM-5 and OXA-181 in Jiangsu Province, China. Infect Drug Resist 2023; 16:3245-3255. [PMID: 37249963 PMCID: PMC10225149 DOI: 10.2147/idr.s412678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Objective The aim of this study was to analyze the genetic characteristics of three Enterobacteriaceae strains (one strain of Escherichia coli and two strains of Klebsiella pneumoniae) that produce both the NDM-5 and OXA-181 carbapenemases in pediatric patients. Methods Carbapenem-resistant Enterobacteriaceae (CRE) strains were collected from the Children's Hospital Affiliated to Nanjing Medical University in 2022. Resistance genes were detected by PCR. CRE strains that produced both the blaNDM-5 and blaOXA-181 genes were further characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), plasmid conjugation assay, S1 nuclease-PFGE, Southern blotting and whole-genome sequencing. Results Three Enterobacteriaceae strains carrying both the blaNDM-5 and blaOXA-181 resistance genes were screened. MLST results showed that the strain of Escherichia coli carrying both blaNDM-5 and blaOXA-181 was ST410; the two strains of Klebsiella pneumoniae with both blaNDM-5 and blaOXA-181 were ST2601 and ST759. Conjugation assays showed that the plasmids harboring the blaNDM-5 and blaOXA-181 genes were self-transmissible. S1-PFGE and Southern blotting showed that the blaNDM-5 and blaOXA-181 genes were located on the plasmid with the size of about 60kb~. The genotyping results showed that the plasmid types were ColKP3 and IncX3. Conclusion This is the first report of Enterobacteriaceae strains that produce both NDM-5 and OXA-181 isolated from pediatric patients in China. Active infection control measures are urgently needed to prevent the spread of bacteria in children.
Collapse
Affiliation(s)
- Guixiang Tao
- Institute of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hua Tan
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qian Chen
- Institute of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Structural Basis of PER-1-Mediated Cefiderocol Resistance and Synergistic Inhibition of PER-1 by Cefiderocol in Combination with Avibactam or Durlobactam in Acinetobacter baumannii. Antimicrob Agents Chemother 2022; 66:e0082822. [PMID: 36377939 PMCID: PMC9765288 DOI: 10.1128/aac.00828-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cefiderocol is a novel siderophore cephalosporin that displays activity against Gram-negative bacteria. To establish cefiderocol susceptibility levels of Acinetobacter baumannii strains from China, we performed susceptibility testing and genomic analyses on 131 clinical isolates. Cefiderocol shows high activity against the strains. The production of PER-1 is the key mechanism of cefiderocol resistance. In silico studies predicted that avibactam and durlobactam could inhibit cefiderocol hydrolysis by PER-1, which was confirmed by determining cefiderocol MICs in combination with inhibitors.
Collapse
|
5
|
Kikuchi Y, Matsui H, Asami Y, Kuwae A, Inahashi Y, Hanaki H, Abe A. Landscape of blaNDM genes in Enterobacteriaceae. J Antibiot (Tokyo) 2022; 75:559-566. [DOI: 10.1038/s41429-022-00553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022]
|
6
|
Tempel S, Bedo J, Talla E. From a large-scale genomic analysis of insertion sequences to insights into their regulatory roles in prokaryotes. BMC Genomics 2022; 23:451. [PMID: 35725380 PMCID: PMC9208149 DOI: 10.1186/s12864-022-08678-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background Insertion sequences (ISs) are mobile repeat sequences and most of them can copy themselves to new host genome locations, leading to genome plasticity and gene regulation in prokaryotes. In this study, we present functional and evolutionary relationships between IS and neighboring genes in a large-scale comparative genomic analysis. Results IS families were located in all prokaryotic phyla, with preferential occurrence of IS3, IS4, IS481, and IS5 families in Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria and Firmicutes as well as in eukaryote host-associated organisms and autotrophic opportunistic pathogens. We defined the concept of the IS-Gene couple (IG), which allowed to highlight the functional and regulatory impacts of an IS on the closest gene. Genes involved in transcriptional regulation and transport activities were found overrepresented in IG. In particular, major facilitator superfamily (MFS) transporters, ATP-binding proteins and transposases raised as favorite neighboring gene functions of IS hotspots. Then, evolutionary conserved IS-Gene sets across taxonomic lineages enabled the classification of IS-gene couples into phylum, class-to-genus, and species syntenic IS-Gene couples. The IS5, IS21, IS4, IS607, IS91, ISL3 and IS200 families displayed two to four times more ISs in the phylum and/or class-to-genus syntenic IGs compared to other IS families. This indicates that those families were probably inserted earlier than others and then subjected to horizontal transfer, transposition and deletion events over time. In phylum syntenic IG category, Betaproteobacteria, Crenarchaeota, Calditrichae, Planctomycetes, Acidithiobacillia and Cyanobacteria phyla act as IS reservoirs for other phyla, and neighboring gene functions are mostly related to transcriptional regulators. Comparison of IS occurrences with predicted regulatory motifs led to ~ 26.5% of motif-containing ISs with 2 motifs per IS in average. These results, concomitantly with short IS-Gene distances, suggest that those ISs would interfere with the expression of neighboring genes and thus form strong candidates for an adaptive pairing. Conclusions All together, our large-scale study provide new insights into the IS genetic context and strongly suggest their regulatory roles. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08678-3.
