1
|
Bhowmick T, Sarkar A, Islam KH, Karmakar S, Mukherjee J, Das R. Molecular insights into cobalt homeostasis in estuarine microphytobenthos: A meta-transcriptomics and biogeochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137716. [PMID: 40024116 DOI: 10.1016/j.jhazmat.2025.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Meta-transcriptomics data supported by biofilm physico-chemical parameters unravelled the molecular and biochemical processes utilized by multicomponent intertidal biofilms to endure cobalt toxicity. Findings indicated activation of influx (BtuB, ABC-type transporters) and efflux pumps (RND, CZC) to maintain metal ion homeostasis. Enhanced specific activity of antioxidant enzymes namely catalases and peroxidases (KatG, SodA) mitigated oxidative damage. Heightened synthesis of capsular polysaccharide components, specifically uronic acid and carbohydrate via PEP-CTERM sorting system, wzy pathway and glycosyltransferases protected biofilms against cobalt exposure. Despite chlorophyll biosynthesis genes being upregulated, metal toxicity impeded chlorophyll replenishment. Principal pathways associated with iron acquisition (AfuA), energy metabolism (AtpG), general metabolic activities (FruK, NifD, coABC) and central dogma regulation (DPS, AsrR, RRM) were activated to combat cobalt toxicity. This investigation offered novel insights into the regulatory network employed by intertidal microphytobenthic communities for maintaining cobalt homeostasis and underlined the basis for their application as biomarkers for estuarine cobalt pollution.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Kazi Hamidul Islam
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Manna T, Dey S, Karmakar M, Panda AK, Ghosh C. Investigations on genomic, topological and structural properties of diguanylate cyclases involved in Vibrio cholerae biofilm signalling using in silico techniques: Promising drug targets in combating cholera. Curr Res Struct Biol 2025; 9:100166. [PMID: 40330072 PMCID: PMC12051071 DOI: 10.1016/j.crstbi.2025.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
During various stages of its life cycle, Vibrio cholerae initiate biofilm signalling cascade. Intercellular high level of the signalling nucleotide 3'-5' cyclic dimeric guanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclases (DGCs) from its precursor molecule GTP, is crucial for biofilm formation. Present study endeavours to in silico approaches in evaluating genomic, physicochemical, topological and functional properties of six c-di-GMP regulatory DGCs (CdgA, CdgH, CdgK, CdgL, CdgM, VpvC) of V. cholerae. Genomic investigations unveiled that codon preferences were inclined towards AU ending over GC ending codons and overall GC content ranged from 44.6 to 49.5 with codon adaptation index ranging from 0.707 to 0.783. Topological analyses deciphered the presence of transmembrane domains in all proteins. All the DGCs were acidic, hydrophilic and thermostable. Only CdgA, CdgH and VpvC were predicted to be stable during in vitro conditions. Non-polar amino acids with leucine being the most abundant amino acid among these DGCs with α-helix as the predominant secondary structure, responsible for forming the transmembrane regions by secondary structure analysis. Tertiary structures of the proteins were obtained by computation using AlphaFold and trRosetta. Predicted structures by both the servers were compared in various aspects using PROCHECK, ERRAT and Modfold8 servers. Selected 3D structures were refined using GalaxyRefine. InterPro Scan revealed presence of a conserved GGDEF domain in all DGCs and predicted the active site residues in the GGDEF domain. Molecular docking studies using CB-DOCK 2 tool revealed that among the DGCs, VpvC exhibited highest affinity for GTP (-5.6 kcal/mol), which was closely followed by CdgL (-5.5 kcal/mol). MD simulations depicted all DGC-GTP complexes to be stable due to its considerably low eigenvalues. Such studies are considered to provide maiden insights into the genomic and structural properties of V. cholerae DGCs, actively involved in biofilm signalling systems, and it is projected to be beneficial in the discovery of novel DGC inhibitors that can target and downregulate the c-di-GMP regulatory system to develop anti-biofilm strategies against the cholera pathogen.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
- Rani Rashmoni Green University, Singur, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
3
|
Gohar D, Põldmaa K, Pent M, Rahimlou S, Cerk K, Ng DY, Hildebrand F, Bahram M. Genomic evidence of symbiotic adaptations in fungus-associated bacteria. iScience 2025; 28:112253. [PMID: 40290873 PMCID: PMC12023794 DOI: 10.1016/j.isci.2025.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Fungi harbor diverse bacteria that engage in various relationships. While these relationships potentially influence fungal functioning, their underlying genetic mechanisms remain unexplored. Here, we aimed to elucidate the key genomic features of fungus-associated bacteria (FaB) by comparing 163 FaB genomes to 1,048 bacterial genomes from other hosts and habitats. Our analyses revealed several distinctive genomic features of FaB. We found that FaB are enriched in carbohydrate transport/metabolism- and motility-related genes, suggesting an adaptation for utilizing complex fungal carbon sources. They are also enriched in genes targeting fungal biomass, likely reflecting their role in recycling and rebuilding fungal structures. Additionally, FaB associated with plant-mutualistic fungi possess a wider array of carbon-acquisition enzymes specific to fungal and plant substrates compared to those residing with saprotrophic fungi. These unique genomic features highlight FaB' potential as key players in fungal nutrient acquisition and decomposition, ultimately influencing plant-fungal symbiosis and ecosystem functioning.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Klara Cerk
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Duncan Y.K. Ng
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Mo Bahram
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|
4
|
Caraballo G LD, Cevher Zeytin I, Rathi P, Li CH, Tsao AN, Salvador L YJ, Ranjan M, Traynor BM, Heczey AA. DRIMS: A Synthetic Biology Platform that Enables Deletion, Replacement, Insertion, Mutagenesis, and Synthesis of DNA. ACS Synth Biol 2025; 14:485-496. [PMID: 39902634 DOI: 10.1021/acssynbio.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
