1
|
Whapham CA, Walker JT. Too much ado about data: continuous remote monitoring of water temperatures, circulation and throughput can assist in the reduction of hospital-associated waterborne infections. J Hosp Infect 2024; 152:47-55. [PMID: 38960042 DOI: 10.1016/j.jhin.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND National and international guidance provides advice on maintenance and management of water systems in healthcare buildings; however, healthcare-associated waterborne infections (HAWIs) are increasing. AIM To identify parameters critical to water quality in healthcare buildings and to assess whether remote sensor monitoring can deliver safe water systems, thus reducing HAWIs. METHODS A narrative review was performed using the following search terms: (1) consistent water temperature AND waterborne pathogen control OR nosocomial infection; (2) water throughput AND waterborne pathogen control OR nosocomial infection; (3) remote monitoring of in-premises water systems AND continuous surveillance for temperature OR throughput OR flow OR use. Databases employed were PubMed, CDSR (Clinical Study Data Request) and DARE (Database of Abstracts of Reviews of Effects) from January 2013 to March 2024. FINDINGS Single ensuite-patient rooms, expansion of handwash basins, widespread glove use, alcohol gel and wipes have increased water system stagnancy resulting in amplification of waterborne pathogens and transmission risk of legionella, pseudomonas, and non-tuberculous mycobacteria. Manual monitoring does not represent temperatures across large complex water systems. This review deems that multiple-point continuous remote sensor monitoring is effective at identifying redundant and low use outlets, hydraulic imbalance and inconsistent temperature delivery across in-premises water systems. CONCLUSION As remote monitoring becomes more common there will be greater recognition of failures in temperature control, hydraulics, and balancing in water systems, and there remains much to learn as we adopt this developing technology within our hospitals.
Collapse
Affiliation(s)
- C A Whapham
- Independent Water Hygiene Consultant, Ludlow, UK.
| | - J T Walker
- Independent Microbiology Consultant, Walker on Water, Salisbury, UK
| |
Collapse
|
2
|
Khan A, Singh AV, Kukreti B, Pandey DT, Upadhayay VK, Kumar R, Goel R. Deciphering the impact of cold-adapted bioinoculants on rhizosphere dynamics, biofortification, and yield of kidney bean across varied altitudinal zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172204. [PMID: 38580128 DOI: 10.1016/j.scitotenv.2024.172204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Agriculture stands as a thriving enterprise in India, serving as both the bedrock of economy and vital source of nutrition. In response to the escalating demands for high-quality food for swiftly expanding population, agricultural endeavors are extending their reach into the elevated terrains of the Himalayas, tapping into abundant resources for bolstering food production. Nonetheless, these Himalayan agro-ecosystems encounter persistent challenges, leading to crop losses. These challenges stem from a combination of factors including prevailing frigid temperatures, suboptimal farming practices, unpredictable climatic shifts, subdivided land ownership, and limited resources. While the utilization of chemical fertilizers has been embraced to enhance the quality of food output, genuine concerns have arisen due to the potential hazards they pose. Consequently, the present investigation was initiated with the objective of formulating environmentally friendly and cold-tolerant broad ranged bioinoculants tailored to enhance the production of Kidney bean while concurrently enriching its nutrient content across entire hilly regions. The outcomes of this study unveiled noteworthy advancements in kidney bean yield, registering a substantial increase ranging from 12.51 ± 2.39 % to 14.15 ± 0.83 % in regions of lower elevation (Jeolikote) and an even more remarkable surge ranging from 20.60 ± 3.03 % to 29.97 ± 5.02 % in higher elevated areas (Chakrata) compared to the control group. Furthermore, these cold-tolerant bioinoculants exhibited a dual advantage by fostering the enhancement of essential nutrients within the grains and fostering a positive influence on the diversity and abundance of microbial life in the rhizosphere. As a result, to effectively tackle the issues associated with chemical fertilizers and to achieve sustainable improvements in both the yield and nutrient composition of kidney bean across varying elevations, the adoption of cold-tolerant Enterobacter hormaechei CHM16, and Pantoea agglomerans HRM 23, including the consortium, presents a promising avenue. Additionally, this study has contributed significant insights-into the role of organic acids like oxalic acid in the solubilization of nutrients, thereby expanding the existing knowledge in this specialized field.
Collapse
Affiliation(s)
- Amir Khan
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | - Ajay Veer Singh
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India.
