1
|
Ouili AS, Mogmenga I, Ouattara A, Tidiane Compaoré CO, Maiga Y, Nikiema M, Ouattara AS. Assessment of the probiotic properties of Pediococcus acidilactici, Pediococcus pentosaceus, and Lactiplantibacillus plantarum strains isolated from fermented maize grains. J Food Prot 2025:100514. [PMID: 40268120 DOI: 10.1016/j.jfp.2025.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
This study aimed to evaluate the probiotic properties of 11 lactic acid bacteria (LAB) strains isolated from corn kernels. After phenotypic and biochemical characterization confirmed by 16S rRNA gene sequencing, the results revealed that eight isolates (AA1, AA4, AA5, AA7, AA8, BB1, Z3, and Z4) belonged to Pediococcus acidilactici, two (Z2 and Z5) to Pediococcus pentosaceus, and one (AA6) to Lactiplantibacillus plantarum. Antibiotic sensitivity analysis showed general resistance to ciprofloxacin, gentamicin, and colistin, but strains such as AA4, AA6, Z2, and AA1 were sensitive to ampicillin, amoxicillin/clavulanic acid, and ceftriaxone. No signs of hemolytic activity were observed, confirming the safety of the strains. Simulated gastrointestinal tolerance tests demonstrated high survival rates: between 55.64% and 96.61% under 0.3% pepsin at pH 2.5, between 91.24% and 96.67% with bile salts (0.3%), and between 72.95% and 99.66% with phenol (0.4%). Auto-aggregation capacities ranged from 54.87% to 90.57%, and co-aggregation rates with E. coli and S. enterica were also significant. The strains exhibited hydrophobicity rates between 46.65% and 77.17%, notable antioxidant capacities (58.46% to 69.6%), and inhibited the growth of foodborne pathogens. Finally, enzymatic profiles revealed proteolytic and lipolytic activities. The isolates Z2 and Z3 stand out due to their wide range of probiotic characteristics, making them promising candidates for future research.
Collapse
Affiliation(s)
- Amidou S Ouili
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Iliassou Mogmenga
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; Centre Universitaire de Banfora, Université Nazi BONI, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Assiètta Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Cheik Omar Tidiane Compaoré
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Ynoussa Maiga
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Mahamadi Nikiema
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; Institut Supérieur de Développement Durable (ISDD), Université Yembila Abdoulaye Toguyeni, BP 54 Fada N'Gourma, Burkina Faso
| | - Aboubakar Sidiki Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| |
Collapse
|
2
|
Muñoz R, Rivas BDL, Rodríguez H, Esteban-Torres M, Reverón I, Santamaría L, Landete JM, Plaza-Vinuesa L, Sánchez-Arroyo A, Jiménez N, Curiel JA. Food phenolics and Lactiplantibacillus plantarum. Int J Food Microbiol 2024; 412:110555. [PMID: 38199014 DOI: 10.1016/j.ijfoodmicro.2023.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phenolic compounds are important constituents of plant food products. These compounds play a key role in food characteristics such as flavor, astringency and color. Lactic acid bacteria are naturally found in raw vegetables, being Lactiplantibacillus plantarum the most commonly used commercial starter for the fermentation of plant foods. Hence, the metabolism of phenolic compounds of L. plantarum has been a subject of study in recent decades. Such studies confirm that L. plantarum, in addition to presenting catalytic capacity to transform aromatic alcohols and phenolic glycosides, exhibits two main differentiated metabolic routes that allow the biotransformation of dietary hydroxybenzoic and hydroxycinnamic acid-derived compounds. These metabolic pathways lead to the production of new compounds with new biological and organoleptic properties. The described metabolic pathways involve the action of specialized esterases, decarboxylases and reductases that have been identified through genetic analysis and biochemically characterized. The purpose of this review is to provide a comprehensive and up-to-date summary of the current knowledge of the metabolism of food phenolics in L. plantarum.
