1
|
Chong KH, Mahyudin NA, Hasan H, New CY, Mohammad Sabri NS, Shan J, Padmanabhan K, Abd Jabar NA, Pan W, Lee E, Haryani Y, Radu S, Nor-Khaizura MAR. Multidrug-resistant, hyperaerotolerant, and aerobic growth of Campylobacter jejuni and C. coli in retail broiler chicken meat in Selangor, Malaysia. Int J Food Microbiol 2025; 436:111187. [PMID: 40220700 DOI: 10.1016/j.ijfoodmicro.2025.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/02/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Campylobacter spp. are one of the major zoonotic pathogens from chicken meat, causing world‑leading foodborne diseases. Thus, the aims of this study include monitoring the aerobic plate count (APC), the prevalence, and the characterisations (antimicrobial resistance, aerotolerance, aerobic growth, and plasmid profiling) of Campylobacter spp.. This study sampled 260 chicken thighs and drumsticks from retail supermarkets and wet markets in Selangor, Malaysia. Prevalence and microbial loads of Campylobacter spp. were assessed with the most probable number-polymerase chain reaction (MPN-PCR). Antibiotic resistance assay was conducted with disk diffusion assay with 12 types of antibiotics. Prevalence surveillance indicated that 68.9 % of Campylobacter spp., 47.7 % of C. jejuni, and 40.0 % of C. coli were detected. Co-contamination prevalence of C. jejuni and C. coli (28.46 %) occurred significantly higher than mono-contaminations, 19.62 % in C. jejuni and 11.54 % in C. coli, respectively. The microbial loads of Campylobacter spp., C. jejuni, and C. coli were 1.02 ± 0.83 log MPN/g, 0.60 ± 0.57 log MPN/g, and 0.53 ± 0.58 log MPN/g, respectively. C. jejuni and C. coli showed extremely high resistance against nalidixic acid, ciprofloxacin, cephalothin, and ampicillin. Campylobacter spp. isolated exhibited aberrance from their microaerophilic nature, with 87.5 % of C. jejuni being HAT (hyperaerotolerant) and 12.5 % of C. jejuni were AT (aerotolerant), while 100 % of C. coli were HAT. Alarmingly, the aerobic condition did not confine the growth, as 18.75 % of C. jejuni demonstrated aerobic growth. Hence, our study accentuates the current risk profile of C. jejuni and C. coli from retail broiler chicken meat.
Collapse
Affiliation(s)
- Kah Hui Chong
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Ainy Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chia Yeung New
- Go Plus Services Sdn. Bhd., 97A, Jalan BP 6/3, Bandar Bukit Puchong, 47120 Puchong, Selangor, Malaysia
| | - Nur-Shahera Mohammad Sabri
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jiang Shan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kousalya Padmanabhan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Azmiraah Abd Jabar
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wanyu Pan
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Epeng Lee
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yuli Haryani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, 28293 Pekanbaru, Riau, Indonesia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Ge Y, Ji Y, Mei J, Zhang M, Li Y, Ye B, Chen H, Chen X. Epidemiological and Genomic Characterization of a Campylobacter jejuni Outbreak in Lishui, China. Foodborne Pathog Dis 2024. [PMID: 39658014 DOI: 10.1089/fpd.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Campylobacter is one of the leading causes of bacterial foodborne diarrheal diseases throughout the world. Reported outbreaks of Campylobacter are infrequent in China. This article described such an outbreak among students from a junior high school in East China during November 2019. A total of 40 samples were collected as follows: 24 stool samples from patients, 12 stool samples from kitchen staff members, and 4 water samples from cafeteria. The stool samples were tested for the presence of Salmonella, enterotoxigenic Escherichia coli, Shigella, Vibrio parahaemolyticus, Vibrio cholera, Listeria monocytogenes, Staphylococcus aureus, Yersinia enterocolitica, Bacillus cereus, Clostridium perfringens, norovirus, rotavirus, adenovirus, astrovirus, and sapovirus by real-time polymerase chain reaction (PCR). Pulsed-field gel electrophoresis (PFGE), next-generation sequencing, and antimicrobial susceptibility testing were performed to determine the relatedness of the Campylobacter jejuni isolates in this outbreak. Forty-seven cases were reported with diarrhea among 569 seventh grade students and staff. In these 47 cases, we detected that C. jejuni through real-time PCR in 16 fecal samples was positive, whereas the remaining fecal samples were tested negative by real-time PCR. Only three C. jejuni strains were isolated from stool samples of case patients, and all of them showed 100% PFGE similarity to strain ST6913. Whole genome sequencing analysis revealed no single nucleotide variation in the three isolates. This is one of the few reports in China about outbreak caused by C. jejuni. C. jejuni ST6913 was responsible for this outbreak.
Collapse
Affiliation(s)
- Yumei Ge
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Youqi Ji
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianhua Mei
- Lishui Center for Disease Control and Prevention, Lishui, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Changping, China
| | - Yumin Li
- Lishui Center for Disease Control and Prevention, Lishui, China
| | - Bifeng Ye
- Lishui Center for Disease Control and Prevention, Lishui, China
| | - Honghu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiuying Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
- Lishui Center for Disease Control and Prevention, Lishui, China
| |
Collapse
|
3
|
Delaporte E, Karki AB, Fakhr MK. Aerotolerancy of Campylobacter spp.: A Comprehensive Review. Pathogens 2024; 13:842. [PMID: 39452714 PMCID: PMC11510350 DOI: 10.3390/pathogens13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Campylobacter spp. constitute a group of microaerophilic bacteria that includes strains that are aerotolerant and capable of surviving in aerobic conditions. Recent studies have shown that aerotolerant strains are highly prevalent in meats, animals, and clinical settings. Changes in growth media and other environmental conditions can affect the aerotolerance of Campylobacter strains and must be considered when studying their aerotolerance in vitro. Polymicrobial interactions and biofilms also play a significant role in the ability of Campylobacter to survive oxygen exposure. Continuous subculturing may foster aerotolerance, and studies have demonstrated a positive correlation between aerotolerance and virulence and between aerotolerance and the ability to survive stressful environmental conditions. Various mechanisms and genetic origins for aerotolerance have been proposed; however, most of the potential genes involved in aerotolerance require further investigation, and many candidate genes remain unidentified. Research is also needed to investigate if there are any clinical implications for Campylobacter aerotolerance. Understanding the aerotolerance of Campylobacter remains an important target for further research, and it will be an important step towards identifying potential targets for intervention against this clinically important food-borne pathogen.
Collapse
Affiliation(s)
- Elise Delaporte
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| | - Anand B. Karki
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
4
|
Karki AB, Delaborte E, Fakhr MK. Complete genome sequence of plasmid-bearing aerotolerant Campylobacter jejuni strain S2-20 isolated from retail chicken meat. Microbiol Resour Announc 2024; 13:e0114123. [PMID: 38483454 PMCID: PMC11008175 DOI: 10.1128/mra.01141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/03/2024] [Indexed: 04/12/2024] Open
Abstract
Complete genome sequencing of aerotolerant Campylobacter jejuni strain S2-20 revealed the presence of a chromosome of 1,695,449 bp and a plasmid of 49,741 bp that contains predicted antimicrobial resistance and type IV secretion system genes. The chromosome harbored several putative oxidative stress genes with potential roles in aerotolerance.