| | - Bharti Kukreti
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | | | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur 848125, India
| | - Rajeew Kumar
- Department of Agronomy, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | - Reeta Goel
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Siponen S, Jayaprakash B, Hokajärvi AM, Gomez-Alvarez V, Inkinen J, Ryzhikov I, Räsänen P, Ikonen J, Pursiainen A, Kauppinen A, Kolehmainen M, Paananen J, Torvinen E, Miettinen IT, Pitkänen T. Composition of active bacterial communities and presence of opportunistic pathogens in disinfected and non-disinfected drinking water distribution systems in Finland. WATER RESEARCH 2024; 248:120858. [PMID: 37988808 PMCID: PMC10840642 DOI: 10.1016/j.watres.2023.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Many factors, including microbiome structure and activity in the drinking water distribution system (DWDS), affect the colonization potential of opportunistic pathogens. The present study aims to describe the dynamics of active bacterial communities in DWDS and identify the factors that shape the community structures and activity in the selected DWDSs. Large-volume drinking water and hot water, biofilm, and water meter deposit samples were collected from five DWDSs. Total nucleic acids were extracted, and RNA was further purified and transcribed into its cDNA from a total of 181 water and biofilm samples originating from the DWDS of two surface water supplies (disinfected with UV and chlorine), two artificially recharged groundwater supplies (non-disinfected), and a groundwater supply (disinfected with UV and chlorine). In chlorinated DWDSs, concentrations of <0.02-0.97 mg/l free chlorine were measured. Bacterial communities in the RNA and DNA fractions were analysed using Illumina MiSeq sequencing with primer pair 341F-785R targeted to the 16S rRNA gene. The sequence libraries were analysed using QIIME pipeline, Program R, and MicrobiomeAnalyst. Not all bacterial cells were active based on their 16S rRNA content, and species richness was lower in the RNA fraction (Chao1 mean value 490) than in the DNA fraction (710). Species richness was higher in the two DWDSs distributing non-disinfected artificial groundwater (Chao1 mean values of 990 and 1 000) as compared to the two disinfected DWDSs using surface water (Chao1 mean values 190 and 460) and disinfected DWDS using ground water as source water (170). The difference in community structures between non-disinfected and disinfected water was clear in the beta-diversity analysis. Distance from the waterworks also affected the beta diversity of community structures, especially in disinfected distribution systems. The two most abundant bacteria in the active part of the community (RNA) and total bacterial community (DNA) belonged to the classes Alphaproteobacteria (RNA 28 %, DNA 44 %) and Gammaproteobacteria (RNA 32 %, DNA 30 %). The third most abundant and active bacteria class was Vampirovibrionia (RNA 15 %), whereas in the total community it was Paceibacteria (DNA 11 %). Class Nitrospiria was more abundant and active in both cold and hot water in DWDS that used chloramine disinfection compared to non-chlorinated or chlorine-using DWDSs. Thirty-eight operational taxonomic units (OTU) of Legionella, 30 of Mycobacterium, and 10 of Pseudomonas were detected among the sequences. The (RT)-qPCR confirmed the presence of opportunistic pathogens in the DWDSs studied as Legionella spp. was detected in 85 % (mean value 4.5 × 104 gene copies/100 ml), Mycobacterium spp. in 95 % (mean value 8.3 × 106 gene copies/100 ml), and Pseudomonas spp. in 78 % (mean value 1.6 × 105 gene copies/100 ml) of the water and biofilm samples. Sampling point inside the system (distance from the waterworks and cold/hot system) affected the active bacterial community composition. Chloramine as a chlorination method resulted in a recognizable community composition, with high abundance of bacteria that benefit from the excess presence of nitrogen. The results presented here confirm that each DWDS is unique and that opportunistic pathogens are present even in conditions when water quality is considered excellent.
Collapse
Affiliation(s)
- Sallamaari Siponen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland; University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Vicente Gomez-Alvarez
- U.S. Environmental Protection Agency, Office of Research and Development, 26W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Jenni Inkinen
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ivan Ryzhikov
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Pia Räsänen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Jenni Ikonen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Anna Pursiainen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Ari Kauppinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Mikko Kolehmainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jussi Paananen
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, 70211 Kuopio, Finland
| | - Eila Torvinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ilkka T Miettinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, 70701 Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Song Y, Finkelstein R, Rhoads W, Edwards MA, Pruden A. Shotgun Metagenomics Reveals Impacts of Copper and Water Heater Anodes on Pathogens and Microbiomes in Hot Water Plumbing Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13612-13624. [PMID: 37643149 PMCID: PMC10501123 DOI: 10.1021/acs.est.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Hot water building plumbing systems are vulnerable to the proliferation of opportunistic pathogens (OPs), including Legionella pneumophila and Mycobacterium avium. Implementation of copper as a disinfectant could help reduce OPs, but a mechanistic understanding of the effects on the microbial community under real-world plumbing conditions is lacking. Here, we carried out a controlled pilot-scale study of hot water systems and applied shotgun metagenomic sequencing to examine the effects of copper dose (0-2 mg/L), orthophosphate corrosion control agent, and water heater anode materials (aluminum vs magnesium vs powered anode) on the bulk water and biofilm microbiome composition. Metagenomic analysis revealed that, even though a copper dose of 1.2 mg/L was required to reduce Legionella and Mycobacterium numbers, lower doses (e.g., ≤0.6 mg/L) measurably impacted the broader microbial community, indicating that the OP strains colonizing these systems were highly copper tolerant. Orthophosphate addition reduced bioavailability of copper, both to OPs and to the broader microbiome. Functional gene analysis indicated that both membrane damage and interruption of nucleic acid replication are likely at play in copper inactivation mechanisms. This study identifies key factors (e.g., orthophosphate, copper resistance, and anode materials) that can confound the efficacy of copper for controlling OPs in hot water plumbing.