Collapse
Affiliation(s)
- Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain.
| | - Blanca de Las Rivas
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Héctor Rodríguez
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - María Esteban-Torres
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Inés Reverón
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Laura Santamaría
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - José Maria Landete
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Laura Plaza-Vinuesa
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Ana Sánchez-Arroyo
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Natalia Jiménez
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - José Antonio Curiel
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain.
| |
Collapse
|
3
|
Bao J, Ge G, Wang Z, Xiao Y, Zhao M, Sun L, Wang Y, Zhang J, Jia Y, Du S. Effect of isolated lactic acid bacteria on the quality and bacterial diversity of native grass silage. FRONTIERS IN PLANT SCIENCE 2023; 14:1160369. [PMID: 37484462 PMCID: PMC10358727 DOI: 10.3389/fpls.2023.1160369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Abstract
Objective The objective of this study was to isolate lactic acid bacteria (LAB) from native grasses and naturally fermented silages, determine their identity, and assess their effects on silage quality and bacterial communities of the native grasses of three steppe types fermented for 60 days. Methods Among the 58 isolated LAB strains, Limosilactobacillus fermentum (BL1) and Latilactobacillus graminis (BL5) were identified using 16S rRNA sequences. Both strains showed normal growth at 15- 45°C temperature, 3-6.5% NaCl concentration, and pH 4-9. Two isolated LAB strains (labeled L1 and L5) and two commercial additives (Lactiplantibacillus plantarum and Lentilactobacillus buchneri; designated as LP and LB, respectively) were added individually to native grasses of three steppe types (meadow steppe, MS; typical steppe, TS; desert steppe, DS), and measured after 60 d of fermentation. The fresh material (FM) of different steppe types was treated with LAB (1 × 105 colony forming units/g fresh weight) or distilled water (control treatment [CK]). Results Compared with CK, the LAB treatment showed favorable effects on all three steppe types, i.e., reduced pH and increased water-soluble carbohydrate content, by modulating the microbiota. The lowest pH was found in the L5 treatment of three steppe types, at the same time, the markedly (p < 0.05) elevated acetic acid (AA) concentration was detected in the L1 and LB treatment. The composition of bacterial community in native grass silage shifted from Pantoea agglomerans and Rosenbergiella nectarea to Lentilactobacillus buchneri at the species level. The abundance of Lentilactobacillus buchneri and Lactiplantibacillus plantarum increased significantly in L1, L5, LP, and LB treatments, respectively, compared with CK (p < 0.05). Conclusion In summary, the addition of LAB led to the shifted of microbiota and modified the quality of silage, and L. fermentum and L. graminis improved the performance of native grass silage.
Collapse
Affiliation(s)
- Jian Bao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunbuir, China
| | - Muqier Zhao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Grassland Research Institute, Hohhot, China
| | - Yu Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiawei Zhang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Hernández-Parada N, González-Ríos O, Suárez-Quiroz ML, Hernández-Estrada ZJ, Figueroa-Hernández CY, Figueroa-Cárdenas JDD, Rayas-Duarte P, Figueroa-Espinoza MC. Exploiting the Native Microorganisms from Different Food Matrices to Formulate Starter Cultures for Sourdough Bread Production. Microorganisms 2022; 11:109. [PMID: 36677402 PMCID: PMC9865925 DOI: 10.3390/microorganisms11010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The use of sourdough for bread production involves fermentation, which is dominated by lactic acid bacteria (LAB) and yeast. Sourdough can be inoculated with a starter culture or through a food matrix containing microorganisms to initiate sourdough fermentation. Sourdough is used as leavening agent for bread making, and metabolites produced by LAB and yeast confer a specific aroma and flavor profile to bread, thus improving its sensory attributes. However, few publications report the effect of microorganisms from different food products and by-products on sourdough fermentation. This review focuses on using different starter cultures from various food sources, from wheat flour to starter cultures. Additionally, included are the types of sourdough, the sourdough fermentation process, and the biochemical transformations that take place during the sourdough fermentation process.
