1
|
Chen T, Uzunovic H, Brul S, Hugenholtz J. Developing Bacillus subtilis as cell factory for the production of the natural biocontrol compound pulcherrimin. BIORESOURCE TECHNOLOGY 2025; 427:132433. [PMID: 40122349 DOI: 10.1016/j.biortech.2025.132433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Pulcherrimin, a natural metabolite produced by Bacillus subtilis, demonstrates a range of biological activities, including its potential use as a natural antimicrobial, antioxidant, or coloring agent. PS832 was selected as the host cell from four B. subtilis strains. Transcriptome data revealed that the leucine pathway has minimal impact on pulcherrimin titer, whereas the enzymes encoded by the yvmC-cypX operon are essential for achieving high pulcherrimin production. Alleviating transcriptional repression of the yvmC-cypX operon led to an increase in pulcherrimin titer representing a 9.5-fold enhancement to 487 mg/l. The mutant BSP17 showed 65 % inhibition rate on a phytopathogen, revealing its potential as a biocontrol agent. Furthermore, optimizing iron concentration in the medium resulted in pulcherrimin titers of 610 mg/l in shake flasks and 811 mg/l in a 1.5-l bioreactor. It is the highest reported titer and sets the stage for further metabolic engineering to achieve industrial-scale production of pulcherrimin.
Collapse
Affiliation(s)
- Taichi Chen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Haris Uzunovic
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Jeroen Hugenholtz
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; NoPalm Ingredients BV, Nieuwe Kanaal 7a, 6709 PA Wageningen, the Netherlands.
| |
Collapse
|
2
|
Yang W, Ma T, Liang D, Zhang C. Involvement of the SIX10 Gene in the Pathogenicity of Fusarium oxysporum Formae Speciales in Strawberries. Int J Mol Sci 2025; 26:1123. [PMID: 39940888 PMCID: PMC11817806 DOI: 10.3390/ijms26031123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Strawberries are planted globally as an important crop. Fusarium oxysporum f. sp. fragariae (Fof), a haploid mitosporic, pathogenic fungus with obvious host specificity, is responsible for an economically devastating soil-borne disease seriously threatening strawberry. Fusarium oxysporum is distributed in soils worldwide and causes vascular wilt and root rot disease in over 100 plant species. However, the formae speciales of F. oxysporum commonly have a very narrow host range, often restricted to a single host plant species. We isolated and identified pathogenic F. oxysporum from diseased strawberry samples collected from different provinces in China. Further analysis showed that among the 55 F. oxysporum isolates, only 70.91% belonged to Fof, and the remaining 29.09% were named Fo. The mycelial growth of Fof was faster than that of Fo at 20, 30, and 35 °C. The sporulation ability of Fof was weaker than that of Fo, and Fof presented a significantly higher germination rate under high temperatures. Fof and Fo from strawberry were not pathogenic to tomato or cucumber plants, and Fof showed significantly higher pathogenicity on strawberry than Fo. To explore the pathogenic mechanism of Fof, we knocked out SIX10 in Fof. The mycelial growth rate of ΔFofSIX10 was significantly slower than that of the wild type, but there were no significant differences in spore production. The pathogenicity of ΔFofSIX10 to strawberry was significantly weakened, showing decreased severity of symptoms, indicated by root and crown rot, and wilt. Our research provides a basis for understanding the interaction between F. oxysporum and the host strawberry and the occurrence and management of Fusarium disease on strawberry.
Collapse
Affiliation(s)
| | - Tianling Ma
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; (W.Y.); (D.L.)
| | | | - Chuanqing Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; (W.Y.); (D.L.)
| |
Collapse
|
3
|
Šimkovicová M, Kramer G, Rep M, Takken FLW. Tomato R-gene-mediated resistance against Fusarium wilt originates in roots and extends to shoots via xylem to limit pathogen colonization. FRONTIERS IN PLANT SCIENCE 2024; 15:1384431. [PMID: 38751834 PMCID: PMC11094230 DOI: 10.3389/fpls.2024.1384431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Vascular wilt disease, caused by the soil-borne fungus Fusarium oxysporum (Fo), poses a threat to many crop species. Four different tomato resistance (R) genes (I-1, I-2, I-3, and I-7) have been identified to confer protection against Fo f.sp. lycopersici (Fol). These I genes are root-expressed and mount an immune response upon perception of the invading fungus. Despite immune activation, Fol is still able to colonize the xylem vessels of resistant tomato lines. Yet, the fungus remains localized in the vessels and does not colonize adjacent tissues or cause disease. The molecular mechanism constraining Fol in the vascular system of the stem remains unclear. We here demonstrate that an I-2-resistant rootstock protects a susceptible scion from Fusarium wilt, notwithstanding fungal colonization of the susceptible scion. Proteomic analyses revealed the presence of fungal effectors in the xylem sap of infected plants, showing that the lack of fungal pathogenicity is not due to its inability to express its virulence genes. To identify mobile root-derived proteins, potentially involved in controlling fungal proliferation, comparative xylem sap proteomics was performed. We identified distinct pathogenesis-related (PR) protein profiles in xylem sap from Fol-inoculated I-1, I-2, I-3, and I-7 resistant lines. Despite structural diversity, all four immune receptors trigger the accumulation of a common set of four PR proteins: PR-5x, PR-P2, and two glucan endo-1,3-β-D-glucosidases. This research provides insights into Fusarium resistance mechanisms and identifies a core set of proteins whose abundance correlates with defense against Fusarium wilt.