Collapse
Affiliation(s)
- Sebastien Tempel
- Aix Marseille University, CNRS, LCB, Laboratoire de Chimie Bactérienne, 13009, Marseille, France.
| | - Justin Bedo
- Bioinformatics Division, the Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,School of Computing and Information Systems, the University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emmanuel Talla
- Aix Marseille University, CNRS, LCB, Laboratoire de Chimie Bactérienne, 13009, Marseille, France.
| |
Collapse
|
7
|
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022; 10:microorganisms10020224. [PMID: 35208680 PMCID: PMC8876359 DOI: 10.3390/microorganisms10020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022] Open
Abstract
Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.
Collapse
|
8
|
Lin Z, Yuan T, Zhou L, Cheng S, Qu X, Lu P, Feng Q. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1741-1758. [PMID: 33123928 DOI: 10.1007/s10653-020-00759-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance is a great concern, which leads to global public health risks and ecological and environmental risks. The presence of antibiotic-resistant genes and antibiotic-resistant bacteria in the environment exacerbates the risk of spreading antibiotic resistance. Among them, horizontal gene transfer is an important mode in the spread of antibiotic resistance genes, and it is one of the reasons that the antibiotic resistance pollution has become increasingly serious. At the same time, free antibiotic resistance genes and resistance gene host bacterial also exist in the natural environment. They can not only affect horizontal gene transfer, but can also migrate and aggregate among environmental media in many ways and then continue to affect the proliferate and transfer of antibiotic resistance genes. All this shows the seriousness of antibiotic resistance pollution. Therefore, in this review, we reveal the sensitive factors affecting the distribution and spread of antibiotic resistance through three aspects: the influencing factors of horizontal gene transfer, the host bacteria of resistance genes and the migration of antibiotic resistance between environmental media. This review reveals the huge role of environmental migration in the spread of antibiotic resistance, and the environmental behavior of antibiotic resistance deserves wider attention. Meanwhile, extracellular antibiotic resistance genes and intracellular antibiotic resistance genes play different roles, so they should be studied separately.
Collapse
Affiliation(s)
- Zibo Lin
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Tao Yuan
- Department of Construction Equipment and Municipal Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
- Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Xuzhou, 221116, China
| | - Lai Zhou
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Sen Cheng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Xu Qu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Ping Lu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China.
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China.