Collapse
Affiliation(s)
- Natali Hernández-Parada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Oscar González-Ríos
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz C.P. 91897, Mexico
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M.A. de Quevedo 2779, Veracruz C.P. 91897, Mexico
| | - Juan de Dios Figueroa-Cárdenas
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV Unidad Querétaro), Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Querétaro C.P. 76230, Mexico
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078-6055, USA
| | - María Cruz Figueroa-Espinoza
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, F-34398 Montpellier, France
| |
Collapse
|
5
|
Liu M, Wang Y, Wang Z, Bao J, Zhao M, Ge G, Jia Y, Du S. Effects of Isolated LAB on Chemical Composition, Fermentation Quality and Bacterial Community of Stipa grandis Silage. Microorganisms 2022; 10:2463. [PMID: 36557716 PMCID: PMC9787380 DOI: 10.3390/microorganisms10122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
This study aimed to screen and identify lactic acid bacteria (LAB) strains from the Stipa grandis and naturally fermented silage, and assess their effects on the silage quality and bacterial community of Stipa grandis after 60 days of the fermentation process. A total of 38 LAB were isolated, and strains ZX301 and YX34 were identified as Lactiplantibacillus plantarum and Pediococcus pentosaceus using 16S rRNA sequences; they can normally grow at 10−30 °C, with a tolerance of pH and NaCl from 3.5 to 8.0 and 3 to 6.5%, respectively. Subsequently, the two isolated LAB and one commercial additive (Lactiplantibacillus plantarum) were added to Stipa grandis for ensiling for 60 days and recorded as the ZX301, YX34, and P treatments. The addition of LAB was added at 1 × 105 colony-forming unit/g of fresh weight, and the same amount of distilled water was sprayed to serve as a control treatment (CK). Compared to the CK treatment, the ZX301 and YX34 treatments exhibited a positive effect on pH reduction. The water-soluble carbohydrate content was significantly (p < 0.05) increased in ZX301, YX34, and P treatments than in CK treatment. At the genus level, the bacterial community in Stipa grandis silage involves a shift from Pantoea to Lactiplantibacillus. Compared to the CK treatment, the ZX301, YX34, and P treatments significantly (p < 0.05) increase the abundance of Pediococcus and Lactiplantibacillus, respectively. Consequently, the results indicated that the addition of LAB reconstructed microbiota and influenced silage quality. The strain ZX301 could improve the ensiling performance in Stipa grandis silage.
Collapse
Affiliation(s)
- Mingjian Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, China, Key Laboratory of Grassland Resources, Ministry of Education, China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Yu Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, China, Key Laboratory of Grassland Resources, Ministry of Education, China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, China, Key Laboratory of Grassland Resources, Ministry of Education, China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Jian Bao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, China, Key Laboratory of Grassland Resources, Ministry of Education, China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Muqier Zhao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, China, Key Laboratory of Grassland Resources, Ministry of Education, China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, China, Key Laboratory of Grassland Resources, Ministry of Education, China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, China, Key Laboratory of Grassland Resources, Ministry of Education, China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Andrada E, Mechoud MA, Abeijón-Mukdsi MC, Chagra Dib EP, Cerviño S, Perez Chaia A, Medina RB. Ferulic Acid Esterase Producing Lactobacillus johnsonii from Goat Feces as Corn Silage Inoculants. Microorganisms 2022; 10:1732. [PMID: 36144334 PMCID: PMC9500823 DOI: 10.3390/microorganisms10091732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Ferulic acid esterase (FAE+)-producing lactobacilli are being studied as silage inoculants due to their potential of increasing forage fiber digestibility. In this work, three FAE+ Lactobacillus (L.) johnsonii strains were isolated from caprine feces and characterized according to their potential probiotic characteristics and as silage inoculants. Limosilactobacillus fermentum CRL1446, a human probiotic isolated from goat cheese, was also included in the experiments as a potential silage inoculant. FAE activity quantification, probiotic characterization, and growth in maize aqueous extract indicated that L. johnsonii ETC187 might have a better inoculant and probiotic aptitude. Nevertheless, results in whole-corn mini silos indicated that, although acid detergent fiber (ADF) was significantly reduced by this strain (3% compared with the uninoculated (UN) group), L. johnsonii ETC150 and CRL1446 not only induced similar ADF reduction but also reduced dry matter (DM) loss (by 7.3% and 6.5%, respectively) compared with the UN group. Additionally, CRL1446 increased in vitro DM degradability by 10%. All treatments reduced gas losses when compared with the UN group. The potential probiotic features of these strains, as well as their beneficial impact on corn fermentation shown in this study, encourage further studies as enhancers in animal production.