DNA modification and synthesis are fundamental to genetic engineering, and systems that enable time- and cost-effective execution of these processes are crucial. Iteration of genetic construct variants takes significant time, cost and effort to develop new therapeutic strategies to treat diseases including cancer. Thus, decreasing cost and enhancing simplicity while accelerating the speed of advancement is critical. We have developed a PCR-based platform that allows for deletion, replacement, insertion, mutagenesis, and synthesis of DNA (DRIMS). These modifications rely on the recA-independent recombination pathway and are carried out in a single amplification step followed by DpnI digestion and transformation into competent cells. DNA synthesis is accomplished through sequential PCR amplification reactions without the need for a DNA template. Here, we provide proof-of-concept for the DRIMS platform by performing four deletions within DNA fragments of various sizes, sixty-four replacements of DNA binding sequences that incorporate repeat sequences, four replacements of chimeric antigen receptor components, fifty-one insertions of artificial microRNAs that form complex tertiary structures, five varieties of point mutations, and synthesis of eight DNA sequences including two with high GC content. Compared to other advanced cloning methods including Gibson and "in vivo assembly", we demonstrate the significant advantages of the DRIMS platform. In summary, DRIMS allows for efficient modification and synthesis of DNA in a simple, rapid and cost-effective manner to accelerate the synthetic biology field and development of therapeutics.
Collapse
Affiliation(s)
- Leidy D Caraballo G
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Inci Cevher Zeytin
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Purva Rathi
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Che-Hsing Li
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
- Program in Immunology & Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ai-Ni Tsao
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Yaery J Salvador L
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Manish Ranjan
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Brendan Magee Traynor
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Andras A Heczey
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| |
Collapse
|
5
|
Wang W, Zhang DX. Does metabolic rate influence genome-wide amino acid composition in the course of animal evolution? Evol Lett 2025; 9:137-149. [PMID: 39906584 PMCID: PMC11790228 DOI: 10.1093/evlett/qrae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 02/06/2025] Open
Abstract
Natural selection is believed to shape amino acid usage of the proteome by minimizing the energy cost of protein biosynthesis. Although this hypothesis explains well the amino acid frequency (AAfrequency) difference among the 20 common amino acids within a given genome (species), whether it is applicable to cross-species difference remains to be inspected. Here, we proposed and tested a "metabolic rate hypothesis," which suggests that metabolic rate impacts genome-wide AAfrequency, considering that the energy allocated to protein biosynthesis is under selection pressure due to metabolic rate constraint. We performed integrated phylogenetic comparative analyses on proteomic sequence and metabolic rate data of 166 species covering 130 eumetazoan orders. We showed that resting metabolic rate (RMR) was significantly linked to AAfrequency variation across animal lineages, with a contribution comparable to or greater than genomic traits such as GC content and codon usage bias. Consistent with the metabolic rate hypothesis, low-energy-cost amino acids are observed to be more likely at higher frequency in animal species with high (residual) metabolic rate. Correlated evolution of RMR and AAfrequency was further inferred being driven by adaptation. The relationship between RMR and AAfrequency varied greatly among amino acids, most likely reflecting a trade-off among various interacting factors. Overall, there exists no "one-size-fits-all" predictor for AAfrequency, and integrated investigation of multilevel traits is indispensable for a fuller understanding of AAfrequency variation and evolution in animal.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - De-Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Sharma A, Kumar S, Kumar R, Sharma AK, Singh B, Sharma D. Computational studies on metabolic pathways of Coxiella burnetii to combat Q fever: A roadmap to vaccine development. Microb Pathog 2025; 198:107136. [PMID: 39571832 DOI: 10.1016/j.micpath.2024.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Coxiella burnetii (Cbu) is the gram-negative intracellular pathogen responsible for deadly zoonotic infection, Q fever. The pathogen is environmentally stable and distributed throughout the world which is sustained in nature by chronic infection of ruminants. The epidemiological studies on Q fever indicates it as emerging public health problem in various countries and it is imperative to promptly identify an appropriate therapeutic solution for this pathogen. In the current study, metabolic pathways of Cbu were analysed by the combination of multiple computational tools for the prediction of suitable therapeutic candidates. We have identified 25 metabolic pathways which were specific to Cbu containing 287 unique proteins. A total of 141 proteins which were either virulent, essential or resistant were shortlisted that do not show homology with the host proteins and considered as potential targets for drug and vaccine development. The potential therapeutic targets were classified in to seven functional classes, i.e., metabolism, transport, gene expression and regulation, signal transduction, antimicrobial resistance, stress response regulator and unknown. The majority of the proteins were found to be present in metabolism and transport class. The functional annotation showed the predominant presence of proteins containing HATPase_c, Beta-lactamase, GerE, ACR_tran, PP-binding, CsrA domains. We have identified Type I secretion outer membrane protein for the design of multi-epitope subunit vaccine using reverse vacciniology approach. Four B cell epitopes, six MHC-I epitopes and four MHC-II epitopes were identified which are non-toxic, non-allergen and highly antigenic. The multi-epitope subunit vaccine construct was 327 amino acid residues long which include adjuvant, B cell epitopes, MHC-I epitopes and MHC-II epitopes. The Cholera enterotoxin subunit B is included as an adjuvant in the N terminal of vaccine construct which will help to produce a strong immune response to the vaccine. The multi-epitope vaccine construct was non-toxic, non-allergen and probable antigen having molecular weight 35.13954 kDa, aliphatic index 85.50, theoretical PI 9.65, GRAVY -0.001, and instability index of 28.37. The tertiary structure of the vaccine construct was modeled and physiochemical properties were predicted. After validation and refinement of tertiary structure the molecular docking of vaccine exhibited strong binding with TLR2, TLR3, TLR4, TLR5 and TLR8. The TLRs and vaccine construct formed hydrogen bonds, salt bridges and non-bonded contacts with all TLR receptors. The in-silico immune simulations showed the ability to trigger primary immune response as shown by increment in B-cell and T-cell population. The research paves the way for more effective control of zoonotic disease Q fever.