Collapse
Affiliation(s)
- Yang Song
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Utilities
Department, Town of Cary, 316 N. Academy St., Cary, North Carolina 27512, United States
| | - Rachel Finkelstein
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- AECOM, 3101 Wilson Boulevard, Arlington, Virginia 22201, United States
| | - William Rhoads
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Black
& Veatch, 8400 Ward
Pkwy, Kansas City, Missouri 64114, United States
| | - Marc A. Edwards
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Khatiebi S, Kiprotich K, Onyando Z, Wekesa C, Chi CN, Mulambalah C, Okoth P. Shotgun Metagenomic Analyses of Microbial Assemblages in the Aquatic Ecosystem of Winam Gulf of Lake Victoria, Kenya Reveals Multiclass Pollution. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3724531. [PMID: 37521121 PMCID: PMC10382247 DOI: 10.1155/2023/3724531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Lake Victoria, the second-largest freshwater lake in the world, provides an important source of food and income, particularly fish for both domestic consumption and for export market. In recent years, Lake Victoria has suffered massive pollution from both industrial and wastewater discharge. Microplastic biomes, pharmaceutical residues, drugs of abuse, heavy metals, agrochemicals, and personal care products are ubiquitous in the aquatic ecosystem of Winam Gulf. These pollutants are known to alter microbial assemblages in aquatic ecosystems with far-reaching ramification including a calamitous consequence to human health. Indeed, some of these pollutants have been associated with human cancers and antimicrobial resistance. There is a paucity of data on the microbial profiles of this important but heavily polluted aquatic ecosystem. The current study sought to investigate the metagenomic profiles of microbial assemblages in the Winam Gulf ecosystem. Water and sediment samples were collected from several locations within the study sites. Total genomic DNA pooled from all sampling sites was extracted and analyzed by whole-genome shotgun sequencing. Analyses revealed three major kingdoms: bacteria, archaea and eukaryotes belonging to 3 phyla, 13 classes, 14 families, 9 orders, 14 genera, and 10 species. Proteobacteria, Betaproteobacteria, Comamonadaceae, Burkholdariales, and Arcobacter were the dominated phyla, class, family, order, genera, and species, respectively. The Kyoto Encyclopedia of Genes and Genomes indicated the highest number of genes involved in metabolism. The presence of carbohydrate metabolism genes and enzymes was used to infer organic pollutions from sewage and agricultural runoffs. Similarly, the presence of xylene and nutrotoluene degradation genes and enzyme was used to infer industrial pollution into the lake. Drug metabolism genes lend credence to the possibility of pharmaceutical pollutants in water. Taken together, there is a clear indication of massive pollution. In addition, carbohydrate-active enzymes were the most abundant and included genes in glycoside hydrolases. Shotgun metagenomic analyses conveyed an understanding of the microbial communities of the massively polluted aquatic ecosystem of Winam Gulf, Lake Vicoria, Kenya. The current study documents the presence of multiclass pollutants in Lake Victoria and reveals information that might be useful for a potential bioremediation strategy using the native microbial communities.
Collapse
Affiliation(s)
- Sandra Khatiebi
- Department of Biological Sciences, School of Natural Science, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| | - Kelvin Kiprotich
- Department of Biological Sciences, School of Natural Science, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| | - Zedekiah Onyando
- Department of Biological Sciences, School of Natural Science, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| | - Clabe Wekesa
- Department of Biological Sciences, School of Natural Science, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| | - Celestine N. Chi
- Department of Medical Biochemistry and Microbiology, University of Uppsala, P.O. Box 582, 75123 Uppsala, Sweden
| | - Chrispinus Mulambalah
- Department of Medical Microbiology & Parasitology, School of Medicine, Moi University, P.O. Box 4606, 30100 Eldoret, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural Science, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| |
Collapse
|
6
|
Logan-Jackson AR, Batista MD, Healy W, Ullah T, Whelton AJ, Bartrand TA, Proctor C. A Critical Review on the Factors that Influence Opportunistic Premise Plumbing Pathogens: From Building Entry to Fixtures in Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6360-6372. [PMID: 37036108 DOI: 10.1021/acs.est.2c04277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Residential buildings provide unique conditions for opportunistic premise plumbing pathogen (OPPP) exposure via aerosolized water droplets produced by showerheads, faucets, and tubs. The objective of this review was to critically evaluate the existing literature that assessed the impact of potentially enhancing conditions to OPPP occurrence associated with residential plumbing and to point out knowledge gaps. Comprehensive studies on the topic were found to be lacking. Major knowledge gaps identified include the assessment of OPPP growth in the residential plumbing, from building entry to fixtures, and evaluation of the extent of the impact of typical residential plumbing design (e.g., trunk and branch and manifold), components (e.g., valves and fixtures), water heater types and temperature setting of operation, and common pipe materials (copper, PEX, and PVC/CPVC). In addition, impacts of the current plumbing code requirements on OPPP responses have not been assessed by any study and a lack of guidelines for OPPP risk management in residences was identified. Finally, the research required to expand knowledge on OPPP amplification in residences was discussed.
Collapse
Affiliation(s)
- Alshae' R Logan-Jackson
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marylia Duarte Batista
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - William Healy
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Tania Ullah
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy A Bartrand
- Environmental Science, Policy, and Research Institute, Bala Cynwyd, Pennsylvania 19004, United States
| | - Caitlin Proctor
- Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Khan A, Singh AV, Pareek N, Arya P, Upadhayay VK, Kumar Jugran A, Kumar Mishra P, Goel R. Credibility assessment of cold adaptive Pseudomonas jesenni MP1 and P. palleroniana N26 on growth, rhizosphere dynamics, nutrient status, and yield of the kidney bean cultivated in Indian Central Himalaya. FRONTIERS IN PLANT SCIENCE 2023; 14:1042053. [PMID: 36798715 PMCID: PMC9926967 DOI: 10.3389/fpls.2023.1042053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Kidney bean (Phaseolus vulgaris) productivity and nutritional quality are declining due to less nutrient accessibility, poor soil health, and indigent agronomic practices in hilly regions, which collectively led to a fall in farmer's income, and to malnutrition in consumers. Addressing such issues, the present investigation was designed to assess the impact of Pseudomonas jesenii MP1 and Pseudomonas palleroniana N26 treatment on soil health, microbial shift, yield, and nutrient status of the kidney bean in the Harsil and Chakrata locations of Indian Central Himalaya. P. jesenii MP1 and P. palleroniana N26 were characterized as cold adaptive PGPR as they possessed remarkable in vitro plant growth promoting traits. Further, field trial study with PGPR treatments demonstrated remarkable and prolific influence of both strains on yield, kidney bean nutrient status, and soil health at both geographical locations, which was indicated with improved grain yield (11.61%-23.78%), protein (6.13%-24.46%), and zinc content (21.86%-61.17%) over control. The metagenomic study revealed that use of bioinoculants also concentrated the nutrient mobilizing and plant beneficial microorganisms in the rhizosphere of the kidney bean. Moreover, correlation analysis also confirmed that the plant growth-promoting traits of P. jesenii MP1 and P. palleroniana N26 are the basis for improved yield and nutrient status of the kidney bean. Further, cluster and principal component analysis revealed that both P. jesenii MP1 and P. palleroniana N26 exhibited pronounced influence on yield attributes of the kidney bean at both the locations. At the Harsil location, the P. jesenii MP1-treated seed demonstrated highest grain yield over other treatments, whereas at Chakarata, P. jesenii MP1, and P. palleroniana N26 treatment showed almost equal enhancement (~23%) in grain yield over control. The above results revealed that these bioinoculants are efficient plant growth promoters and nutrient mobilizers; they could be used as green technology to improve human health and farmer's income by enhancing soil health, yield, and nutrient status of the kidney bean at hilly regions.