Collapse
Affiliation(s)
- Estefania Andrada
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán T4000ACS, Argentina
| | - Mónica Adriana Mechoud
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - María Claudia Abeijón-Mukdsi
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - Elsa Patricia Chagra Dib
- Estación Experimental Agropecuaria Salta, Instituto Nacional de Tecnología Agropecuaria, Cerrillos, Salta A4403XAA, Argentina
| | - Santiago Cerviño
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán T4000ACS, Argentina
- Zona Valles Calchaquíes, Subsecretaría de Agricultura Familiar, Campesina e Indígena, Ministerio de Agricultura, Ganadería y Pesca, San Miguel de Tucumán, Tucumán T4000GBD, Argentina
| | - Adriana Perez Chaia
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - Roxana Beatriz Medina
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán T4000ACS, Argentina
| |
Collapse
|
7
|
Bansal P, Kumar R, Dhanda S. Characterization of starter cultures and nutritional properties of
Pediococcus acidilactici
NCDC
252: A potential probiotic of dairy origin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Poonam Bansal
- Department of Biotechnology Maharishi Markandeshwar (Deemed to be University) Ambala India
| | - Raman Kumar
- Department of Biochemistry Kurukshetra University Kurukshetra India
| | - Suman Dhanda
- Department of Biochemistry Kurukshetra University Kurukshetra India
| |
Collapse
|
8
|
Carrizo NI, Carabajal Torrez JA, Molina FRE, Fornaguera MJ, Martos GI, Bustos AY, Gerez CL. Selection and Performance of Antifungal Lactic Acid Bacteria in Corn Mini-Silos. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Nazar M, Wang S, Zhao J, Dong Z, Li J, Kaka NA, Shao T. Abundance and diversity of epiphytic microbiota on forage crops and their fermentation characteristic during the ensiling of sterile sudan grass. World J Microbiol Biotechnol 2021; 37:27. [PMID: 33433734 DOI: 10.1007/s11274-020-02991-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the effects of exogenous epiphytic microbiota inoculation on the fermentation quality and microbial community of sudan grass silage. Gamma irradiated sudan grass was ensiled with distilled water (STR), epiphytic microbiota of sudan grass (SUDm), forage sorghum (FSm), napier grass (NAPm) and whole crop corn (WCCm). The FSm inoculated silage have significantly lower lactic acid (LA) concentration and higher pH during early ensiling, while LA concentration gradually and significantly increased with the progression of ensiling and have lower pH in relation to other treatments for terminal silage. Inoculation of NAPm resulted in lower LA and higher acetic acid (AA) concentrations, higher pH, ammonia-N and dry matter losses for terminal silage, followed by SUDm silage. Inoculations of WCCm significantly increased LA production and pH decline during early ensiling and have higher LA and pH then NAPm and SUDm silages during final ensiling. The early fermentation of SUDm silage was dominated by genus of Pediococcus. The genera of Lactobacillus were predominant in WCCm and NAPm silages during 3 days of ensiling, while Weissella dominated initial microbial community of FS silage. The terminal silage of NAPm was dominated by Enterobacter and Rosenbergiella, while Enterobacter and Lactobacillus dominated terminal SUDm silage. The final silage of FSm was dominated by Lactobacillus, Weissella and Pediococcus, while Lactobacillus and Acetobacter dominated terminal WCCm silages. The results demonstrated that among the four forages the epiphytic microbiota from forage sorghum positively influenced the microbial community and fermentability of sudan grass silage.