Collapse
Affiliation(s)
- Anand B. Karki
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Elise Delaborte
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| |
Collapse
|
5
|
Ortega-Sanz I, Bocigas C, Melero B, Rovira J. Phase variation modulates the multi-phenotypes displayed by clinical Campylobacter jejuni strains. Food Microbiol 2024; 117:104397. [PMID: 37918995 DOI: 10.1016/j.fm.2023.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The high incidence and prevalence of Campylobacter spp. in the food supply chain entail the importance to understand their mechanisms developed to withstand harsh environmental conditions encountered. Different stress conditions and phenotypic approaches were evaluated to study the behaviour of five clinical C. jejuni isolates with different genotypes, including the tolerance to oxygen and the oxidants hydrogen peroxide and cumene hydroperoxide, the motility and the ability to form biofilm on polystyrene and stainless steel at different temperatures and atmospheres. Whole Genome Sequencing was performed to analyse the occurrence of 216 genes involved in these mechanisms plus phase variation. The isolates showed high tolerance to oxygen and peroxide stress with different swimming motility performances and biofilm formation abilities. Aerotolerance was related with a reduced sensitive to peroxide stress and a loss of motility that promotes biofilm formation depending on the material surface. Comparative genomics did not reveal any clear gene pattern, although phase variation occurring during host infection was observed to be crucial for the modulation of the different survival mechanisms adopted by the bacteria. These findings reveal that the bacteria can combine diverse and complex strategies in an efficient manner to survive and persist in the environment.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Carolina Bocigas
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain.
| |
Collapse
|
6
|
Ruiz MJ, Sirini NE, Stegmayer MÁ, Soto LP, Zbrun MV, Olivero CR, Werning ML, Acosta FF, Signorini ML, Frizzo LS. Inhibitor activity of Lactiplantibacillus plantarum LP5 on thermotolerant campylobacter with different biofilm-forming capacities. J Appl Microbiol 2023; 134:lxad267. [PMID: 37974052 DOI: 10.1093/jambio/lxad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/20/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS To evaluate the biofilm-forming capacity of thermotolerant Campylobacter (TC) strains from poultry production and to analyse the inhibitory capacity of Lactiplantibacillus plantarum LP5 against TC on different materials. METHODS AND RESULTS Biofilm-forming capacity by Campylobacter jejuni and Campylobacter coli was analysed by cell adhesion in polystyrene plates. TC were classified as non-biofilm-forming (NBF, 1.3%), weak biofilm-forming (WBF, 68.4%), moderate biofilm-forming (MBF, 27.6%), and strong biofilm-forming (SBF, 2.7%). The inhibitory capacity of L. plantarum LP5 against TC was tested on stainless-steel, nylon, aluminium, and glass disks (treated group) and compared with biofilm-forming TC (control group). Lactiplantibacillus plantarum LP5 was inoculated, and then TC. Biofilm was removed in both experimental groups and TC and LP5 bacterial counts were performed. The L. plantarum LP5 presence reduced the formation of TC biofilm (P < 0.001). The material type and strain category influenced biofilm formation, with stainless-steel and the SBF strain being the material and TC having the highest adhesion (P < 0.001). Lactiplantibacillus plantarum LP5 formed a similar biofilm on all materials (P = 0.823). CONCLUSIONS This trial showed very promising results; L. plantarum LP5 could be incorporated as a bio-protector of TC on different surfaces.
Collapse
Affiliation(s)
- María J Ruiz
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Centre of the Province of Buenos Aires, Tandil, Buenos Aires 7000, Argentina
| | - Noelí E Sirini
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - María Á Stegmayer
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Lorena P Soto
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
| | - María V Zbrun
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Rafaela, Province of Santa Fe S2300, Argentina
| | - Carolina R Olivero
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - María L Werning
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Federico F Acosta
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
| | - Marcelo L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
- National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Rafaela, Province of Santa Fe S2300, Argentina
| | - Laureano S Frizzo
- Laboratory of Food Analysis "Rodolfo Oscar Dalla Santina", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe S3080, Argentina
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe S3080, Argentina
| |
Collapse
|
7
|
Dittoe DK, Anderson RC, Krueger NA, Harvey RB, Poole TL, Crippen TL, Callaway TR, Ricke SC. Campylobacter jejuni Response When Inoculated in Bovine In Vitro Fecal Microbial Consortia Incubations in the Presence of Metabolic Inhibitors. Pathogens 2023; 12:1391. [PMID: 38133276 PMCID: PMC10747647 DOI: 10.3390/pathogens12121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Infection with the foodborne pathogen Campylobacter is the leading bacterial cause of human foodborne illness in the United States. The objectives of this experiment were to test the hypothesis that mixed microbial populations from the bovine rumen may be better at excluding Campylobacter than populations from freshly voided feces and to explore potential reasons as to why the rumen may be a less favorable environment for Campylobacter than feces. In an initial experiment, C. jejuni cultures inoculated without or with freshly collected bovine rumen fluid, bovine feces or their combination were cultured micro-aerobically for 48 h. Results revealed that C. jejuni grew at similar growth rates during the first 6 h of incubation regardless of whether inoculated with the rumen or fecal contents, with rates ranging from 0.178 to 0.222 h-1. However, C. jejuni counts (log10 colony-forming units/mL) at the end of the 48 h incubation were lowest in cultures inoculated with rumen fluid (5.73 log10 CFUs/mL), intermediate in cultures inoculated with feces or both feces and rumen fluid (7.16 and 6.36 log10 CFUs/mL) and highest in pure culture controls that had not been inoculated with the rumen or fecal contents (8.32 log10 CFUs/mL). In follow-up experiments intended to examine the potential effects of hydrogen and hydrogen-consuming methanogens on C. jejuni, freshly collected bovine feces, suspended in anaerobic buffer, were incubated anaerobically under either a 100% carbon dioxide or 50:50 carbon dioxide/hydrogen gas mix. While C. jejuni viability decreased <1 log10 CFUs/mL during incubation of the fecal suspensions, this did not differ whether under low or high hydrogen accumulations or whether the suspensions were treated without or with the mechanistically distinct methanogen inhibitors, 5 mM nitrate, 0.05 mM 2-bromosulfonate or 0.001 mM monensin. These results suggest that little if any competition between C. jejuni and hydrogen-consuming methanogens exists in the bovine intestine based on fecal incubations.
Collapse
Affiliation(s)
- Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Robin C. Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | | | - Roger B. Harvey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Toni L. Poole
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Tawni L. Crippen
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA; (R.C.A.); (R.B.H.); (T.L.P.); (T.L.C.)
| | - Todd R. Callaway
- Ruminant Nutrition, Ruminant Microbiology, and Preharvest Food Safety, Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA;
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
8
|
Pokhrel D, Thames HT, Zhang L, Dinh T, Schilling MW, White S, Ramachandran R, Sukumaran AT. Aerotolerance and Multi-Locus Sequence Typing of Campylobacter jejuni Isolated from Commercial Broiler Processing Plants. Foods 2023; 12:3305. [PMID: 37685237 PMCID: PMC10486707 DOI: 10.3390/foods12173305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Campylobacter jejuni is one of the leading causes of acute diarrhea in the United States. Despite being a microaerophilic pathogen, C. jejuni continues to endure within the domain of food production, especially in poultry processing. Recent research on aerotolerance indicates that close monitoring of this pathogen is necessary. A total of 40 C. jejuni isolates previously obtained from commercial broiler processing plants were analyzed for aerotolerance and genetic diversity. In addition, the effect of aerotolerance and storage time (days) on the survival of C. jejuni on broiler drumsticks at refrigeration (4 °C) and freezing conditions (-20 °C) was also evaluated. Out of 40 isolates, 25 (62.5%) were aero-sensitive (AS), 10 (25%) were intermediately aerotolerant (IAT), and 5 (12.5%) were hyper aerotolerant (HAT). The isolates belonged to four clonal complexes (CCs) and six sequence types, with the majority of isolates assigned to the CC-353 clonal complex. C. jejuni counts were reduced by 0.40 log CFU/g after 7 days at 4 °C and by 1.50 log CFU/g after 14 days at -20 °C, respectively, irrespective of aerotolerance (p < 0.001). At both refrigeration (p < 0.013) and freezing (p < 0.001), HAT showed greater reductions as compared to AS and IAT. These findings suggest that both refrigeration and freezing reduce C. jejuni counts.
Collapse
Affiliation(s)
- Diksha Pokhrel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (D.P.); (H.T.T.); (L.Z.); (R.R.)
| | - Hudson T. Thames
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (D.P.); (H.T.T.); (L.Z.); (R.R.)