Collapse
Affiliation(s)
- Ankita Sharma
- Dr. Ambedkar Centre of Excellence, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176215, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India, 176061
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206.
| |
Collapse
|
7
|
Grant AR, Johnson KP, Stanley EL, Baldwin-Brown J, Kolenčík S, Allen JM. Rapid Targeted Assembly of the Proteome Reveals Evolutionary Variation of GC Content in Avian Lice. Bioinform Biol Insights 2024; 18:11779322241257991. [PMID: 38860163 PMCID: PMC11163934 DOI: 10.1177/11779322241257991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Nucleotide base composition plays an influential role in the molecular mechanisms involved in gene function, phenotype, and amino acid composition. GC content (proportion of guanine and cytosine in DNA sequences) shows a high level of variation within and among species. Many studies measure GC content in a small number of genes, which may not be representative of genome-wide GC variation. One challenge when assembling extensive genomic data sets for these studies is the significant amount of resources (monetary and computational) associated with data processing, and many bioinformatic tools have not been optimized for resource efficiency. Using a high-performance computing (HPC) cluster, we manipulated resources provided to the targeted gene assembly program, automated target restricted assembly method (aTRAM), to determine an optimum way to run the program to maximize resource use. Using our optimum assembly approach, we assembled and measured GC content of all of the protein-coding genes of a diverse group of parasitic feather lice. Of the 499 426 genes assembled across 57 species, feather lice were GC-poor (mean GC = 42.96%) with a significant amount of variation within and between species (GC range = 19.57%-73.33%). We found a significant correlation between GC content and standard deviation per taxon for overall GC and GC3, which could indicate selection for G and C nucleotides in some species. Phylogenetic signal of GC content was detected in both GC and GC3. This research provides a large-scale investigation of GC content in parasitic lice laying the foundation for understanding the basis of variation in base composition across species.
Collapse
Affiliation(s)
- Avery R Grant
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Stanislav Kolenčík
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Koper, Slovenia
| | - Julie M Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Huang Y, Mao Z, Zhang Y, Zhao J, Luan X, Wu K, Yun L, Yu J, Shi Z, Liao X, Ma H. Omics data analysis reveals the system-level constraint on cellular amino acid composition. Synth Syst Biotechnol 2024; 9:304-311. [PMID: 38510205 PMCID: PMC10951587 DOI: 10.1016/j.synbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins play a pivotal role in coordinating the functions of organisms, essentially governing their traits, as the dynamic arrangement of diverse amino acids leads to a multitude of folded configurations within peptide chains. Despite dynamic changes in amino acid composition of an individual protein (referred to as AAP) and great variance in protein expression levels under different conditions, our study, utilizing transcriptomics data from four model organisms uncovers surprising stability in the overall amino acid composition of the total cellular proteins (referred to as AACell). Although this value may vary between different species, we observed no significant differences among distinct strains of the same species. This indicates that organisms enforce system-level constraints to maintain a consistent AACell, even amid fluctuations in AAP and protein expression. Further exploration of this phenomenon promises insights into the intricate mechanisms orchestrating cellular protein expression and adaptation to varying environmental challenges.