| | - Qiyan Feng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| |
Collapse
|
9
|
Kayali O, Icgen B. intI1 Type Mobile Genetic Elements Co-selected Antibiotic-Resistant Genes in Untreated Hospital Wastewaters. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:399-405. [PMID: 33471190 DOI: 10.1007/s00128-020-03098-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Dissemination of antibiotic-resistant genes (ARGs) from hospital wastewaters (HWWs) is facilitated by the horizontal gene transfer (HGT) and involves association of ARGs with mobile genetic elements (MGEs). In our previous study, HWWs were found to have relatively high copy numbers of ARGs aadA, tetA, cmlA, sul1, and qnrS. In this study, therefore, the same HWWs were also monitored for 3 MGEs class 1 integron (intI1), insertion sequence common region 1 (ISCR1) and conjugative transposon Tn916/Tn1545 by using quantitative polymerase chain reaction. The gene intI1 with 7.4 × 102 average copy number/mL was found to be the most prevalent MGE and was up to two orders of magnitude higher than ISCR1 (5.5 × 100 average copy number/mL, p < 0.05) and Tn916/Tn1545 (2.3 × 100 average copy number/mL, p < 0.05) in all HWWs tested. Positive correlation between intI1 and the aadA, tetA, cmlA and sul1 genes indicated that the MGEs harbouring class1 integron most likely played major role in co-selecting all these ARGs together.
Collapse
Affiliation(s)
- Osman Kayali
- Department of Biotechnology, Middle East Technical University, 06800, Ankara, Turkey
| | - Bulent Icgen
- Department of Biotechnology, Middle East Technical University, 06800, Ankara, Turkey.
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
10
|
A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun Biol 2021; 4:8. [PMID: 33398069 PMCID: PMC7782503 DOI: 10.1038/s42003-020-01545-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Since the introduction of antibiotics as therapeutic agents, many bacterial pathogens have developed resistance to antibiotics. Mobile resistance genes, acquired through horizontal gene transfer, play an important role in this process. Understanding from which bacterial taxa these genes were mobilized, and whether their origin taxa share common traits, is critical for predicting which environments and conditions contribute to the emergence of novel resistance genes. This knowledge may prove valuable for limiting or delaying future transfer of novel resistance genes into pathogens. The literature on the origins of mobile resistance genes is scattered and based on evidence of variable quality. Here, we summarize, amend and scrutinize the evidence for 37 proposed origins of mobile resistance genes. Using state-of-the-art genomic analyses, we supplement and evaluate the evidence based on well-defined criteria. Nineteen percent of reported origins did not fulfill the criteria to confidently assign the respective origin. Of the curated origin taxa, >90% have been associated with infection in humans or domestic animals, some taxa being the origin of several different resistance genes. The clinical emergence of these resistance genes appears to be a consequence of antibiotic selection pressure on taxa that are permanently or transiently associated with the human/domestic animal microbiome. Ebmeyer and colleagues developed a genomic framework for identification and scrutiny of the origins of antibiotic resistance genes. Using data scoured from the literature and publicly available genomes, their results indicate that only 81% of previously reported origins are valid, and that the majority of resistance genes of which the origin is known to date emerged in taxa that have been associated with infection in humans and domesticated animals.
Collapse
|
11
|
Zhang S, Abbas M, Rehman MU, Huang Y, Zhou R, Gong S, Yang H, Chen S, Wang M, Cheng A. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115260. [PMID: 32717638 DOI: 10.1016/j.envpol.2020.115260] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
With the induction of various emerging environmental contaminants such as antibiotic resistance genes (ARGs), environment is considered as a key indicator for the spread of antimicrobial resistance (AMR). As such, the ARGs mediated environmental pollution raises a significant public health concern worldwide. Among various genetic mechanisms that are involved in the dissemination of ARGs, integrons play a vital role in the dissemination of ARGs. Integrons are mobile genetic elements that can capture and spread ARGs among environmental settings via transmissible plasmids and transposons. Most of the ARGs are found in Gram-negative bacteria and are primarily studied for their potential role in antibiotic resistance in clinical settings. As one of the most common microorganisms, Escherichia coli (E. coli) is widely studied as an indicator carrying drug-resistant genes, so this article aims to provide an in-depth study on the spread of ARGs via integrons associated with E. coli outside clinical settings and highlight their potential role as environmental contaminants. It also focuses on multiple but related aspects that do facilitate environmental pollution, i.e. ARGs from animal sources, water treatment plants situated at or near animal farms, agriculture fields, wild birds and animals. We believe that this updated study with summarized text, will facilitate the readers to understand the primary mechanisms as well as a variety of factors involved in the transmission and spread of ARGs among animals, humans, and the environment.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China; Livestock and Dairy Development Department Lahore, Punjab, 54000, Pakistan