Collapse
Affiliation(s)
- Amir Khan
- Biofortification lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Ajay Veer Singh
- Biofortification lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Pratima Arya
- Biofortification lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agriculture University, Samastipur, India
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Garhwal Regional Centre, Srinagar, India
| | | | - Reeta Goel
- Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| |
Collapse
|
8
|
Lugli GA, Longhi G, Mancabelli L, Alessandri G, Tarracchini C, Fontana F, Turroni F, Milani C, van Sinderen D, Ventura M. Tap water as a natural vehicle for microorganisms shaping the human gut microbiome. Environ Microbiol 2022; 24:3912-3923. [PMID: 35355372 PMCID: PMC9790288 DOI: 10.1111/1462-2920.15988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Fresh potable water is an indispensable drink which humans consume daily in substantial amounts. Nonetheless, very little is known about the composition of the microbial community inhabiting drinking water or its impact on our gut microbiota. In the current study, an exhaustive shotgun metagenomics analysis of the tap water microbiome highlighted the occurrence of a highly genetic biodiversity of the microbial communities residing in fresh water and the existence of a conserved core tap water microbiota largely represented by novel microbial species, representing microbial dark matter. Furthermore, genome reconstruction of this microbial dark matter from water samples unveiled homologous sequences present in the faecal microbiome of humans from various geographical locations. Accordingly, investigation of the faecal microbiota content of a subject that daily consumed tap water for 3 years provides proof for horizontal transmission and colonization of water bacteria in the human gut.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly,GenProbio SrlParmaItaly
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly,GenProbio SrlParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly,Microbiome Research HubUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly,Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly,Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
9
|
Miao X, Liu C, Liu M, Han X, Zhu L, Bai X. The role of pipe biofilms on dissemination of viral pathogens and virulence factor genes in a full-scale drinking water supply system. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128694. [PMID: 35316639 DOI: 10.1016/j.jhazmat.2022.128694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Water is an important medium for virus transmission and viral pathogens are increasingly appreciated as a significant water safety issue. However, the effect of pipe biofilms on viral pathogens remains unclear. This research aimed to investigate the dissemination of viruses in a full-scale drinking water supply system (DWSS) and the effect of pipe biofilms on viral pathogens in bulking water. Viral pathogens, pathogenic viral hosts, and viral virulence factors (VFs) were found to disseminate from source water to tap water. The proportion of virus and viral VFs in the biofilm was far less than that in water. The contribution of biofilms in pipe wall to viruses and viral VFs in bulking water was less than 4%, and viruses in the biofilm had no obvious effect on pathogenic viruses in water. Dominant viruses carrying VFs changed from Cyanobacteria virus to Mycobacterium virus after advanced water treatment. Mycobacterium and organics were identified as the key factors influencing composition and abundance of viral VFs, which could explain 41.1% of the variation in viral virulence in the water supply system. Host bacteria and organics may be used as the key targets to control the risk of viruses in DWSSs.
Collapse
Affiliation(s)
- Xiaocao Miao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chenxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mingkun Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xue Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lingling Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
10
|
Gulumbe BH, Bazata AY, Bagwai MA. Campylobacter Species, Microbiological Source Tracking and Risk Assessment of Bacterial pathogens. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i2.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Campylobacter species continue to remain critical pathogens of public health interest. They are responsible for approximately 500 million cases of gastroenteritis per year worldwide. Infection occurs through the consumption of contaminated food and water. Microbial risk assessment and source tracking are crucial epidemiological strategies to monitor the outbreak of campylobacteriosis effectively. Various methods have been proposed for microbial source tracking and risk assessment, most of which rely on conventional microbiological techniques such as detecting fecal indicator organisms and other novel microbial source tracking methods, including library-dependent microbial source tracking and library-independent source tracking approaches. However, both the traditional and novel methods have their setbacks. For example, while the conventional techniques are associated with a poor correlation between indicator organism and pathogen presence, on the other hand, it is impractical to interpret qPCR-generated markers to establish the exact human health risks even though it can give information regarding the potential source and relative human risk. Therefore, this article provides up-to-date information on campylobacteriosis, various approaches for source attribution, and risk assessment of bacterial pathogens, including next-generation sequencing approaches such as shotgun metagenomics, which effectively answer the questions of potential pathogens are there and in what quantities.