Collapse
Affiliation(s)
- Yuanyuan Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhitao Mao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yue Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jianxiao Zhao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Xiaodi Luan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Ke Wu
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Lili Yun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Jing Yu
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhenkun Shi
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaoping Liao
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
9
|
Motyka S, Szopa A, Ochatt SJ. Distinction of chia varieties in vivo and in vitro based on the flow cytometry and rosmarinic acid production. Appl Microbiol Biotechnol 2024; 108:337. [PMID: 38767664 PMCID: PMC11106112 DOI: 10.1007/s00253-024-13171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Flow cytometry has made a significant contribution to the study of several complex fundamental mechanisms in plant cytogenetics, becoming a useful analytical tool to understand several mechanisms and processes underlying plant growth, development, and function. In this study, the genome size, DNA ploidy level, and A-T/G-C ratio were measured for the first time for two genotypes of chia, Salvia hispanica, an herbaceous plant commonly used in phytotherapy and nutrition. This study also evaluated, for the first time by flow cytometry, the capacity to produce organic acids of tissues stained with LysoTracker Deep Red after elicitation with either yeast extract or cadmium chloride. Rosmarinic acid content differed between the two chia varieties treated with different elicitor concentrations, compared with non-elicited plant material. Elicited tissues of both varieties contained a higher content of rosmarinic acid compared with non-elicited cultures, and cadmium chloride at 500 μM was much better than that at 1000 μM, which led to plant death. For both genotypes, a dose-response was observed with yeast extract, as the higher the concentration of elicitor used, the higher rosmarinic acid content, resulting also in better results and a higher content of rosmarinic acid compared with cadmium chloride. This study demonstrates that flow cytometry may be used as a taxonomy tool, to distinguish among very close genotypses of a given species and, for the first time in plants, that this approach can also be put to profit for a characterization of the cytoplasmic acid phase and the concomitant production of secondary metabolites of interest in vitro, with or without elicitation. KEY POINTS: • Genome size, ploidy level, A-T/G-C ratio, and cytoplasm acid phase of S. hispanica • Cytometry study of cytoplasm acid phase of LysoTracker Deep Red-stained plant cells • Yeast extract or cadmium chloride elicited rosmarinic acid production of chia tissues.
Collapse
Affiliation(s)
- Sara Motyka
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Medical College, Jagiellonian University, Łazarza 16, 31-530, Kraków, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland.
| | - Sergio J Ochatt
- INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, AgroécologieDijon, France
| |
Collapse
|
10
|
Arbib C, D'ascenzo A, Rossi F, Santoni D. An Integer Linear Programming Model to Optimize Coding DNA Sequences By Joint Control of Transcript Indicators. J Comput Biol 2024; 31:416-428. [PMID: 38687334 DOI: 10.1089/cmb.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A Coding DNA Sequence (CDS) is a fraction of DNA whose nucleotides are grouped into consecutive triplets called codons, each one encoding an amino acid. Because most amino acids can be encoded by more than one codon, the same amino acid chain can be obtained by a very large number of different CDSs. These synonymous CDSs show different features that, also depending on the organism the transcript is expressed in, could affect translational efficiency and yield. The identification of optimal CDSs with respect to given transcript indicators is in general a challenging task, but it has been observed in recent literature that integer linear programming (ILP) can be a very flexible and efficient way to achieve it. In this article, we add evidence to this observation by proposing a new ILP model that simultaneously optimizes different well-grounded indicators. With this model, we efficiently find solutions that dominate those returned by six existing codon optimization heuristics.
Collapse
Affiliation(s)
- Claudio Arbib
- Department of Information Engineering, Computer Science, and Mathematics University of L'Aquila, L'Aquila, Italy
| | - Andrea D'ascenzo
- Department of Information Engineering, Computer Science, and Mathematics University of L'Aquila, L'Aquila, Italy
| | - Fabrizio Rossi
- Department of Information Engineering, Computer Science, and Mathematics University of L'Aquila, L'Aquila, Italy
| | - Daniele Santoni
- Institute for System Analysis and Computer Science Antonio Ruberti National Research Council of Italy, Rome, Italy
| |
Collapse
|
11
|
Eltschkner S, Mellinger S, Buus S, Nielsen M, Paulsson KM, Lindkvist-Petersson K, Westerdahl H. The structure of songbird MHC class I reveals antigen binding that is flexible at the N-terminus and static at the C-terminus. Front Immunol 2023; 14:1209059. [PMID: 37483599 PMCID: PMC10360169 DOI: 10.3389/fimmu.2023.1209059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Long-distance migratory animals such as birds and bats have evolved to withstand selection imposed by pathogens across the globe, and pathogen richness is known to be particularly high in tropical regions. Immune genes, so-called Major Histocompatibility Complex (MHC) genes, are highly duplicated in songbirds compared to other vertebrates, and this high MHC diversity has been hypothesised to result in a unique adaptive immunity. To understand the rationale behind the evolution of the high MHC genetic diversity in songbirds, we determined the structural properties of an MHC class I protein, Acar3, from a long-distance migratory songbird, the great reed warbler Acrocephalus arundinaceus (in short: Acar). The structure of Acar3 was studied in complex with pathogen-derived antigens and shows an overall antigen presentation similar to human MHC class I. However, the peptides bound to Acar3 display an unusual conformation: Whereas the N-terminal ends of the peptides display enhanced flexibility, the conformation of their C-terminal halves is rather static. This uncommon peptide-binding mode in Acar3 is facilitated by a central Arg residue within the peptide-binding groove that fixes the backbone of the peptide at its central position, and potentially permits successful interactions between MHC class I and innate immune receptors. Our study highlights the importance of investigating the immune system of wild animals, such as birds and bats, to uncover unique immune mechanisms which may neither exist in humans nor in model organisms.