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yahui Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Rui Zhou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Siyue Gong
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hong Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Shuling Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
12
|
Roe C, Williamson CHD, Vazquez AJ, Kyger K, Valentine M, Bowers JR, Phillips PD, Harrison V, Driebe E, Engelthaler DM, Sahl JW. Bacterial Genome Wide Association Studies (bGWAS) and Transcriptomics Identifies Cryptic Antimicrobial Resistance Mechanisms in Acinetobacter baumannii. Front Public Health 2020; 8:451. [PMID: 33014966 PMCID: PMC7493718 DOI: 10.3389/fpubh.2020.00451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance (AMR) in the nosocomial pathogen, Acinetobacter baumannii, is becoming a serious public health threat. While some mechanisms of AMR have been reported, understanding novel mechanisms of resistance is critical for identifying emerging resistance. One of the first steps in identifying novel AMR mechanisms is performing genotype/phenotype association studies; however, performing these studies is complicated by the plastic nature of the A. baumannii pan-genome. In this study, we compared the antibiograms of 12 antimicrobials associated with multiple drug families for 84 A. baumannii isolates, many isolated in Arizona, USA. in silico screening of these genomes for known AMR mechanisms failed to identify clear correlations for most drugs. We then performed a bacterial genome wide association study (bGWAS) looking for associations between all possible 21-mers; this approach generally failed to identify mechanisms that explained the resistance phenotype. In order to decrease the genomic noise associated with population stratification, we compared four phylogenetically-related pairs of isolates with differing susceptibility profiles. RNA-Sequencing (RNA-Seq) was performed on paired isolates and differentially-expressed genes were identified. In these isolate pairs, five different potential mechanisms were identified, highlighting the difficulty of broad AMR surveillance in this species. To verify and validate differential expression, amplicon sequencing was performed. These results suggest that a diagnostic platform based on gene expression rather than genomics alone may be beneficial in certain surveillance efforts. The implementation of such advanced diagnostics coupled with increased AMR surveillance will potentially improve A. baumannii infection treatment and patient outcomes.
Collapse
Affiliation(s)
- Chandler Roe
- Northern Arizona University, Flagstaff, AZ, United States
| | | | | | - Kristen Kyger
- Northern Arizona University, Flagstaff, AZ, United States
| | - Michael Valentine
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Jolene R. Bowers
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | | | - Veronica Harrison
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Elizabeth Driebe
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | | | - Jason W. Sahl
- Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
13
|
Ebmeyer S, Kristiansson E, Larsson DGJ. CMY-1/MOX-family AmpC β-lactamases MOX-1, MOX-2 and MOX-9 were mobilized independently from three Aeromonas species. J Antimicrob Chemother 2019; 74:1202-1206. [PMID: 30753583 PMCID: PMC6477974 DOI: 10.1093/jac/dkz025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the origin of CMY-1/MOX-family β-lactamases. METHODS Publicly available genome assemblies were screened for CMY-1/MOX genes. The loci of CMY-1/MOX genes were compared with respect to synteny and nucleotide identity, and subjected to phylogenetic analysis. RESULTS The chromosomal ampC genes of several Aeromonas species were highly similar to known mobile CMY-1/MOX variants. Annotation and sequence comparison revealed nucleotide identities >98% and conserved syntenies between MOX-1-, MOX-2- and MOX-9-associated mobile sequences and the chromosomal Aeromonas sanarellii, Aeromonas caviae and Aeromonas media ampC loci. Furthermore, the phylogenetic analysis showed that MOX-1, MOX-2 and MOX-9 formed three distinct monophyletic groups with the chromosomal ampC genes of A. sanarellii, A. caviae and A. media, respectively. CONCLUSIONS Our findings show that three CMY-1/MOX-family β-lactamases were mobilized independently from three Aeromonas species and hence shine new light on the evolution and emergence of mobile antibiotic resistance genes.
Collapse
Affiliation(s)
- Stefan Ebmeyer
- Center for Antibiotic Resistance Research, Göteborg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Erik Kristiansson
- Center for Antibiotic Resistance Research, Göteborg, Sweden
- Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Göteborg, Sweden
| | - D G Joakim Larsson
- Center for Antibiotic Resistance Research, Göteborg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|