Collapse
|
11
|
Huang CK, Weerasekara A, Bond PL, Weynberg KD, Guo J. Characterizing the premise plumbing microbiome in both water and biofilms of a 50-year-old building. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149225. [PMID: 34340073 DOI: 10.1016/j.scitotenv.2021.149225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 05/22/2023]
Abstract
The premise plumbing portion of drinking water distribution systems (DWDS) has several characteristics that may favor microbial growth in the form of biofilms. These microbial communities are implicated as infectious sources for the spread of opportunistic waterborne pathogens by supporting their complex ecology and transmission through DWDS outlets to susceptible individuals. However, there is limited understanding of the drinking water biofilms in real premise plumbing networks due to challenges with accessibility. Using a combination of culture-dependent and culture-independent approaches, this study comprehensively characterized the premise plumbing microbiome of a 50-year-old university building, inclusive of water and biofilm samples. Microbial diversity in the water samples were more taxonomically diverse in comparison to the mature drinking water biofilms, which were dominated with biofilm-formers and opportunistic pathogens, such as Mycobacterium spp. A model opportunistic pathogen, Legionella spp., was only detectable in water samples using quantitative PCR but could not be detected in any of the drinking water biofilms using either qPCR or culture-dependent approaches, highlighting the limitations of detection methods in these environments. This study presents preliminary findings on the microbial dynamics and complexity in premise plumbing networks, which may support public health management and the development of strategies to eliminate microbial risks to human health.
Collapse
Affiliation(s)
- Casey K Huang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Anjani Weerasekara
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Karen D Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
12
|
Ghosh S, Zhu NJ, Milligan E, Falkinham JO, Pruden A, Edwards MA. Mapping the Terrain for Pathogen Persistence and Proliferation in Non-potable Reuse Distribution Systems: Interactive Effects of Biofiltration, Disinfection, and Water Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12561-12573. [PMID: 34448580 DOI: 10.1021/acs.est.1c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diverse pathogens can potentially persist and proliferate in reclaimed water distribution systems (RWDSs). The goal of this study was to evaluate interactive effects of reclaimed water treatments and water age on persistence and proliferation of multiple fecal (e.g., Klebsiella, Enterobacter) and non-fecal (e.g., Legionella, mycobacteria) gene markers in RWDSs. Six laboratory-scale RWDSs were operated in parallel receiving the influent with or without biologically active carbon (BAC) filtration + chlorination, chloramination, or no disinfectant residual. After 3 years of operation, the RWDSs were subject to sacrificial sampling and shotgun metagenomic sequencing. We developed an in-house metagenome-derived pathogen quantification pipeline, validated by quantitative polymerase chain reaction and mock community analysis, to estimate changes in abundance of ∼30 genera containing waterborne pathogens. Microbial community composition in the RWDS bulk water, biofilm, and sediments was clearly shaped by BAC filtration, disinfectant conditions, and water age. Key commonalities were noted in the ecological niches occupied by fecal pathogen markers in the RWDSs, while non-fecal pathogen markers were more varied in their distribution. BAC-filtration + chlorine was found to most effectively control the widest range of target genera. However, filtration alone or chlorine secondary disinfection alone resulted in proliferation of some of these genera containing waterborne pathogens.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ni Joyce Zhu
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Erin Milligan
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marc A Edwards
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
13
|
Gupta S, Aga D, Pruden A, Zhang L, Vikesland P. Data Analytics for Environmental Science and Engineering Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10895-10907. [PMID: 34338518 DOI: 10.1021/acs.est.1c01026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of new data acquisition and handling techniques has opened the door to alternative and more comprehensive approaches to environmental monitoring that will improve our capacity to understand and manage environmental systems. Researchers have recently begun using machine learning (ML) techniques to analyze complex environmental systems and their associated data. Herein, we provide an overview of data analytics frameworks suitable for various Environmental Science and Engineering (ESE) research applications. We present current applications of ML algorithms within the ESE domain using three representative case studies: (1) Metagenomic data analysis for characterizing and tracking antimicrobial resistance in the environment; (2) Nontarget analysis for environmental pollutant profiling; and (3) Detection of anomalies in continuous data generated by engineered water systems. We conclude by proposing a path to advance incorporation of data analytics approaches in ESE research and application.
Collapse
Affiliation(s)
- Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diana Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14226, United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter Vikesland
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Inkinen J, Siponen S, Jayaprakash B, Tiwari A, Hokajärvi AM, Pursiainen A, Ikonen J, Kauppinen A, Miettinen IT, Paananen J, Torvinen E, Kolehmainen M, Pitkänen T. Diverse and active archaea communities occur in non-disinfected drinking water systems-Less activity revealed in disinfected and hot water systems. WATER RESEARCH X 2021; 12:100101. [PMID: 34027378 PMCID: PMC8131914 DOI: 10.1016/j.wroa.2021.100101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 05/25/2023]
Abstract
The knowledge about the members of active archaea communities in DWDS is limited. The current understanding is based on high-throughput 16S ribosomal RNA gene (DNA-based) amplicon sequencing that reveals the diversity of active, dormant, and dead members of the prokaryote (bacteria, archaea) communities. The sequencing primers optimized for bacteria community analysis may underestimate the share of the archaea community. This study characterized archaea communities at five full-scale drinking water distribution systems (DWDS), representing a variety of drinking water production units (A-E); A&B use artificially recharged non-disinfected groundwater (ARG), the other DWDS's supplied water disinfected by using ultraviolet (UV) light and chlorine compounds, C&D were surface waterworks and E was a ground waterworks. For the first time for archaea community analyses, this study employed the archaea-specific high-throughput sequencing primers for 16S ribosomal RNA (rRNA) as a target (reverse-transcribed cDNA; an RNA-based approach) in addition to the previously used 16S rRNA gene target (rDNA; a DNA-based approach) to reveal the active fraction of the archaea present in DWDS. The archaea community structure in varying environmental conditions in the water and biofilm of the five DWDSs were investigated by taking into consideration the system properties (cold or hot water system) and water age (distance from the treatment plants) in samples from each season of one year. The RNA-based archaea amplicon reads were obtained mostly from cold water samples from DWDSs (A-B) distributing water without disinfection where the DNA-based and RNA-based analysis created separate clusters in a weighted beta-diversity analysis. The season and location in DWDS A further affected the diversity of these archaea communities as was seen by different clusters in beta-diversity plots. The recovery of archaea reads was not adequate for analysis in any of the disinfected samples in DWDSs C-E or non-disinfected hot water in DWDSs A-B when utilizing RNA-based template. The metabolically active archaea community of DWDSs thus seemed to be effectively controlled by disinfection of water and in the hot water systems by the temperature. All biofilms regardless of DWDS showed lower species richness values (mainly Nitrososphaeria class) than non-disinfected water from DWDSs A-B where several archaea classes occurred (e.g. Woesearchaeia, Nitrososphaeria, Micrarchaeia, Methanomicrobia, Iairchaeia, Bathyarchaeia) indicating only part of the archaea members were able to survive in biofilms. Thus, Archaea has been shown as a significant part of normal DWDS biota, and their role especially in non-disinfected DWDS may be more important than previously considered.