Collapse
Affiliation(s)
- Mudasir Nazar
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Niaz Ali Kaka
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
10
|
Puntillo M, Gaggiotti M, Oteiza JM, Binetti A, Massera A, Vinderola G. Potential of Lactic Acid Bacteria Isolated From Different Forages as Silage Inoculants for Improving Fermentation Quality and Aerobic Stability. Front Microbiol 2020; 11:586716. [PMID: 33363520 PMCID: PMC7752947 DOI: 10.3389/fmicb.2020.586716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
We aimed at isolating lactic acid bacteria (LAB) from different plant materials to study their crossed-fermentation capacity in silos and to find strains able to confer enhanced aerobic stability to silage. A total of 129 LAB isolates were obtained from lucerne (alfalfa), maize, sorghum, ryegrass, rice, barley, canola, Gatton panic, Melilotus albus, soy, white clover, wheat, sunflower, oat, and moha. Four Lactiplantibacillus plantarum subsp. plantarum strains (isolated from oat, lucerne, sorghum, or maize) were selected for their growth capacity. Identity (16S sequencing) and diversity (RAPD-PCR) were confirmed. Fermentative capacity (inoculated at 104, 105, 106, 107 CFU/g) was studied in maize silage and their cross-fermentation capacity was assessed in oat, lucerne, sorghum, and maize. Heterofermentative strains with the highest acetic acid production capacity conferred higher aerobic stability to maize silages. Regardless the source of isolation, L. plantarum strains, inoculated at a rate of 106 CFU/g, were effective to produce silage from different plant materials. From more than 100 isolates obtained, the application of a succession of experiments allowed us to narrow down the number of potential candidates of silage inoculants to two strains. Based on the studies made, L. plantarum LpM15 and Limosilactobacillus fermentum LfM1 showed potential to be used as inoculants, however further studies are needed to determine their performance when inoculated together. The former because it positively influenced different quality parameters in oat, lucerne, sorghum, and maize silage, and the latter because of its capacity to confer enhanced aerobic stability to maize silage. The rest of the strains constitute a valuable collection of autochthonous strains that will be further studied in the future for new applications in animal or human foods.
Collapse
Affiliation(s)
- Melisa Puntillo
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Gaggiotti
- Laboratorio de Calidad de Leche y Agroindustria, INTA EEA Rafaela, Santa Fe, Argentina
| | - Juan Martín Oteiza
- Centro de Investigación y Asistencia Técnica a la Industria, Río Negro, Argentina
| | - Ana Binetti
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ariel Massera
- Laboratorio de Calidad de Leche y Agroindustria, INTA EEA Rafaela, Santa Fe, Argentina
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
11
|
Blajman JE, Vinderola G, Cuatrin A, Lingua MS, Páez RB. Technological variables influencing the growth and stability of a silage inoculant based on spray-dried lactic acid bacteria. J Appl Microbiol 2020; 129:1486-1496. [PMID: 32544979 DOI: 10.1111/jam.14750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
AIMS To investigate the influence of different culture media and fermentation conditions on growth performance and viability of three lactic acid bacteria (LAB) strains with potential as silage inoculants, and to optimize spray-drying in order to enhance survival to dehydration and storage stability. METHODS AND RESULTS In house-formulated MRS was a suitable low-cost culture medium for Lactobacillus plantarum Hv75, Pediococcus acidilactici 3903 and L. buchneri B463. Uncontrolled pH biomass production conferred enhanced stability during storage at 4°C after spray-drying. The use of whey protein concentrate 35 (WPC)-maltodextrin (M) as matrix, inlet temperature of 145-150°C and air flow rate of 601 l h-1 was adequate for the production of dehydrated LAB. According to the desirability function, at this optimized condition, moisture content, yield and solubility were predicted to be 3·96, 73·68 and 90·36% respectively. Those conditions also showed a decrease of 0·855 log CFU per gram after drying, no loss in viability at 4°C for 6 months and 1 log CFU per gram reduction at 25°C. CONCLUSIONS Stable and economically feasible dehydrated LAB cultures were obtained using alternative culture media, fermentation under uncontrolled pH and optimizing spray-drying process conditions through the desirability function method. SIGNIFICANCE AND IMPACT OF THE STUDY Our results can be utilized for efficient production and commercialization of several dry LAB.