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (D.P.); (H.T.T.); (L.Z.); (R.R.)
| | - Thu Dinh
- Tyson Foods, 2200 W. Don Tyson Parkway, Springdale, AR 72762, USA;
| | - M. Wes Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (M.W.S.)
| | - Shecoya White
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA; (M.W.S.)
| | - Reshma Ramachandran
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (D.P.); (H.T.T.); (L.Z.); (R.R.)
| | - Anuraj T. Sukumaran
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (D.P.); (H.T.T.); (L.Z.); (R.R.)
| |
Collapse
|
9
|
McMillan EA, Berrang ME, Adams ES, Meinersmann RJ. Exudate From Retail Chicken Liver Packaging Allows for Survival of Naturally Occurring Campylobacter, Coliforms, and Aerobic Microorganisms Under Drying Conditions. J Food Prot 2023; 86:100123. [PMID: 37414284 DOI: 10.1016/j.jfp.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Campylobacter spp. are a leading cause of human foodborne illness associated with chicken meat products in the United States. Chicken livers, including exudate from packaging, commonly carry Campylobacter and could be a source of illness if mishandled. Survivability of naturally occurring Campylobacter, total aerobic bacteria, and coliforms was determined under drying conditions in two consumer simulated environments: moist sponge and solid surface. Fresh chicken liver exudate was dispensed onto sponges and glass slides and allowed to dry under ambient conditions for 7 days. Bacterial concentration was measured at 0, 6, 24, 48, 72, and 168 h. Total aerobic population did not decrease by more than one log over 7 days and did not correlate to water activity or time in either simulation. Coliform concentrations increased in sponge simulations but decreased in solid surface simulations. Further, coliform concentrations were significantly higher in sponge simulations than in solid surface. Campylobacter was naturally present in exudate and survived at least to 6 h in every trial. Campylobacter was recoverable at 24 h in some sponge trials. However, Campylobacter concentration was strongly correlated to water activity. Fresh chicken liver exudate could present a risk of campylobacteriosis to consumers if mishandled even after drying.
Collapse
Affiliation(s)
- Elizabeth A McMillan
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, 950 College Station Road, Athens, GA 30605, USA.
| | - Mark E Berrang
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, 950 College Station Road, Athens, GA 30605, USA
| | - Eric S Adams
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, 950 College Station Road, Athens, GA 30605, USA
| | - Richard J Meinersmann
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, 950 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
10
|
Karki AB, Khatri B, Fakhr MK. Transcriptome Analysis of Campylobacter jejuni and Campylobacter coli during Cold Stress. Pathogens 2023; 12:960. [PMID: 37513807 PMCID: PMC10383450 DOI: 10.3390/pathogens12070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Campylobacter spp. are known to cause campylobacteriosis, a bacterial disease that remains a public health threat. Campylobacter spp. are prevalent in retail meat and liver products, and the prolonged survival of Campylobacter in the low temperatures needed for storage is a challenge for food safety. In this study, RNA-seq was used for the analysis of the C. coli HC2-48 (Cc48) and C. jejuni OD2-67 (Cj67) transcriptomes at 4 °C in a nutrient-rich medium (chicken juice, CJ) and Mueller-Hinton broth (MHB) for 0 h, 0.5 h, 24 h and 48 h. Differentially expressed genes (DEGs) involved in flagellar assembly were highly impacted by low temperatures (4 °C) in C. coli HC2-48, whereas genes related to the ribosome and ribonucleoprotein complex were modulated for C. jejuni OD2-67 at 4 °C. Most of the DEGs in cells grown at 4 °C in the two medium formulations were not significantly expressed at different incubation times. Although more DEGs were observed in CJ as compared to MHB in both Campylobacter strains, the absence of common genes expressed at all incubation times indicates that the food matrix environment is not the sole determinant of differential expression in Campylobacter spp. at low temperatures.
Collapse
Affiliation(s)
- Anand B Karki
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
11
|
Kim J, Park M, Ahn E, Mao Q, Chen C, Ryu S, Jeon B. Stimulation of Surface Polysaccharide Production under Aerobic Conditions Confers Aerotolerance in Campylobacter jejuni. Microbiol Spectr 2023; 11:e0376122. [PMID: 36786626 PMCID: PMC10100837 DOI: 10.1128/spectrum.03761-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The ability of a foodborne pathogen to tolerate environmental stress critically affects food safety by increasing the risk of pathogen survival and transmission in the food supply chain. Campylobacter jejuni, a leading bacterial cause of foodborne illnesses, is an obligate microaerophile and is sensitive to atmospheric levels of oxygen. Currently, the molecular mechanisms of how C. jejuni withstands oxygen toxicity under aerobic conditions have not yet been fully elucidated. Here, we show that when exposed to aerobic conditions, C. jejuni develops a thick layer of bacterial capsules, which in turn protect C. jejuni under aerobic conditions. The presence of both capsular polysaccharides and lipooligosaccharides is required to protect C. jejuni from excess oxygen in oxygen-rich environments by alleviating oxidative stress. Under aerobic conditions, C. jejuni undergoes substantial transcriptomic changes, particularly in the genes of carbon metabolisms involved in amino acid uptake, the tricarboxylic acid (TCA) cycle, and the Embden-Meyerhof-Parnas (EMP) pathway despite the inability of C. jejuni to grow aerobically. Moreover, the stimulation of carbon metabolism by aerobiosis increases the level of glucose-6-phosphate, the EMP pathway intermediate required for the synthesis of surface polysaccharides. The disruption of the TCA cycle eliminates aerobiosis-mediated stimulation of surface polysaccharide production and markedly compromises aerotolerance in C. jejuni. These results in this study provide novel insights into how an oxygen-sensitive microaerophilic pathogen survives in oxygen-rich environments by adapting its metabolism and physiology. IMPORTANCE Oxygen-sensitive foodborne pathogens must withstand oxygen toxicity in aerobic environments during transmission to humans. C. jejuni is a major cause of gastroenteritis, accounting for 400 million to 500 million infection cases worldwide per year. As an obligate microaerophile, C. jejuni is sensitive to air-level oxygen. However, it has not been fully explained how this oxygen-sensitive zoonotic pathogen survives in aerobic environments and is transmitted to humans. Here, we show that under aerobic conditions, C. jejuni boosts its carbon metabolism to produce a thick layer of bacterial capsules, which in turn act as a protective barrier conferring aerotolerance. The new findings in this study improve our understanding of how oxygen-sensitive C. jejuni can survive in aerobic environments.
Collapse
Affiliation(s)
- Jinshil Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Myungseo Park
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eunbyeol Ahn
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Qingqing Mao
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Benites C, Anampa D, Torres D, Avalos I, Rojas M, Conte C, Lázaro C. Prevalence, Tetracycline Resistance and Tet(O) Gene Identification in Pathogenic Campylobacter Strains Isolated from Chickens in Retail Markets of Lima, Peru. Antibiotics (Basel) 2022; 11:1580. [PMID: 36358237 PMCID: PMC9686565 DOI: 10.3390/antibiotics11111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background: In this study, we aimed to estimate the prevalence, tetracycline resistance and presence of Tet(O) in Campylobacter strains isolated from chicken in markets of Lima, Peru. Methods: A total of 250 chicken samples were obtained from traditional markets (skin, n = 120) and supermarkets (meat, n = 130). Samples were subjected to microbiological assays for identification of Campylobacter spp. according to ISO 10272-2017, and the isolates were then submitted to species identification by PCR. Phenotypic resistance to tetracyclines was assessed by the Kirby−Bauer test, and the presence of the Tet(O) gene was determined by PCR. Results: A significantly higher prevalence (p < 0.0001) of Campylobacter coli in skin samples from traditional markets (97.5%) than in meat samples from supermarkets (36.2%) was observed. On the other hand, Campylobacter jejuni was confirmed only in 3.1% of meat samples. All Campylobacter species isolated from skin and meat samples were phenotypically resistant to tetracyclines; however, the presence of the Tet(O) gene in C. coli was identified in 76.9% and 66.0% of skin and meat samples, no significant statistical difference (p = 0.1488) was found between these prevalence. All C. jejuni isolated from chicken meat samples from supermarkets were positive for Tet(O) gene. Conclusions: This study confirms the high prevalence of C. coli isolated from chicken sold in traditional markets and supermarkets in Lima, Peru, and in more than 70% of these strains, phenotypic resistance to tetracyclines could be linked with expression of the Tet(O) gene. It is necessary to evaluate other genes involved in resistance to tetracyclines and other groups of antibiotics in campylobacter strains isolated from chicken meat.