Collapse
Affiliation(s)
- Jenni Inkinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sallamaari Siponen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | | | - Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Anna Pursiainen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jenni Ikonen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ari Kauppinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ilkka T. Miettinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jussi Paananen
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Eila Torvinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Mikko Kolehmainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
- University of Helsinki, Faculty of Veterinary Medicine, Dept. Food Hygiene and Environmental Health, Finland
| |
Collapse
|
15
|
Causes, Factors, and Control Measures of Opportunistic Premise Plumbing Pathogens—A Critical Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review critically analyses the chemical and physical parameters that influence the occurrence of opportunistic pathogens in the drinking water distribution system, specifically in premise plumbing. A comprehensive literature review reveals significant impacts of water age, disinfectant residual (type and concentration), temperature, pH, and pipe materials. Evidence suggests that there is substantial interplay between these parameters; however, the dynamics of such relationships is yet to be elucidated. There is a correlation between premise plumbing system characteristics, including those featuring water and energy conservation measures, and increased water quality issues and public health concerns. Other interconnected issues exacerbated by high water age, such as disinfectant decay and reduced corrosion control efficiency, deserve closer attention. Some common features and trends in the occurrence of opportunistic pathogens have been identified through a thorough analysis of the available literature. It is proposed that the efforts to reduce or eliminate their incidence might best focus on these common features.
Collapse
|
16
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
17
|
Reis MDP, de Paula RS, Reis ALM, Souza CCE, Júnior RBDO, Ferreira JA, Mota HR, de Carvalho MD, Jorge EC, Cardoso AV, Nascimento AMA. Microbial composition of a hydropower cooling water system reveals thermophilic bacteria with a possible role in primary biofilm formation. BIOFOULING 2021; 37:246-256. [PMID: 33730946 DOI: 10.1080/08927014.2021.1897790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Microfouling, ie biofilm formation on surfaces, can have an economic impact and requires costly maintenance in water-powered energy generation systems. In this study, the microbiota of a cooling system (filter and heat exchanger) in the Irapé hydroelectric power plant in Brazil was examined. The goal was to identify bacteria that could be targeted to more efficiently reduce biofilm formation. Two sampling campaigns were made corresponding to two well-defined seasons of the Brazilian Cerrado biome: the dry (campaign 1) and the wet (campaign 2). Microfouling communities varied considerably over time in samples obtained at different times after the last clearance of the heat exchanger. The thermophilic bacteria Meiothermus, Thermomonas and Symbiobacterium were exclusive and abundant in the microfouling of the heat exchanger in campaign 2, while methanotrophs and iron-reducing bacteria were abundant only in filter sediments. These findings could help to guide strategies for ecofriendly measures to reduce biofilm fouling in hydroelectric power plants, minimizing environmental and economic losses.
Collapse
Affiliation(s)
- Mariana de Paula Reis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rayan Silva de Paula
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Clara Carvalho E Souza
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato Brito de Oliveira Júnior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alves Ferreira
- Departamento de Estatística, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Helen Regina Mota
- Companhia Energética de Minas Gerais S.A., Belo Horizonte, MG, Brazil
| | | | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Andréa Maria Amaral Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
18
|
Gomez-Alvarez V, Liu H, Pressman JG, Wahman DG. Metagenomic Profile of Microbial Communities in a Drinking Water Storage Tank Sediment after Sequential Exposure to Monochloramine, Free Chlorine, and Monochloramine. ACS ES&T WATER 2021; 1:1283-1294. [PMID: 34337601 PMCID: PMC8318090 DOI: 10.1021/acsestwater.1c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sediment accumulation in drinking water storage facilities may lead to water quality degradation, including biological growth and disinfectant decay. The current research evaluated the microbiome present in a sediment after sequential exposure to monochloramine, free chlorine, and monochloramine. Chemical profiles within the sediment based on microelectrodes showed evidence of nitrification, and monochloramine slowly penetrated the sediment but was not measurable at lower depths. A metagenomic approach was used to characterize the microbial communities and functional potential of top (0-1 cm) and bottom (1-2 cm) layers in sediment cores. Differential abundance analysis revealed both an enrichment and depletion associated with depth of microbial populations. We assembled 30 metagenome-assembled genomes (MAGs) representing bacterial and archaeal microorganisms. Most metabolic functions were represented in both layers, suggesting the capability of the microbiomes to respond to environmental fluctuations. However, niche-specific abundance differences were identified in biotransformation processes (e.g., nitrogen). Metagenome-level analyses indicated that nitrification and denitrification can potentially occur simultaneously in the sediments, but the exact location of their occurrence within the sediment will depend on the localized physicochemical conditions. Even though monochloramine was maintained in the bulk water there was limited penetration into the sediment, and the microbial community remained functionally diverse and active.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Hong Liu