Collapse
Affiliation(s)
- Sandra Eltschkner
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Samantha Mellinger
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Soren Buus
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, Copenhagen, Denmark
| | - Morten Nielsen
- Immunoinformatics and Machine Learning, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kajsa M. Paulsson
- Antigen Presentation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin Lindkvist-Petersson
- Medical Structural Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- LINXS - Institute of Advanced Neutron and X-ray Science, Lund University, Lund, Sweden
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Jiang X, Pan X, Li W, Han P, Yu J, Li J, Zhang H, Lv W, Zhang Y, He Y, Xiang X. Genome-wide characterization of extrachromosomal circular DNA in gastric cancer and its potential role in carcinogenesis and cancer progression. Cell Mol Life Sci 2023; 80:191. [PMID: 37369919 DOI: 10.1007/s00018-023-04838-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) carrying random genomic segments are broadly found across different cancer types, but their molecular functions and impact in gastric cancer (GC) are rarely known. In this study, we aimed to investigate the potential role of eccDNA in GC. Using the Circle-seq strategy, we observed the eccDNA abundance in gastric cancer tissues (GCT) was aberrantly higher than that of normal adjacent tissues (NAT). The high abundance of eccDNAs carrying oncogene-segments in GCT may represent the DNA damage products of amplified oncogenes. Analysis of GCT over-represented eccDNA carrying enhancer (eccEnhancer) based on data from FANTOM5 project combined with TCGA database suggested the GC over-represented eccEnhancers may contribute to development of GC. GC over-represented eccDNAs carrying pre-miRNA (eccMIR) were enriched to multiple cancer-relevant signal pathways by KEGG analysis. We then synthesized the top six GC over-represented eccMIRs and found four of them enabled high expression of miRNAs and down-regulation of miRNA-target genes in MGC803 cells. Furthermore, we observed the inheritance of GC over-represented eccMIRs benefited host cell proliferation and promoted the aggressive features of host cells. Altogether, this study revealed the GC over-represented eccDNAs carrying functional genomic segments were related to the carcinogenesis of GC and presented the capability to facilitate cancer progression, suggesting the cancerous eccDNAs may serve as a dynamic reservoir for genome plasticity and rapid adaptive evolution of cancer. Therefore, blocking the pathways for eccDNAs generation may provide a novel therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xianming Jiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaoguang Pan
- Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
| | - Wenchao Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Peng Han
- Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jing Li
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shanxi, China
| | - Haoran Zhang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shanxi, China
| | - Wei Lv
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
13
|
Aytar Celik P, Barut D, Enuh BM, Erdogan Gover K, Nural Yaman B, Burcin Mutlu M, Cabuk A. A novel higher polyhydroxybutyrate producer Halomonas halmophila 18H with unique cell factory attributes. BIORESOURCE TECHNOLOGY 2023; 372:128669. [PMID: 36702321 DOI: 10.1016/j.biortech.2023.128669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
For cost-competitive biosynthesis of polyhydroxybutyrate (PHB), the screening of efficient producers and characterization of their genomic potential is fundamental. In this study, 94 newly isolated halophilic strains from Turkish salterns were screened for their polyhydroxyalkanoates (PHAs) biosynthesis capabilities through fermentation. Halomonas halmophila 18H was found to be the highest PHB producer, yielding 63.72 % of its biomass as PHB. The PHB produced by this strain was physically and chemically characterized using various techniques. Its genome was also sequenced and found to be large (6,713,657 bp) and have a GC content of 59.9 %. Halomonas halmophila 18H was also found to have several copies of PHB biosynthesis genes, as well as 20 % more protein-coding genes and 1075 singletons compared to other high PHB producers. These unique genomic features make it a promising cell factory for the simultaneous production of PHAs and other biotechnologically important secondary metabolites.
Collapse
Affiliation(s)
- Pinar Aytar Celik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, 26110 Eskisehir, Turkey; Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Kubra Erdogan Gover
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Belma Nural Yaman
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Mehmet Burcin Mutlu
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| | - Ahmet Cabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
14
|
Davray D, Bawane H, Kulkarni R. Non-redundant nature of Lactiplantibacillus plantarum plasmidome revealed by comparative genomic analysis of 105 strains. Food Microbiol 2023; 109:104153. [DOI: 10.1016/j.fm.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
|
15
|
Zhang X, Wang Z, Ge S, Zuo Y, Lu H, Lv Y, Han N, Cai Y, Wu X, Wang Z. Attenuated African swine fever virus through serial passaging of viruses in cell culture: a brief review on the knowledge gathered during 60 years of research. Virus Genes 2023; 59:13-24. [PMID: 36229722 PMCID: PMC9560881 DOI: 10.1007/s11262-022-01939-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/01/2022] [Indexed: 01/13/2023]
Abstract
African swine fever virus (ASFV) is a highly pathogenic double-stranded DNA virus. It affects various breeds of pigs, causing serious economic losses and health threats because of its rapid spread and high pathogenicity and infectivity. This situation is not helped by the lack of a validated vaccine or effective therapies. Since the 1960s, different strains of ASFV have been subjected to serial passage in a variety of cell lines. The attenuated ASFV strains obtained through serial passage are not only candidates for ASF vaccine research, but also are useful to study the molecular genetic characteristics and pathogenic mechanism of the virus. This review summarizes related studies on the attenuated strains of ASFV acquired through cell passage over the last 60 years, with the aim of providing inspiration for the rational design of vaccines in future.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Zhenzhong Wang
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
- MOE Joint International Research Laboratory for Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Haodong Lu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Yan Lv
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Naijun Han
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Yumei Cai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China.