Collapse
Affiliation(s)
- J E Blajman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Nacional de Tecnología Agropecuaria EEA Rafaela, Rafaela, Santa Fe, Argentina
| | - G Vinderola
- Instituto de Lactología Industrial, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - A Cuatrin
- Instituto Nacional de Tecnología Agropecuaria EEA Rafaela, Rafaela, Santa Fe, Argentina
| | - M S Lingua
- Instituto de Ciencia y Tecnología de Alimentos Córdoba, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - R B Páez
- Instituto Nacional de Tecnología Agropecuaria EEA Rafaela, Rafaela, Santa Fe, Argentina
| |
Collapse
|
12
|
Cilia G, Fratini F, Tafi E, Turchi B, Mancini S, Sagona S, Nanetti A, Cerri D, Felicioli A. Microbial Profile of the Ventriculum of Honey Bee ( Apis mellifera ligustica Spinola, 1806) Fed with Veterinary Drugs, Dietary Supplements and Non-Protein Amino Acids. Vet Sci 2020; 7:E76. [PMID: 32517254 PMCID: PMC7357006 DOI: 10.3390/vetsci7020076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
The effects of veterinary drugs, dietary supplements and non-protein amino acids on the European honey bee (Apis mellifera ligustica Spinola, 1806) ventriculum microbial profile were investigated. Total viable aerobic bacteria, Enterobacteriaceae, staphylococci, Escherichia coli, lactic acid bacteria, Pseudomonas spp., aerobic bacterial endospores and Enterococcus spp. were determined using a culture-based method. Two veterinary drugs (Varromed® and Api-Bioxal®), two commercial dietary supplements (ApiHerb® and ApiGo®) and two non-protein amino acids (GABA and beta-alanine) were administered for one week to honey bee foragers reared in laboratory cages. After one week, E. coli and Staphylococcus spp. were significantly affected by the veterinary drugs (p < 0.001). Furthermore, dietary supplements and non-protein amino acids induced significant changes in Staphylococcus spp., E. coli and Pseudomonas spp. (p < 0.001). In conclusion, the results of this investigation showed that the administration of the veterinary drugs, dietary supplements and non-protein amino acids tested, affected the ventriculum microbiological profile of Apis mellifera ligustica.GABA; beta-alanine; oxalic acid; diet effect; microbiota.
Collapse
Affiliation(s)
- Giovanni Cilia
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
| | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Elena Tafi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
- Department of Science, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
| | - Simona Sagona
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy;
| | - Domenico Cerri
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
13
|
Zhao S, Wang Y, Yang F, Wang Y, Zhang H. Screening a
Lactobacillus plantarum
strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality. J Appl Microbiol 2020; 129:233-242. [DOI: 10.1111/jam.14604] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/29/2022]
Affiliation(s)
- S.S. Zhao
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - Y.P. Wang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - F.Y. Yang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - Y. Wang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - H. Zhang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
- College of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou P. R. China
| |
Collapse
|
14
|
Guo L, Yao D, Li D, Lin Y, Bureenok S, Ni K, Yang F. Effects of Lactic Acid Bacteria Isolated From Rumen Fluid and Feces of Dairy Cows on Fermentation Quality, Microbial Community, and in vitro Digestibility of Alfalfa Silage. Front Microbiol 2020; 10:2998. [PMID: 31998275 PMCID: PMC6962301 DOI: 10.3389/fmicb.2019.02998] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to select lactic acid bacteria (LAB) isolated from the rumen fluid and feces of dairy cows, and evaluate their effects on silage quality of alfalfa after 30 or 60 days of ensiling. One hundred and four LAB strains were isolated from rumen fluid and feces of six dairy cows, of which four strains (Lactobacillus plantarum F1, L. plantarum F50, Lactobacillus salivarius L100, and Lactobacillus fermentum L120) and one commercial inoculant (GFG) isolated from forage were employed for further study. The silages treated with F1 had the lowest (P < 0.05) pH value and the highest (P < 0.05) lactic acid (LA) content in all treatments. Besides, higher (P < 0.05) in vitro digestibility was also observed in F1-treated silage after 60 days of ensiling. The microbial analysis showed that the Lactobacillus abundance in the F1-treated silages increased to 60.32%, higher than other treatments (5.12–47.64%). Our research indicated that strain F1 could be an alternative silage inoculant, and dairy cows could be a source for obtaining excellent LAB for ensiling.