- Oak Ridge Institute for Science and Education (ORISE), Post-Doctoral Fellow at U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jonathan G Pressman
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - David G Wahman
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
19
|
Osborne P, Hall LJ, Kronfeld-Schor N, Thybert D, Haerty W. A rather dry subject; investigating the study of arid-associated microbial communities. ENVIRONMENTAL MICROBIOME 2020; 15:20. [PMID: 33902728 PMCID: PMC8067391 DOI: 10.1186/s40793-020-00367-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
Almost one third of Earth's land surface is arid, with deserts alone covering more than 46 million square kilometres. Nearly 2.1 billion people inhabit deserts or drylands and these regions are also home to a great diversity of plant and animal species including many that are unique to them. Aridity is a multifaceted environmental stress combining a lack of water with limited food availability and typically extremes of temperature, impacting animal species across the planet from polar cold valleys, to Andean deserts and the Sahara. These harsh environments are also home to diverse microbial communities, demonstrating the ability of bacteria, fungi and archaea to settle and live in some of the toughest locations known. We now understand that these microbial ecosystems i.e. microbiotas, the sum total of microbial life across and within an environment, interact across both the environment, and the macroscopic organisms residing in these arid environments. Although multiple studies have explored these microbial communities in different arid environments, few studies have examined the microbiota of animals which are themselves arid-adapted. Here we aim to review the interactions between arid environments and the microbial communities which inhabit them, covering hot and cold deserts, the challenges these environments pose and some issues arising from limitations in the field. We also consider the work carried out on arid-adapted animal microbiotas, to investigate if any shared patterns or trends exist, whether between organisms or between the animals and the wider arid environment microbial communities. We determine if there are any patterns across studies potentially demonstrating a general impact of aridity on animal-associated microbiomes or benefits from aridity-adapted microbiomes for animals. In the context of increasing desertification and climate change it is important to understand the connections between the three pillars of microbiome, host genome and environment.
Collapse
Affiliation(s)
- Peter Osborne
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK.
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany
| | | | - David Thybert
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| |
Collapse
|
20
|
Cullom AC, Martin RL, Song Y, Williams K, Williams A, Pruden A, Edwards MA. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020; 9:E957. [PMID: 33212943 PMCID: PMC7698398 DOI: 10.3390/pathogens9110957] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper's interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.
Collapse
Affiliation(s)
- Abraham C. Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Rebekah L. Martin
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
- Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA
| | - Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | | | - Amanda Williams
- c/o Marc Edwards, Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| |
Collapse
|
21
|
Zhou X, Ahmad JI, van der Hoek JP, Zhang K. Thermal energy recovery from chlorinated drinking water distribution systems: Effect on chlorine and microbial water and biofilm characteristics. ENVIRONMENTAL RESEARCH 2020; 187:109655. [PMID: 32450425 DOI: 10.1016/j.envres.2020.109655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Thermal energy recovery from drinking water has a high potential in the application of sustainable building and industrial cooling. However, drinking water and biofilm microbial qualities should be concerned because the elevated water temperature after cold recovery may influence the microbial activities in water and biofilm phases in drinking water distribution systems (DWDSs). In this study, the effect of cold recovery on microbial qualities was investigated in a chlorinated DWDS. The chlorine decay was slight (1.1%-15.5%) due to a short contact time (~60 s) and was not affected by the cold recovery (p > 0.05). The concentrations of cellular ATP and intact cell numbers in the bulk water were partially inactivated by the residual chlorine, with the removal rates of 10.1%-16.2% and 22.4%-29.4%, respectively. The chlorine inactivation was probably promoted by heat exchangers but was not further enhanced by higher temperatures. The higher water temperature (25 °C) enhanced the growth of biofilm biomass on pipelines. Principle coordination analysis (PCoA) showed that the biofilms on the stainless steel plates of HEs and the plastic pipe inner surfaces had totally different community compositions. Elevated temperatures favored the growth of Pseudomonas spp. and Legionella spp. in the biofilm after cold recovery. The community functional predictions revealed more abundances of five human diseases (e.g. Staphylococcis aureus infection) and beta-lactam resistance pathways in the biofilms at higher temperature. Compared with a previous study with a non-chlorinated DWDS, chlorine dramatically reduced the biofilm biomass growth but raised the relative abundances of the chlorine-resistant genera (i.e. Pseudomonas and Sphingomonas) in bacterial communities.