Collapse
Affiliation(s)
- Christian Benites
- Laboratorio de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Diego Anampa
- Laboratorio de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Domingo Torres
- Laboratorio de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Ivette Avalos
- Laboratorio de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Miguel Rojas
- Laboratorio de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| | - Carlos Conte
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - César Lázaro
- Laboratorio de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Apartado 03-5137, Peru
| |
Collapse
|
13
|
Nennig M, Clément A, Longueval E, Bernardi T, Ragimbeau C, Tresse O. Metaphenotypes associated with recurrent genomic lineages of Campylobacter jejuni responsible for human infections in Luxembourg. Front Microbiol 2022; 13:901192. [PMID: 36160185 PMCID: PMC9490421 DOI: 10.3389/fmicb.2022.901192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Although considered fragile, this microaerophilic bacterium is able to survive in various challenging environments, which subsequently constitutes multiple sources of transmission for human infection. To test the assumption of acquiring specific features for adaptation and survival, we established a workflow of phenotypic tests related to the survival and the persistence of recurrent and sporadic strains. A representative collection of 83 strains isolated over 13 years from human, mammal, poultry, and environmental sources in Luxembourg, representing different spreading patterns (endemic, epidemic, and sporadic), was screened for survival to oxidative stresses, for acclimating to aerobic conditions (AC), and for persistence on abiotic surfaces. Using the cgMLST Oxford typing scheme for WGS data, the collection was classified into genomic lineages corresponding to host-generalist strains (lineages A and D, CC ST-21), host-specific strains (lineage B, CC ST-257 and lineage C, CC ST-464) and sporadic strains. We established that when a strain survives concentrations beyond 0.25 mM superoxide stress, it is six times more likely to survive hyperoxide stress and that a highly adherent strain is 14 times more likely to develop a biofilm. Surprisingly, more than half of the strains could acclimate to AC but this capacity does not explain the difference between recurrent genomic lineages and sporadic strains and the survival to oxidative stresses, while recurrent strains have a significantly higher adhesion/biofilm formation capacity than sporadic ones. From this work, the genomic lineages with more stable genomes could be characterized by a specific combination of phenotypes, called metaphenotypes. From the functional genomic analyses, the presence of a potentially functional T6SS in the strains of lineage D might explain the propensity of these strains to be strong biofilm producers. Our findings support the hypothesis that phenotypical abilities contribute to the spatio-temporal adaptation and survival of stable genomic lineages. It suggests a selection of better-adapted and persistent strains in challenging stress environments, which could explain the prevalence of these lineages in human infections.
Collapse
Affiliation(s)
- Morgane Nennig
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
- UMR-1280 PhAN, INRAE, Nantes, France
| | - Arnaud Clément
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Emmanuelle Longueval
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Thierry Bernardi
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | | |
Collapse
|
14
|
Berrang M, Gamble G, Bowker B, Meinersmann R, Cox N, Knapp S. Cetylpyridinium chloride and peracetic acid to lessen Campylobacter, Escherichia coli, and total aerobic bacterial contamination on chicken liver. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Shagieva E, Demnerova K, Michova H. Waterborne Isolates of Campylobacter jejuni Are Able to Develop Aerotolerance, Survive Exposure to Low Temperature, and Interact With Acanthamoeba polyphaga. Front Microbiol 2021; 12:730858. [PMID: 34777280 PMCID: PMC8578730 DOI: 10.3389/fmicb.2021.730858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is regarded as the leading cause of bacterial gastroenteritis around the world. Even though it is generally considered to be a sensitive microaerobic pathogen, it is able to survive in the environment outside of the intestinal tract of the host. This study aimed to assess the impact of selected environmental parameters on the survival of 14 C. jejuni isolates of different origins, including 12 water isolates. The isolates were tested for their antibiotic resistance, their ability to survive at low temperature (7°C), develop aerotolerance, and to interact with the potential protozoan host Acanthamoeba polyphaga. The antibiotic susceptibility was determined by standard disk diffusion according to EUCAST. Out of the 14 isolates, 8 were resistant to ciprofloxacin (CIP) and 5 to tetracycline (TET), while only one isolate was resistant to erythromycin (ERY). Five isolates were resistant to two different antibiotic classes. Tetracycline resistance was only observed in isolates isolated from wastewater and a clinical sample. Further, the isolates were tested for their survival at 7°C under both aerobic and microaerobic conditions using standard culture methods. The results showed that under microaerobic conditions, all isolates maintained their cultivability for 4 weeks without a significant decrease in the numbers of bacteria and variation between the isolates. However, significant differences were observed under aerobic conditions (AC). The incubation led to a decrease in the number of cultivable cells, with complete loss of cultivability after 2 weeks (one water isolate), 3 weeks (7 isolates), or 4 weeks of incubation (6 isolates). Further, all isolates were studied for their ability to develop aerotolerance by repetitive subcultivation under microaerobic and subsequently AC. Surprisingly, all isolates were able to adapt and grow under AC. As the last step, 5 isolates were selected to evaluate a potential protective effect provided by A. polyphaga. The cocultivation of isolates with the amoeba resulted in the survival of about 40% of cells treated with an otherwise lethal dose of gentamicin. In summary, C. jejuni is able to adapt and survive in a potentially detrimental environment for a prolonged period of time, which emphasizes the role of the environmental transmission route in the spread of campylobacteriosis.
Collapse
Affiliation(s)
- Ekaterina Shagieva
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Katerina Demnerova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Hana Michova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
16
|
Guk JH, Song H, Yi S, An JU, Lee S, Kim WH, Cho S. Hyper-Aerotolerant Campylobacter coli From Swine May Pose a Potential Threat to Public Health Based on Its Quinolone Resistance, Virulence Potential, and Genetic Relatedness. Front Microbiol 2021; 12:703993. [PMID: 34381431 PMCID: PMC8352582 DOI: 10.3389/fmicb.2021.703993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/24/2021] [Indexed: 01/05/2023] Open
Abstract
Campylobacter, a major foodborne pathogen, is susceptible to oxygen. Recently, aerotolerant Campylobacter with enhanced tolerance to aerobic stress has become a major concern in food safety. However, the aerotolerance of Campylobacter coli from pigs has not been studied extensively. Here, we sought to investigate the prevalence of C. coli across multiple swine groups in farms, including weaning, growing, and fattening pigs in production stages and pregnant sows. Additionally, we analyzed C. coli aerotolerance, quinolone resistance, virulence potential, and multilocus sequence typing (MLST) genotypes. Finally, we compared the characteristics of C. coli according to the aerotolerance levels. In total, we obtained 124 (66.3%) C. coli isolates from 187 swine fecal samples across six swine farms. The pathogen was prevalent in weaning (45.5%), growing (68.3%), and fattening (75.4%) pigs, and pregnant sows (66.7%). Hyper-aerotolerant HAT C. coli (13.7% of 124 isolates) was present in all swine groups, with the highest proportion in the pregnant sows (27.3%). All HAT isolates possessed diverse virulence-related genes such as flaA, cadF, pldA, ceuE, and cdtA. All C. coli isolates were resistant to quinolones, and 12 (10%) presented high-level ciprofloxacin resistance (MIC ≥ 32 μg/mL). The proportion of C. coli isolates with a high-level ciprofloxacin resistance was the highest in HAT C. coli (18.8%). Furthermore, six MLST sequence types (STs) (ST827, ST830, ST854, ST1016, ST1068, and ST1096) of swine-derived C. coli were in common with human-derived C. coli (PubMLST). The proportion of C. coli belonging to such shared STs at each aerotolerance level was the highest in HAT C. coli (HAT vs. oxygen-sensitive; OR = 3.13). In conclusion, quinolone resistance of C. coli may be distributed throughout in all swine groups in farms. HAT C. coli is likely to remain in pig farms and re-infect other pigs in the farms. Furthermore, swine-derived HAT C. coli could be transmitted to humans easily through the food chain owing to its aerotolerance, and it could pose a threat to public health owing to its high-level ciprofloxacin resistance and virulence. This study highlights the need to develop management practices that prevent the transmission of swine-derived HAT C. coli to humans.