| | - Xiaodong Wu
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China.
| | - Zhiliang Wang
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China.
| |
Collapse
|
16
|
Khrustalev VV, Khrustaleva TA, Popinako AV. Germline mutations directions are different between introns of the same gene: case study of the gene coding for amyloid-beta precursor protein. Genetica 2023; 151:61-73. [PMID: 36129589 DOI: 10.1007/s10709-022-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Amyloid-beta precursor protein (APP) is highly conserved in mammals. This feature allowed us to compare nucleotide usage biases in fourfold degenerated sites along the length of its coding region for 146 species of mammals and birds in search of fragments with significant deviations. Even though cytosine usage has the highest value in fourfold degenerated sites in APP coding region from all tested placental mammals, in contrast to marsupial mammals with the bias toward thymine usage, the most frequent germline and somatic mutations in human APP coding region are C to T and G to A transitions. The same mutational AT-pressure is characteristic for germline mutations in introns of human APP gene. However, surprisingly, there are several exceptional introns with deviations in germline mutations rates. The most of those introns surround exons with exceptional biases in nucleotide usage in fourfold degenerated sites. Existence of such fragments in exons 4 and 5, as well as in exon 14, can be connected with the presence of lncRNA genes in complementary strand of DNA. Exceptional nucleotide usage bias in exons 16 and 17 that contain a sequence encoding amyloid-beta peptides can be explained either by the presence of yet unmapped lncRNA(s), or by the autonomous expression of a short mRNA that encodes just C-terminal part of the APP providing an alternative source of amyloid-beta peptides. This hypothesis is supported by the increased rate of T to C transitions in introns 16-17 and 17-18 of Human APP gene relatively to other introns.
Collapse
Affiliation(s)
| | | | - Anna Vladimirovna Popinako
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
17
|
Li ZL, Buck M. A proteome-scale analysis of vertebrate protein amino acid occurrence: Thermoadaptation shows a correlation with protein solvation but less so with dynamics. Proteins 2023; 91:3-15. [PMID: 36053994 PMCID: PMC10087973 DOI: 10.1002/prot.26404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Despite differences in behaviors and living conditions, vertebrate organisms share the great majority of proteins, often with subtle differences in amino acid sequence. Here, we present a simple way to analyze the difference in amino acid occurrence by comparing highly homologous proteins on a subproteome level between several vertebrate model organisms. Specifically, we use this method to identify a pattern of amino acid conservation as well as a shift in amino acid occurrence between homeotherms (warm-blooded species) and poikilotherms (cold-blooded species). Importantly, this general analysis and a specific example further establish a broad correlation, if not likely connection between the thermal adaptation of protein sequences and two of their physical features: on average a change in their protein dynamics and, even more strongly, in their solvation. For poikilotherms, such as frog and fish, the lower body temperature is expected to increase the protein-protein interaction due to a decrease in protein internal dynamics. In order to counteract the tendency for enhanced binding caused by low temperatures, poikilotherms enhance the solvation of their proteins by favoring polar amino acids. This feature appears to dominate over possible changes in dynamics for some proteins. The results suggest that a general trend for amino acid choice is part of the mechanism for thermoadaptation of vertebrate organisms at the molecular level.
Collapse
Affiliation(s)
- Zhen-Lu Li
- School of Life Science, Tianjin University, Tianjin, China.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Departments of Pharmacology and of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Genetic Diversity and Characterization of Circular Replication (Rep)-Encoding Single-Stranded (CRESS) DNA Viruses. Microbiol Spectr 2022; 10:e0105722. [PMID: 36346238 PMCID: PMC9769708 DOI: 10.1128/spectrum.01057-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The CRESS-DNA viruses are the ubiquitous virus detected in almost all eukaryotic life trees and play an essential role in the maintaining ecosystem of the globe. Still, their genetic diversity is not fully understood. Here, we bring to light the genetic diversity of replication (Rep) and capsid (Cap) proteins of CRESS-DNA viruses. We divided the Rep protein of the CRESS-DNA virus into 10 clusters using CLANS and phylogenetic analyses. Also, most of the Rep protein in Rep cluster 1 (R1) and R2 (Circoviridae, Smacoviridae, Nanoviridae, and CRESSV1-5) contain the Viral_Rep superfamily and P-loop_NTPase superfamily domains, while the Rep protein of viruses in other clusters has no such characterized functional domain. The Circoviridae, Nanoviridae, and CRESSV1-3 viruses contain two domains, such as Viral_Rep and P-loop_NTPase; the CRESSV4 and CRESSV5 viruses have only the Viral_Rep domain; most of the sequences in the pCRESS-related group have only P-loop_NTPase; and Smacoviridae do not have these two domains. Further, we divided the Cap protein of the CRESS-DNA virus into 20 clusters using CLANS and phylogenetic analyses. The Rep and Cap proteins of Circoviridae and Smacoviridae are grouped into a specific cluster. Cap protein of CRESS-DNA viruses grouped with one cluster and Rep protein with another cluster. Further, our study reveals that selection pressure plays a significant role in the evolution of CRESS-DNA viruses' Rep and Cap genes rather than mutational pressure. We hope this study will help determine the genetic diversity of CRESS-DNA viruses as more sequences are discovered in the future. IMPORTANCE The genetic diversity of CRESS-DNA viruses is not fully understood. CRESS-DNA viruses are classified as CRESSV1 to CRESSV6 using only Rep protein. This study revealed that the Rep protein of the CRESS-DNA viruses is classified as CRESSV1 to CRESSV6 groups and the new Smacoviridae-related, CRESSV2-related, pCRESS-related, Circoviridae-related, and 1 to 4 outgroups, according to the Viral_Rep and P-loop_NTPase domain organization, CLANS, and phylogenetic analysis. Furthermore, for the first time in this study, the Cap protein of CRESS-DNA viruses was classified into 20 distinct clusters by CLANS and phylogenetic analysis. Through this classification, the genetic diversity of CRESS-DNA viruses clarifies the possibility of recombinations in Cap and Rep proteins. Finally, it has been shown that selection pressure plays a significant role in the evolution and genetic diversity of Cap and Rep proteins. This study explains the genetic diversity of CRESS-DNA viruses and hopes that it will help classify future detected viruses.