Collapse
Affiliation(s)
- Xinyan Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands
| | - Jawairia Imtiaz Ahmad
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands; Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, H-12 Sector, Islamabad, Pakistan
| | - Jan Peter van der Hoek
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands; Waternet, Korte Ouderkerkerdijk 7, 1096 AC, Amsterdam, the Netherlands
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
22
|
Brumfield KD, Hasan NA, Leddy MB, Cotruvo JA, Rashed SM, Colwell RR, Huq A. A comparative analysis of drinking water employing metagenomics. PLoS One 2020; 15:e0231210. [PMID: 32271799 PMCID: PMC7145143 DOI: 10.1371/journal.pone.0231210] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The microbiological content of drinking water traditionally is determined by employing culture-dependent methods that are unable to detect all microorganisms, especially those that are not culturable. High-throughput sequencing now makes it possible to determine the microbiome of drinking water. Thus, the natural microbiota of water and water distribution systems can now be determined more accurately and analyzed in significantly greater detail, providing comprehensive understanding of the microbial community of drinking water applicable to public health. In this study, shotgun metagenomic analysis was performed to determine the microbiological content of drinking water and to provide a preliminary assessment of tap, drinking fountain, sparkling natural mineral, and non-mineral bottled water. Predominant bacterial species detected were members of the phyla Actinobacteria and Proteobacteria, notably the genera Alishewanella, Salmonella, and Propionibacterium in non-carbonated non-mineral bottled water, Methyloversatilis and Methylibium in sparkling natural mineral water, and Mycobacterium and Afipia in tap and drinking fountain water. Fecal indicator bacteria, i.e., Escherichia coli or enterococci, were not detected in any samples examined in this study. Bacteriophages and DNA encoding a few virulence-associated factors were detected but determined to be present only at low abundance. Antibiotic resistance markers were detected only at abundance values below our threshold of confidence. DNA of opportunistic plant and animal pathogens was identified in some samples and these included bacteria (Mycobacterium spp.), protozoa (Acanthamoeba mauritaniensis and Acanthamoeba palestinensis), and fungi (Melampsora pinitorqua and Chryosporium queenslandicum). Archaeal DNA (Candidatus Nitrosoarchaeum) was detected only in sparkling natural mineral water. This preliminary study reports the complete microbiome (bacteria, viruses, fungi, and protists) of selected types of drinking water employing whole-genome high-throughput sequencing and bioinformatics. Investigation into activity and function of the organisms detected is in progress.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States of America
| | - Joseph A. Cotruvo
- Joseph Cotruvo and Associates LLC, Washington, DC, United States of America
| | - Shah M. Rashed
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
| |
Collapse
|
23
|
Newberry E, Bhandari R, Kemble J, Sikora E, Potnis N. Genome-resolved metagenomics to study co-occurrence patterns and intraspecific heterogeneity among plant pathogen metapopulations. Environ Microbiol 2020; 22:2693-2708. [PMID: 32207218 DOI: 10.1111/1462-2920.14989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023]
Abstract
Assessment of pathogen diversity in agricultural fields is essential for informing management decisions and the development of resistant plant varieties. However, many population genomic studies have relied on culture-based approaches that do not provide quantitative assessment of pathogen populations at the field-level or the associated host microbiome. Here, we applied whole-genome shotgun sequencing of microbial DNA extracted directly from the washings of pooled leaf samples, collected from individual tomato and pepper fields in Alabama that displayed the classical symptoms of bacterial spot disease caused by Xanthomonas spp. Our results revealed that while the occurrence of both X. perforans and X. euvesicatoria within fields was limited, evidence of co-occurrence of up to three distinct X. perforans genotypes was obtained in 7 of 10 tomato fields sampled. These population dynamics were accompanied by the corresponding type 3 secreted effector repertoires associated with the co-occurring X. perforans genotypes, indicating that metapopulation structure within fields should be considered when assessing the adaptive potential of X. perforans. Finally, analysis of microbial community composition revealed that co-occurrence of the bacterial spot pathogens Pseudomonas cichorii and Xanthomonas spp. is common in Alabama fields and provided evidence for the non-random association of several other human and plant opportunists.
Collapse
Affiliation(s)
- Eric Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Joseph Kemble
- Department of Horticulture, Auburn University, Auburn, AL, USA
| | - Edward Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.,Alabama Cooperative Extension System, Auburn, AL, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
24
|
Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Dickenson E, Sutherland J, Salveson A, Edwards MA, Pruden A. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. WATER RESEARCH 2019; 151:75-86. [PMID: 30594092 DOI: 10.1016/j.watres.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Little is known about how introducing recycled water intended for direct potable reuse (DPR) into distribution systems and premise plumbing will affect water quality at the point of use, particularly with respect to effects on microbial communities and regrowth. The examination of potential growth of opportunistic pathogens (OPs) and spread of antibiotic resistance genes (ARGs), each representing serious and growing public health concerns, by introducing DPR water has not previously been evaluated. In this study, the impact of blending purified DPR water with traditional drinking water sources was investigated with respect to treatment techniques, blending location, and blending ratio. Water from four U.S. utility partners was treated in bench- and pilot-scale treatment trains to simulate DPR with blending. Water was incubated in simulated premise plumbing rigs made of PVC pipe containing brass coupons to measure regrowth of total bacteria (16S rRNA genes, heterotrophic plate count), OPs (Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa), ARGs (qnrA, vanA), and an indicator of horizontal gene transfer and multi-drug resistance (intI1). The microbial community composition was profiled and the resistome (i.e., all ARGs present) was characterized in select samples using next generation sequencing. While regrowth of total bacteria (16S rRNA genes) from the start of the incubation through week eight consistently occurred across tested scenarios (Wilcoxon, p ≤ 0.0001), total bacteria were not more abundant in the water or biofilm of any DPR scenario than in the corresponding conventional potable condition (p ≥ 0.0748). Regrowth of OP marker genes, qnrA, vanA, and intI1 were not significantly greater in water or biofilm for any DPR blends treated with advanced oxidation compared to corresponding potable water (p ≥ 0.1047). This study of initial bacteria colonizing pipes after introduction of blended DPR water revealed little evidence (i.e., one target in one water type) of exacerbated regrowth of total bacteria, OPs, or ARGs in premise plumbing.
Collapse
Affiliation(s)
- Emily Garner
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Mandu Inyang
- Southern Nevada Water Authority, Henderson, NV, 89015, United States; Massachusetts Water Resources Authority, Southborough, MA, 01772, United States
| | - Elisa Garvey
- Carollo Engineers, Inc, Walnut Creek, CA, 94598, United States
| | - Jeffrey Parks
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Caitlin Glover
- Southern Nevada Water Authority, Henderson, NV, 89015, United States
| | | | - Eric Dickenson
- Southern Nevada Water Authority, Henderson, NV, 89015, United States
| | | | - Andrew Salveson
- Carollo Engineers, Inc, Walnut Creek, CA, 94598, United States
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|