Collapse
Affiliation(s)
- Jae-Ho Guk
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Soomin Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Karki AB, Ballard K, Harper C, Sheaff RJ, Fakhr MK. Staphylococcus aureus enhances biofilm formation, aerotolerance, and survival of Campylobacter strains isolated from retail meats. Sci Rep 2021; 11:13837. [PMID: 34226590 PMCID: PMC8257638 DOI: 10.1038/s41598-021-91743-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
In retail meat products, Campylobacter jejuni, C. coli, and Staphylococcus aureus have been reported in high prevalence. The polymicrobial interaction between Campylobacter and other bacteria could enhance Campylobacter survival during the adverse conditions encountered during retail meat processing and storage. This study was designed to investigate the potential role of S. aureus from retail meats in enhancing the survival of Campylobacter exposed to low temperature, aerobic conditions, and biofilm formation. Results indicated that viable S. aureus cells and filter-sterilized cell-free media obtained from S. aureus prolonged the survival of Campylobacter at low temperature and during aerobic conditions. Biofilm formation of Campylobacter strains was significantly enhanced in the presence of viable S. aureus cells, but the results were inconclusive when extracts from cell-free media were used. In conclusion, the presence of S. aureus cells enhances survivability of Campylobacter strains in adverse conditions such as low temperature and aerobic conditions. Further investigations are warranted to understand the interaction between Campylobacter and S. aureus, and effective intervention strategies are needed to reduce the incidence of both foodborne pathogens in retail meat products.
Collapse
Affiliation(s)
- Anand B. Karki
- grid.267360.60000 0001 2160 264XDepartment of Biological Science, The University of Tulsa, Tulsa, OK USA
| | - Kaylee Ballard
- grid.267360.60000 0001 2160 264XDepartment of Biological Science, The University of Tulsa, Tulsa, OK USA
| | - Claudia Harper
- grid.267360.60000 0001 2160 264XDepartment of Biological Science, The University of Tulsa, Tulsa, OK USA
| | - Robert J. Sheaff
- grid.267360.60000 0001 2160 264XDepartment of Chemistry and Biochemistry, The University of Tulsa, Tulsa, OK USA
| | - Mohamed K. Fakhr
- grid.267360.60000 0001 2160 264XDepartment of Biological Science, The University of Tulsa, Tulsa, OK USA
| |
Collapse
|
18
|
Lazou TP, Gelasakis AI, Chaintoutis SC, Iossifidou EG, Dovas CI. Method-Dependent Implications in Foodborne Pathogen Quantification: The Case of Campylobacter coli Survival on Meat as Comparatively Assessed by Colony Count and Viability PCR. Front Microbiol 2021; 12:604933. [PMID: 33732219 PMCID: PMC7956984 DOI: 10.3389/fmicb.2021.604933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 11/28/2022] Open
Abstract
The aim of the present study was to address method-dependent implications during the quantification of viable Campylobacter coli cells on meat over time. Traditional colony counting on selective and non-selective culture media along with an optimized viability real-time PCR utilizing propidium monoazide-quantitative PCR (PMA-qPCR), spheroplast formation and an internal sample process control (ISPC), were comparatively evaluated for monitoring the survival of C. coli on fresh lamb meat during refrigeration storage under normal atmospheric conditions. On day zero of three independent experiments, lamb meat pieces were artificially inoculated with C. coli and then stored under refrigeration for up to 8 days. Three meat samples were tested on different days and the mean counts were determined per quantification method. An overall reduction of the viable C. coli on lamb meat was observed regardless of the applied quantification scheme, but the rate of reduction followed a method-dependent pattern, the highest being observed for colony counting on modified charcoal cefoperazone deoxycholate agar (mCCDA). Univariate ANOVA indicated that the mean counts of viable C. coli using PMA-qPCR were significantly higher compared to Columbia blood agar (CBA) plating (0.32 log10 cell equivalents, p = 0.015) and significantly lower when mCCDA was compared to CBA plating (0.88 log10 CFU, p < 0.001), indicating that selective culture on mCCDA largely underestimated the number of culturable cells during the course of meat storage. PMA-qPCR outperformed the classical colony counting in terms of quantifying both the culturable and viable but non-culturable (VBNC) C. coli cells, which were generated over time on meat and are potentially infectious and equally important from a public health perspective as their culturable counterparts.
Collapse
Affiliation(s)
- Thomai P Lazou
- Laboratory of Hygiene of Foods of Animal Origin - Veterinary Public Health, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios I Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni G Iossifidou
- Laboratory of Hygiene of Foods of Animal Origin - Veterinary Public Health, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
Kwon BR, Wei B, Cha SY, Shang K, Zhang JF, Kang M, Jang HK. Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals (Basel) 2021; 11:246. [PMID: 33498355 PMCID: PMC7909429 DOI: 10.3390/ani11020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the prevalence, antimicrobial resistance, and genetic diversity of Campylobacter isolates that were obtained from whole chicken production stages in Korea. A total of 1348 samples were collected from 10 production lines. The prevalence of Campylobacter in breeder farm, broiler farm, slaughterhouse, and retail meat products was 50.0%, 3.3%, 13.4%, and 68.4%, respectively, and Campylobacter was not detected at the hatchery stage. Resistance to quinolones/fluoroquinolones was the most prevalent at all stages. Among the multidrug-resistant isolates, 16 isolates (19.8%) from breeder farm were resistant to both azithromycin and ciprofloxacin. A total of 182 isolates were subdivided into 82 pulsed-field gel electrophoresis (PFGE) genotypes with 100% similarity. Diverse genotypes were presented with discontinuous patterns along the whole production chain. Thirty percent of Campylobacter-free flocks became positive after slaughtering. An identical genotype was simultaneously detected from both breeder farm and retail meat, even from different production lines. This study reveals that antimicrobial-resistant Campylobacter contamination can occur at all stages of the chicken supply chain. In particular, the breeder farm and slaughterhouse should be the main control points, as they are the potential stages at which antimicrobial-resistant Campylobacter could spread to retail meat products by horizontal transmission.
Collapse
Affiliation(s)
- Bo-Ram Kwon
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Se-Yeoun Cha
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Jun-Feng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| | - Hyung-Kwan Jang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| |
Collapse
|
20
|
Wangroongsarb P, Cheunban N, Jittaprasatsin C, Kamthalang T, Saipradit N, Chaichana P, Pulsrikarn C, Parnmen S, Sripichai O. Prevalence and antimicrobial susceptibility of Campylobacter isolated from retail chickens in Thailand. Int J Food Microbiol 2020; 339:109017. [PMID: 33338980 DOI: 10.1016/j.ijfoodmicro.2020.109017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Campylobacter is an important foodborne pathogen causing bacterial gastroenteritis worldwide; however, there has been a lack of information over the past decade on its occurrence, antibiotic susceptibility and genetic diversity in Thailand. Poultry meat is considered as a reservoir for transmission of Campylobacter to humans. This study determines the prevalence and antimicrobial resistance patterns of Campylobacter spp. on chicken samples purchased from 50 local wet markets and supermarkets in central Thailand. Of the 296 samples, 99 (33.5%) were contaminated with C. jejuni, 54 (18.2%) were C. coli and 15 (5.1%) were contaminated with both species. Antibiotic resistance rate is higher among C. coli isolates; 100%, 76.8%, 37.7%, 36.2% and 13.0% were resistant to quinolones, cyclines, macrolides, clindamycin and gentamicin, respectively. Most of the C. jejuni isolates were resistant to quinolones (79.8%) and cyclines (38.6%) whereas resistance to macrolides, clindamycin and gentamicin was found to be 1.8%. Multi-drug resistance (i.e. to three or more unrelated antimicrobials) was detected in 37.7% of C. coli and 1.8% of C. jejuni isolates. This study has revealed high contamination rates and alarming levels of antimicrobial resistance in Campylobacter spp. isolated from retail chicken samples in Thailand, suggesting the necessity of implementing interventions to reduce its prevalence from farm to table in the country.