Collapse
|
19
|
Ghosh M, Basak S, Dutta S. Natural selection shaped the evolution of amino acid usage in mammalian toll like receptor genes. Comput Biol Chem 2022; 97:107637. [DOI: 10.1016/j.compbiolchem.2022.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/09/2021] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
20
|
Determination of the Amino Acid Recruitment Order in Early Life by Genome-Wide Analysis of Amino Acid Usage Bias. Biomolecules 2022; 12:biom12020171. [PMID: 35204672 PMCID: PMC8961565 DOI: 10.3390/biom12020171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The mechanisms shaping the amino acids recruitment pattern into the proteins in the early life history presently remains a huge mystery. In this study, we conducted genome-wide analyses of amino acids usage and genetic codons structure in 7270 species across three domains of life. The carried-out analyses evidenced ubiquitous usage bias of amino acids that were likely independent from codon usage bias. Taking advantage of codon usage bias, we performed pseudotime analysis to re-determine the chronological order of the species emergence, which inspired a new species relationship by tracing the imprint of codon usage evolution. Furthermore, the multidimensional data integration showed that the amino acids A, D, E, G, L, P, R, S, T and V might be the first recruited into the last universal common ancestry (LUCA) proteins. The data analysis also indicated that the remaining amino acids most probably were gradually incorporated into proteogenesis process in the course of two long-timescale parallel evolutionary routes: I→F→Y→C→M→W and K→N→Q→H. This study provides new insight into the origin of life, particularly in terms of the basic protein composition of early life. Our work provides crucial information that will help in a further understanding of protein structure and function in relation to their evolutionary history.
Collapse
|
21
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
22
|
Castillo AI, Almeida RPP. Evidence of gene nucleotide composition favoring replication and growth in a fastidious plant pathogen. G3-GENES GENOMES GENETICS 2021; 11:6170658. [PMID: 33715000 PMCID: PMC8495750 DOI: 10.1093/g3journal/jkab076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022]
Abstract
Nucleotide composition (GC content) varies across bacteria species, genome regions, and specific genes. In Xylella fastidiosa, a vector-borne fastidious plant pathogen infecting multiple crops, GC content ranges between ∼51-52%; however, these values were gathered using limited genomic data. We evaluated GC content variations across X. fastidiosa subspecies fastidiosa (N = 194), subsp. pauca (N = 107), and subsp. multiplex (N = 39). Genomes were classified based on plant host and geographic origin; individual genes within each genome were classified based on gene function, strand, length, ortholog group, Core vs. Accessory, and Recombinant vs. Non-recombinant. GC content was calculated for each gene within each evaluated genome. The effects of genome and gene level variables were evaluated with a mixed effect ANOVA, and the marginal-GC content was calculated for each gene. Also, the correlation between gene-specific GC content vs. natural selection (dN/dS) and recombination/mutation (r/m) was estimated. Our analyses show that intra-genomic changes in nucleotide composition in X. fastidiosa are small and influenced by multiple variables. Higher AT-richness is observed in genes involved in replication and translation, and genes in the leading strand. In addition, we observed a negative correlation between high-AT and dN/dS in subsp. pauca. The relationship between recombination and GC content varied between core and accessory genes. We hypothesize that distinct evolutionary forces and energetic constraints both drive and limit these small variations in nucleotide composition.