Collapse
Affiliation(s)
- Linna Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Yao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dongxia Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lin
- Beijing Sure Academy of Biosciences, Beijing, China
| | - Smerjai Bureenok
- Department of Agricultural Technology and Environment, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Pontonio E, Dingeo C, Gobbetti M, Rizzello CG. Maize Milling By-Products: From Food Wastes to Functional Ingredients Through Lactic Acid Bacteria Fermentation. Front Microbiol 2019; 10:561. [PMID: 30941115 PMCID: PMC6434969 DOI: 10.3389/fmicb.2019.00561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 02/01/2023] Open
Abstract
Although recognized as important sources of functional compounds, milling by-products are often removed from the cereal kernel prior milling process. Indeed, the high presence of fiber in bran and the co-presence of lipids and lipase in germ are often considered as downsides for breadmaking. In this work, Lactobacillus plantarum T6B10 and Weissella confusa BAN8 were used as selected starters to ferment maize milling by-products mixtures made with heat-treated or raw germ and bran. The effects on the biochemical and nutritional features as well as the stability of the milling by-products were investigated. Lactic acid bacteria metabolisms improved the free amino acids and peptides concentrations and the antioxidant activity and caused a relevant phytic acid degradation. Moreover, fermentation allowed a marked decrease of the lipase activity, stabilizing the matrix by preventing oxidative processes. The use of fermented by-products as ingredients improved the nutritional, textural and sensory properties of wheat bread. Fortified breads (containing 25% of fermented by-products) were characterized by a concentration in dietary fiber and proteins of ca. 11 and 13% of dry matter, respectively. Compared to the use of the unfermented ones, the addition of pre-fermented by-products to bread caused a significant increase in protein digestibility (up to 60%), and a relevant decrease of the starch hydrolysis index (ca. 13%). According to the results, this study demonstrates the potential of fermentation to convert maize bran and germ, commonly considered food wastes, into nutritive improvers, meeting nutritional and sensory requests of modern consumers.
Collapse
Affiliation(s)
- Erica Pontonio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Dingeo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | | |
Collapse
|
16
|
Otto R, Verloove F. Nuevos xenófitos de La Palma (Islas Canarias, España), con énfasis en las especies naturalizadas y (potencialmente) invasoras. Parte 2. COLLECTANEA BOTANICA 2018. [DOI: 10.3989/collectbot.2018.v37.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Varios meses de trabajos de campo en La Palma (Islas Canarias occidentales) han posibilitado el descubrimiento de nuevas plantas vasculares no nativas. Abutilon theophrasti, Agrostis xfouilladeana, Alternanthera brasiliana, Bupleurum salicifolium subsp. salicifolium, Callisia fragrans, Emilia coccinea, Hyparrhenia sinaica, Ipomoea purpurea, Jasminum polyanthum, Macfadyena unguis-cati, Malvastrum coromandelianum subsp. coromandelianum, Misopates calycinum, Nephrolepis cordifolia, Opuntia microdasys, Passiflora subpeltata, Plantago lanceolata, Polygonum aviculare subsp. rurivagum, Pseudogynoxys chenopodioides, Psidium littorale, Robinia pseudoacacia, Rosa micrantha, Rumex bucephalophorus subsp. gallicus, Sorghum bicolor subsp. verticilliflorum, Sphagneticola trilobata, Syzygium jambos, Thunbergia alata y Youngia japonica subsp. japonica son xenófitos naturalizados o (potencialmente) invasores, se citan por primera vez para las Islas Canarias o para La Palma. Se dan a conocer por primera vez 14 t·axones adicionales, probablemente casuales, de las Islas Canarias y 15 taxones de la isla de La Palma.
Collapse
|