Collapse
Affiliation(s)
- Piyada Wangroongsarb
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Nattapong Cheunban
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Chutima Jittaprasatsin
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Thanitchai Kamthalang
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Nonglak Saipradit
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Pattharaporn Chaichana
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Chaiwat Pulsrikarn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sittiporn Parnmen
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Orapan Sripichai
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand.
| |
Collapse
|
21
|
Mouftah SF, Cobo-Díaz JF, Álvarez-Ordóñez A, Mousa A, Calland JK, Pascoe B, Sheppard SK, Elhadidy M. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiol 2020; 95:103706. [PMID: 33397624 DOI: 10.1016/j.fm.2020.103706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
One of the emerging conundrums of Campylobacter food-borne illness is the bacterial ability to survive stressful environmental conditions. We evaluated the heterogeneity among 90 C. jejuni and 21 C. coli isolates from different sources in Egypt with respect to biofilm formation capabilities (under microaerobic and aerobic atmosphere) and resistance to a range of stressors encountered along the food chain (aerobic stress, refrigeration, freeze-thaw, heat, peracetic acid, and osmotic stress). High prevalence (63%) of hyper-aerotolerant (HAT) isolates was observed, exhibiting also a significantly high tolerance to heat, osmotic stress, refrigeration, and freeze-thaw stress, coupled with high biofilm formation ability which was clearly enhanced under aerobic conditions, suggesting a potential link between stress adaptation and biofilm formation. Most HAT multi-stress resistant and strong biofilm producing C. jejuni isolates belonged to host generalist clonal complexes (ST-21, ST-45, ST-48 and ST-206). These findings highlight the potential role of oxidative stress response systems in providing cross-protection (resistance to other multiple stress conditions) and enhancing biofilm formation in Campylobacter and suggest that selective pressures encountered in hostile environments have shaped the epidemiology of C. jejuni in Egypt by selecting the transmission of highly adapted isolates, thus promoting the colonization of multiple host species by important disease-causing lineages.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Ahmed Mousa
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Jessica K Calland
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand
| | - Samuel K Sheppard
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand; Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
22
|
Chen H, Dai Y, Chen J, Zhang Y, Zhan L, Mei L, Wang H. Epidemiological and Whole Genomic Sequencing Analysis of a Campylobacter jejuni Outbreak in Zhejiang Province, China, May 2019. Foodborne Pathog Dis 2020; 17:775-781. [DOI: 10.1089/fpd.2020.2794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Honghu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yaxin Dai
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, China
| | - Jiancai Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Li Zhan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lingling Mei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hongling Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, China
| |
Collapse
|
23
|
Yushina Y, Bataeva D, Makhova A, Zayko E. Prevalence of Campylobacter spp. in a poultry and pork processing plants. POTRAVINARSTVO 2020. [DOI: 10.5219/1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The study aimed to investigate the prevalence of Campylobacter spp. in different stages of poultry and pork processing in the Central region of Russia. A total of 47 Campylobacter isolates were obtained from 107 samples from poultry processing plants (40.2%): 87.2% were identified as Campylobacter jejuni, whereas 12.8% were identified as Campylobacter coli. The prevalence of Campylobacter was significantly (p <0.05) higher after evisceration in the poultry processing plant. Campylobacter spp.was detected in 62.7% of the equipment and environmental samples. From positive samples of Campylobacter spp., 84.3% of Campylobacter jejuni and 15.7% Campylobacter coli were observed. A total of nine Campylobacter isolates were obtained from 116 samples from pork processing plants (7.8%): 33.3% of them were identified as Campylobacter jejuni whereas 66.7% were identified as Campylobacter coli. Splitting and evisceration were also critical in Campylobacter contamination. Almost all pork carcasses were Campylobacter positive, and all of them were identified as Campylobacter coli. The prevalence of positive Campylobacter samples in poultry processing plants was significantly (p < 0.05) higher than in pork processing plants.
Collapse
|
24
|
Peruzy MF, Proroga YTR, Capuano F, Corrado F, Santonicola S, De Medici D, Delibato E, Murru N. Detection and quantification of Campylobacter in foods: New analytic approaches to detect and quantify Campylobacter spp. in food samples. Ital J Food Saf 2020; 9:8591. [PMID: 32944567 PMCID: PMC7477723 DOI: 10.4081/ijfs.2020.8591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to develop rapid qualitative and quantitative methods based on the use of Real-Time PCR and Droplet Digital PCR (ddPCR), in order to have reliable techniques to detect and quantify Campylobacter spp. in food samples. The gene 16S-rRNA was used as specific target for Campylobacter spp. Real- Time PCR evaluation assay and a not competitive internal control was ushered in it. To investigate the selectivity of the method, 26 Campylobacter strains and 40 non-Campylobacter strains were tested and in order to verify the application of Real- Time PCR method, 5 pork meat samples were experimentally inoculated with a Campylobacter jejuni strain. Subsequently, dilutions with a bacterial load of Campylobacter jejuni within 10-106 CFU/mL were chosen for the optimization of the ddPCR assay. Lastly, a total of 54 naturally contaminated foods samples were analyzed through molecular (Real-Time PCR and ddPCR) and traditional methods. The Real-Time PCR protocol demonstrated to amplify only the Campylobacter spp. strains and when Campylobacter jejuni was experimentally inoculated in meat samples the pathogen was always detected. The ddPCRs assay allowed to quantify a level of contamination of 10 CFU/mL, but it was unable to quantify levels of 105 - 106 CFU/mL. Lastly, Campylobacter spp. was never detected in the 54 samples tested. In conclusion, the novel analytic approach proposed, based on an initial screening of the samples with Real-Time PCR and then on quantification of Campylobacter spp. with a ddPCR on those positive, represents a quick monitoring tool and, if used correctly, it would allow the implementation of food safety.
Collapse
Affiliation(s)
- Maria Francesca Peruzy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Napoli
| | | | - Federico Capuano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici
| | - Federica Corrado
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici
| | - Serena Santonicola
- Department of Medicine and Health Science Vincenzo Tiberio, University of Molise, Campobasso
| | - Dario De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Napoli
| |
Collapse
|
25
|
Sylte MJ, Shippy DC, Bearson BL, Bearson SMD. Detection of Campylobacter jejuni liver dissemination in experimentally colonized turkey poults. Poult Sci 2020; 99:4028-4033. [PMID: 32731990 PMCID: PMC7597910 DOI: 10.1016/j.psj.2020.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/03/2022] Open
Abstract
Consumption of contaminated poultry products, including chicken livers, is the main source of human campylobacteriosis and approximately 90% of human cases are caused by Campylobacter jejuni subsp. jejuni (C. jejuni). Recent culinary trends that favor undercooked chicken livers may be responsible for outbreaks. Turkey is an emerging human protein source, and poultry livers are commonly prepared in popular cuisine such as pâté. The mechanism of how Campylobacter disseminates to poultry liver tissue is unknown. We have previously demonstrated that certain strains of C. jejuni persistently colonize turkeys with the highest density in the ceca. Whether C. jejuni disseminates to the liver of turkeys following intestinal colonization is unknown. In this study, 45 D of hatch turkey poults were co-housed for 30 D. Five poults were euthanized to screen for Campylobacter colonization, and were free of detectable Campylobacter. The remaining 40 poults were randomly split into 2 rooms, with 20 poults per room. At 35 D of age, poults were inoculated by oral gavage with 1 × 106 cfu of C. jejuni isolate NCTC 11168 or mock-inoculated with sterile medium. Ten poults from each room were euthanized at 7 and 14 D post-inoculation (dpi), and cecal contents and livers were cultured and/or enriched for Campylobacter. Livers were harvested aseptically. The ceca of C. jejuni-inoculated poults were highly colonized at 7 and 14 dpi with approximately 108 cfu/mL of cecal contents. At 7 and 14 dpi, 3 and 5 of 10 liver samples were positive for C. jejuni culture (8.6 × 103 cfu/g of liver ± 4.43 × 103 and 5.10 × 103 cfu/g of liver ± 1.74 × 103), respectively. At 14 dpi, liver samples were cultured by enrichment, and 6 of 10 were positive for Campylobacter. Some liver samples may be below the limit of detection for direct plate culturing. These data determined that turkey liver is a potential reservoir of C. jejuni following intestinal colonization, and identified a potential food safety consideration when turkey liver is prepared for human or pet food consumption.