Collapse
Affiliation(s)
- Andreina I Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Designing of peptide aptamer targeting the receptor-binding domain of spike protein of SARS-CoV-2: an in silico study. Mol Divers 2021; 26:157-169. [PMID: 33389440 PMCID: PMC7778502 DOI: 10.1007/s11030-020-10171-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Short synthetic peptide molecules which bind to a specific target protein with a high affinity to exert its function are known as peptide aptamers. The high specificity of aptamers with small-molecule targets (metal ions, dyes and theophylline; ATP) is within 1 pM and 1 μM range, whereas with the proteins (thrombin, CD4 and antibodies) it is in the nanomolar range (which is equivalent to monoclonal antibodies). The recently identified coronavirus (SARS-CoV-2) genome encodes for various proteins, such as envelope, membrane, nucleocapsid, and spike protein. Among these, the protein necessary for the virus to enter inside the host cell is spike protein. The work focuses on designing peptide aptamer targeting the spike receptor-binding domain of SARS-CoV-2. The peptide aptamer has been designed by using bacterial Thioredoxin A as the scaffold protein and an 18-residue-long peptide. The tertiary structure of the peptide aptamer is modeled and docked to spike receptor-binding domain of SARS CoV2. Molecular dynamic simulation has been done to check the stability of the aptamer and receptor-binding domain complex. It was observed that the aptamer binds to spike receptor-binding domain of SARS-CoV-2 in a similar pattern as that of ACE2. The aptamer-receptor-binding domain complex was found to be stable in a 100 ns molecular dynamic simulation. The aptamer is also predicted to be non-antigenic, non-allergenic, non-hemolytic, non-inflammatory, water-soluble with high affinity toward ACE2 than serum albumin. Thus, peptide aptamer can be a novel approach for the therapeutic treatment for SARS-CoV-2.
Collapse
|
24
|
Devi A, Chaitanya NSN. In silico designing of multi-epitope vaccine construct against human coronavirus infections. J Biomol Struct Dyn 2020; 39:6903-6917. [PMID: 32772892 PMCID: PMC7484569 DOI: 10.1080/07391102.2020.1804460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single stranded RNA viruses were known to cause variety of diseases since many years and are gaining much importance due to pandemic after the identification of a novel corona virus (severe acute respiratory syndrome-coronavirus (SARS-CoV-2)). Seven coronaviruses (CoVs) are known to infect humans and they are OC43 CoV, NL63 CoV, HKU1 CoV, Middle East respiratory syndrome, SARS CoV, and SARS CoV-2. Virus replication weakens the immune system of host thereby altering T-cell count and much of interferon response. Although no vaccine or therapeutic treatment has been approved till now for CoV infection, trials of vaccine against SARS CoV-2 are in progress. One of the epitopes used for vaccine production is of the spike protein on the surface of virus. The work focuses on designing of multi-epitope vaccine construct for treatment of seven human CoV infections using the epitopes present on the spike protein of human CoVs. To address this, immuno-informatics techniques have been employed to design multi-epitope vaccine construct. B- and T-cell epitopes of the spike proteins have been predicted and designed into a multi-epitope vaccine construct. The tertiary structure of the vaccine construct along with the adjuvant has been modelled and the physiochemical properties have been predicted. The multi-epitope vaccine construct has antigenic and non-allergenic property. After validation, refinement and disulphide engineering of the vaccine construct, molecular docking with toll-like receptors (TLRs) have been performed. Molecular dynamics simulation in aqueous environment predicted that the vaccine-TLRs complexes were stable. The vaccine construct is predicted to be able to trigger primary immune response in silico. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arpita Devi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Nyshadham S N Chaitanya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
25
|
Khrustalev VV. Random Coils of Proteins Situated Between a Beta Strand and an Alpha Helix Demonstrate Decreased Solvent Accessibility. Protein J 2020; 39:308-317. [DOI: 10.1007/s10930-020-09905-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Begum Y, Mondal SK. Comprehensive study of the genes involved in chlorophyll synthesis and degradation pathways in some monocot and dicot plant species. J Biomol Struct Dyn 2020; 39:2387-2414. [PMID: 32292132 DOI: 10.1080/07391102.2020.1748717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlorophyll (Chl) biosynthesis is one of the most important cellular processes essential for plant photosynthesis. Chl degradation pathway is also important catabolic process occurs during leaf senescence, fruit ripening and under biotic or abiotic stress conditions. Here we have systematically investigated the molecular evolution, gene structure, compositional analysis along with ENc plot, correspondence analysis and codon usage bias of the proteins and encoded genes involved in Chl metabolism from monocots and dicots. The gene and species specific phylogenetic trees using amino acid sequences showed clear clustering formation of the selected species based on monocots and dicots but not supported by 18S rRNA. Nucleotide composition of the encoding genes showed that average GC%, GC1%, GC2% and GC3% were higher in monocots. RSCU analysis depicts that genes from monocots for both pathways and genes for synthesis pathway from dicots only biased to G/C-ending synonymous codons but in degradation pathway most optimal codons (except UUG) in dicots biased to A/U-ending synonymous codons. We found strong evidence of episodic diversifying selection at several amino acid sites in all genes investigated. Conserved domain and gene structures were observed for the genes with varying lengths of introns and exons, involved in Chl metabolism along with some intronless genes within synthesis pathway. ENc and correspondence analyses suggested the mutational or selection constraint on the genes to shape the codon usage. These comprehensive studies may be helpful in further research in molecular phylogenetics and genomics and to better understand the evolutionary dynamics of Chl metabolic pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, West Bengal, India
| | - Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
27
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|