Collapse
Affiliation(s)
- Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center (NADC), U.S. Department of Agriculture (USDA), Agricultural Research Services (ARS), Ames, IA, USA.
| | - Daniel C Shippy
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center (NADC), U.S. Department of Agriculture (USDA), Agricultural Research Services (ARS), Ames, IA, USA
| | - Bradley L Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, ARS, USDA, Ames, IA, USA
| | - Shawn M D Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center (NADC), U.S. Department of Agriculture (USDA), Agricultural Research Services (ARS), Ames, IA, USA
| |
Collapse
|
26
|
Song H, Kim J, Guk JH, An JU, Lee S, Cho S. Complete genome sequence and comparative genomic analysis of hyper-aerotolerant Campylobacter lari strain SCHS02 isolated from duck for its potential pathogenicity. Microb Pathog 2020; 142:104110. [PMID: 32130978 DOI: 10.1016/j.micpath.2020.104110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 11/20/2022]
Abstract
Campylobacter lari strain SCHS02, a novel hyper-aerotolerant strain that survives under aerobic conditions, was isolated from retail duck meat. The genome is a single chromosome of 1,520,838 base pairs, with a mean GC content of 29.7%. It harbors 1546 protein-coding sequences and 45 tRNA and 9 rRNA genes. Genes associated with the oxidative stress response, including perR, bcp, ahpC, and sodB, were identified in the genome. Furthermore, 68 virulence-related genes were identified and sorted into 9 classes and 14 subclasses. The virulence gene profile of SCHS02 was similar to those of two human clinical C. lari isolates. Comparative genomic analysis of strain SCHS02 and 18 C. lari strains retrieved from a public database revealed the core and accessory gene profiles of C. lari strains, as well as putative core gene involved in halotolerance. Phylogenetic analysis revealed that strain SCHS02 is genetically related to isolates from bird samples and human clinical isolates, rather than to isolates from other environmental sources. These findings reveal essential genomic information about the newly identified hyper-aerotolerant C. lari strain isolated from a duck source, providing a basis for future studies of the strain considering its potential threat to public health and further research of the pathogenicity of C. lari.
Collapse
Affiliation(s)
- Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Junhyung Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Jae-Ho Guk
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Soomin Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
27
|
Golz JC, Epping L, Knüver MT, Borowiak M, Hartkopf F, Deneke C, Malorny B, Semmler T, Stingl K. Whole genome sequencing reveals extended natural transformation in Campylobacter impacting diagnostics and the pathogens adaptive potential. Sci Rep 2020; 10:3686. [PMID: 32111893 PMCID: PMC7048796 DOI: 10.1038/s41598-020-60320-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
Campylobacter is the major bacterial agent of human gastroenteritis worldwide and represents a crucial global public health burden. Species differentiation of C. jejuni and C. coli and phylogenetic analysis is challenged by inter-species horizontal gene transfer. Routine real-time PCR on more than 4000 C. jejuni and C. coli field strains identified isolates with ambiguous PCR results for species differentiation, in particular, from the isolation source eggs. K-mer analysis of whole genome sequencing data indicated the presence of C. coli hybrid strains with huge amounts of C. jejuni introgression. Recombination events were distributed over the whole chromosome. MLST typing was impaired, since C. jejuni sequences were also found in six of the seven housekeeping genes. cgMLST suggested that the strains were phylogenetically unrelated. Intriguingly, the strains shared a stress response set of C. jejuni variant genes, with proposed roles in oxidative, osmotic and general stress defence, chromosome maintenance and repair, membrane transport, cell wall and capsular biosynthesis and chemotaxis. The results have practical impact on routine typing and on the understanding of the functional adaption to harsh environments, enabling successful spreading and persistence of Campylobacter.
Collapse
Affiliation(s)
- Julia C Golz
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Lennard Epping
- Robert Koch Institute, Microbial Genomics, Berlin, Germany
| | - Marie-Theres Knüver
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Maria Borowiak
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | - Felix Hartkopf
- Robert Koch Institute, Microbial Genomics, Berlin, Germany
| | - Carlus Deneke
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | - Burkhard Malorny
- German Federal Institute for Risk Assessment, Department of Biological Safety, Study Centre for Genome Sequencing and Analysis, Berlin, Germany
| | | | - Kerstin Stingl
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany.
| |
Collapse
|
28
|
Hyper-Aerotolerant Campylobacter coli from Duck Sources and Its Potential Threat to Public Health: Virulence, Antimicrobial Resistance, and Genetic Relatedness. Microorganisms 2019; 7:microorganisms7110579. [PMID: 31752343 PMCID: PMC6920863 DOI: 10.3390/microorganisms7110579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023] Open
Abstract
Campylobacter, a common foodborne human pathogen, is considered sensitive to oxygen. Recently, aerotolerant (AT) Campylobacter jejuni with the ability to survive under aerobic stress has been reported. Here, we investigated the prevalence of hyper-aerotolerant (HAT) Campylobacter coli from duck sources (118 carcasses and meat) and its characteristics to assess potential impacts on public health. Half of 56 C. coli isolates were HAT and most harbored various virulence genes including flaA, cadF, cdtA, ceuB, and wlaN. Moreover, 98.2% of C. coli isolates showed resistance to quinolones, including ciprofloxacin (CIP), and nine (16.1%) showed high-level resistance to ciprofloxacin (Minimum Inhibitory Concentration, MIC ≥ 32 μg/mL) and most of these were HAT. Based on genetic relatedness between C. coli from duck sources and those from human sources (PubMLST and NCBI), HAT isolates sharing the same MLST sequence types were significantly more prevalent than those not sharing the same sequence types as those from human sources. Therefore, HAT C. coli is prevalent in duck sources, and is most likely transmitted to humans through the food chain given its aerotolerance. This being so, it might pose a threat to public health given its virulence and antimicrobial resistance (AMR). This study will assist in improving control strategies to reduce farm-to-table HAT C. coli transmission to humans.
Collapse
|
29
|
Vetchapitak T, Misawa N. Current Status of Campylobacter Food Poisoning in Japan. Food Saf (Tokyo) 2019; 7:61-73. [PMID: 31998589 PMCID: PMC6977775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 03/29/2024] Open
Abstract
According to the annual food poisoning statistics compiled by the Ministry of Health, Labour and Welfare (MHLW) in Japan, Campylobacter replaced Salmonella and Vibrio parahaemolyticus as the leading bacterium responsible for food poisoning in 2003. Although in 2006 the number of cases of Campylobacter food poisoning was 3,439 on the basis of the MHLW statistics, it was estimated to be 1,545,363 on the basis of active surveillance, suggesting that passive surveillance yields an incidence about 450 times lower than that revealed by active surveillance. Epidemiological investigations of Campylobacter food poisoning in Japan have shown that chicken meat and its products are the most important sources of infection, as is the case in other industrialized nations. Over the last two decades, the consumption of fresh raw chicken meat and liver has been increasing in Japan. Although the MHLW recommends that chicken meat should only be eaten after thorough cooking, it is likely to account for much of the increased incidence of human campylobacteriosis. In response to this situation, the Expert Committee on Microorganisms/Viruses, Food Safety Commission of Japan, Cabinet Office, Government of Japan (FSCJ) has revised the previous risk profile of C. jejuni/coli in chicken meat by adding new findings for 2018. Moreover, the MHLW revised the Poultry Slaughtering Business Control and Poultry Meat Inspection Act in 2014 aiming at stepwise introduction of the Hazard Analysis Critical Control Point (HACCP) system into poultry processing plants. Subsequently, the Japanese government amended the Food Sanitation Act in 2018, requiring all food business operators to implement hygiene control based on HACCP principles as a general rule. This paper reviews the current status of Campylobacter food poisoning due to consumption of chicken meat in Japan and extracts the issues underlying each step of the food supply chain in order to examine the implementation of effective measures for risk management.
Collapse
Affiliation(s)
- Torrung Vetchapitak
- Graduate School of Medicine and Veterinary Medicine,
University of Miyazaki, 5200 Kihara-kiyotakecho, Miyazaki
889-1692, Japan
- Laboratory of Veterinary Public Health, Department of
Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1
Gakuenkibanadai-nishi, Miyazaki 889-2192,
Japan
| | - Naoaki Misawa
- Graduate School of Medicine and Veterinary Medicine,
University of Miyazaki, 5200 Kihara-kiyotakecho, Miyazaki
889-1692, Japan
- Laboratory of Veterinary Public Health, Department of
Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1
Gakuenkibanadai-nishi, Miyazaki 889-2192,
Japan
- Center for Animal Disease Control, University of
Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192,
Japan
| |
Collapse
|
30
|
Oh E, Andrews KJ, McMullen LM, Jeon B. Tolerance to stress conditions associated with food safety in Campylobacter jejuni strains isolated from retail raw chicken. Sci Rep 2019; 9:11915. [PMID: 31417115 PMCID: PMC6695378 DOI: 10.1038/s41598-019-48373-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Campylobacter jejuni is a microaerophilic foodborne pathogen that is sensitive to stress conditions. However, it is not yet understood how this stress-sensitive pathogen may cause a significant number of cases of human gastroenteritis worldwide. In this study, we examined stress tolerance in 70 C. jejuni strains isolated from retail chicken under several stress conditions related to food safety. Compared to oxygen-sensitive (OS) strains of C. jejuni, C. jejuni strains with increased aerotolerance, such as hyper-aerotolerant (HAT) and aerotolerant (AT) strains, were more tolerant to peracetic acid, refrigeration and freeze-thaw stresses. However, the levels of thermotolerance and hyper-osmotolerance were not associated with the aerotolerance level of C. jejuni. The HAT and AT strains of C. jejuni exhibited significantly increased activities of catalase and superoxide dismutase (SOD), compared to the OS strains. Consistently, the HAT and AT strains were highly tolerant to oxidants, such as hydrogen peroxide, cumene hydroperoxide and menadione, compared to the OS strains. The AT and HAT strains that were tolerant to stresses, particularly peracetic acid and refrigeration, predominantly belonged to multilocus sequence typing (MLST) clonal complex (CC)-21. This study shows that oxidative stress resistance plays a role in determining the differential level of aerotolerance in C. jejuni and that AT and HAT strains of C. jejuni are more tolerant to oxidants and low temperatures than OS strains.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Katelyn J Andrews
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Lynn M McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
- Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
31
|
Abstract
According to the annual food poisoning statistics compiled by the Ministry of
Health, Labour and Welfare (MHLW) in Japan, Campylobacter
replaced Salmonella and Vibrio
parahaemolyticus as the leading bacterium responsible for food
poisoning in 2003. Although in 2006 the number of cases of
Campylobacter food poisoning was 3,439 on the basis of the
MHLW statistics, it was estimated to be 1,545,363 on the basis of active
surveillance, suggesting that passive surveillance yields an incidence about 450
times lower than that revealed by active surveillance. Epidemiological
investigations of Campylobacter food poisoning in Japan have
shown that chicken meat and its products are the most important sources of
infection, as is the case in other industrialized nations. Over the last two
decades, the consumption of fresh raw chicken meat and liver has been increasing
in Japan. Although the MHLW recommends that chicken meat should only be eaten
after thorough cooking, it is likely to account for much of the increased
incidence of human campylobacteriosis. In response to this situation, the Expert
Committee on Microorganisms/Viruses, Food Safety Commission of Japan, Cabinet
Office, Government of Japan (FSCJ) has revised the previous risk profile of
C. jejuni/coli in chicken meat by adding
new findings for 2018. Moreover, the MHLW revised the Poultry Slaughtering
Business Control and Poultry Meat Inspection Act in 2014 aiming at stepwise
introduction of the Hazard Analysis Critical Control Point (HACCP) system into
poultry processing plants. Subsequently, the Japanese government amended the
Food Sanitation Act in 2018, requiring all food business operators to implement
hygiene control based on HACCP principles as a general rule. This paper reviews
the current status of Campylobacter food poisoning due to
consumption of chicken meat in Japan and extracts the issues underlying each
step of the food supply chain in order to examine the implementation of
effective measures for risk management.
Collapse
|
32
|
Kiatsomphob S, Taniguchi T, Tarigan E, Latt KM, Jeon B, Misawa N. Aerotolerance and multilocus sequence typing among Campylobacter jejuni strains isolated from humans, broiler chickens, and cattle in Miyazaki Prefecture, Japan. J Vet Med Sci 2019; 81:1144-1151. [PMID: 31270309 PMCID: PMC6715926 DOI: 10.1292/jvms.19-0228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is one of the leading causes of human gastroenteritis in Japan. As chickens and cattle are common reservoirs for C. jejuni, this microaerophilic, stress-sensitive bacterium can overcome and survive various stress conditions during zoonotic transmission, particularly foodborne, to humans. How C. jejuni overcomes stress conditions is, however, unclear. In the present study, 70 C. jejuni strains isolated from various sources (26 human, 20 broilers, and 24 cattle isolates) in Miyazaki, Japan, from 2010 to 2012, were subjected to multilocus sequence typing (MLST) and aerotolerance testing (aerobic shaking at 200 rpm). The results demonstrated that C. jejuni strains from Miyazaki belonged to 12 clonal complexes (CCs) and 43 sequence types (STs). CC-21 and CC-460 were mainly detected in human clinical strains. Most tested strains were aerotolerant, and only one (1.4%) was deemed sensitive to aerobic stress. Approximately 40% strains survived the 24-hr vigorous aerobic shaking at 200 rpm, and these hyper-aerotolerant strains were more prevalent in broiler and cattle isolates than in human isolates. Phylogenetic analysis divided the strains into five clusters, each showing a different pattern of host association. Thus, we have demonstrated for the first time that C. jejuni strains with increased tolerance to aerobic stress are highly prevalent in broilers and cattle in Miyazaki, Japan, and that certain clonal populations are frequently implicated in human infection in this area.
Collapse
Affiliation(s)
- Savek Kiatsomphob
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-kiyotakecho, Miyazaki 889-1692, Japan.,Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takako Taniguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Elpita Tarigan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Khin Maung Latt
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Naoaki Misawa
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
33
|
Suarez A, Parsons C, Parsons E, Gowe I, Vickery S. Diarrheal illness and prosthetic joint infection caused by Campylobacter coli following consumption of undercooked chicken wings. IDCases 2019; 18:e00644. [PMID: 31754600 PMCID: PMC6854087 DOI: 10.1016/j.idcr.2019.e00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Campylobacter species are common causes of diarrheal illness following consumption of contaminated food or unpasteurized dairy products, but subsequent dissemination and joint space infections are rare. We describe a patient who consumed undercooked chicken wings, with subsequent development of a febrile gastrointestinal illness marked by copious, watery stool output. This was followed by acute onset of pain and inability to bear weight on his right hip and leg where he had undergone prior arthroplasty. Synovial fluid cultures revealed Campylobacter coli, identified utilizing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The patient made a full recovery following hip joint space debridement with prosthesis retention, coupled with sequential intravenous and oral ciprofloxacin therapy. This case highlights both the potential for prosthetic joint infection with Campylobacter coli following diarrheal illness, as well as challenges in reducing Campylobacter contamination within commercially distributed chicken wings.
Collapse
|