Collapse
Affiliation(s)
- Margarita Šimkovicová
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Zhang W, Planas-Marquès M, Mazier M, Šimkovicová M, Rocafort M, Mantz M, Huesgen PF, Takken FLW, Stintzi A, Schaller A, Coll NS, Valls M. The tomato P69 subtilase family is involved in resistance to bacterial wilt. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:388-404. [PMID: 38150324 DOI: 10.1111/tpj.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.
Collapse
Affiliation(s)
- Weiqi Zhang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Marc Planas-Marquès
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Margarita Šimkovicová
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mercedes Rocafort
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Frank L W Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Christian N, Perlin MH. Plant-endophyte communication: Scaling from molecular mechanisms to ecological outcomes. Mycologia 2024; 116:227-250. [PMID: 38380970 DOI: 10.1080/00275514.2023.2299658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/22/2023] [Indexed: 02/22/2024]
Abstract
Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function.
Collapse
Affiliation(s)
- Natalie Christian
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Michael H Perlin
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
6
|
Pal J, Sharma SK, Sharma A. Disease suppression, growth promotion and colonization attributes of resident endophytic bacteria against white root rot (Dematophora necatrix Hartig) of apple. Antonie Van Leeuwenhoek 2024; 117:15. [PMID: 38170259 DOI: 10.1007/s10482-023-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
The inherent potential of apple plants was investigated to explore bacterial endophytes and their role in suppressing Dematophora necatrix, the causative pathogen of white root rot disease. Resultantly 34 endophytic bacteria isolated from healthy apple plants, and subsequently 6 most efficient isolates viz., Bacillus megaterium strain EA3, Enterobacter sp. strain EA7, Bacillus megaterium strain EK2, Stenotrophomonas maltophilia strain EK6, Acinetobacter nosocomialis strain ES2 and Pseudomonas aeruginosa strain ES8 depicting anti-pathogen interactions through preliminary screening were assessed further under in vitro, glasshouse and field conditions against white root rot pathogen/disease. Maximum mycelial growth inhibition (80.37%) was obtained with S. maltophilia strain EK6 encouraging for its seed treatment and soil application thereby providing significant effective control (87.91%) of white root rot under glasshouse conditions to other five bacterial endophytes evaluated simultaneously, followed by field efficacy of 83.70%. In addition, it has significantly enhanced the growth parameters of apple trees under both glasshouse and field conditions. The inoculated healthy plants were assessed for endophytic colonization which revealed maximum endosphere colonialism by S. maltophilia strain EK6. Additionally, confocal microscopic images of transverse sections of root cells colonized by bacterial endophytes as compared to untreated control implied their persistence and establishment in endosphere of apple seedlings. The study provides the first report on interaction between apple associated bacterial root endophytes and D. necatrix. The obtained endophytic strains could be employed as alternative for mitigating white root rot disease in future.
Collapse
Affiliation(s)
- Joginder Pal
- Department of Plant Pathology, CSK Himachal Pradesh Krishi Vishvavidyalaya Palampur, Palampur, Himachal Pradesh, 176062, India.
| | - Satish K Sharma
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Anju Sharma
- Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| |
Collapse
|
7
|
Debbarma J, Saikia B, Singha DL, Das D, Keot AK, Maharana J, Velmurugan N, Arunkumar KP, Reddy PS, Chikkaputtaiah C. CRISPR/Cas9-Mediated Mutation in XSP10 and SlSAMT Genes Impart Genetic Tolerance to Fusarium Wilt Disease of Tomato ( Solanum lycopersicum L.). Genes (Basel) 2023; 14:488. [PMID: 36833415 PMCID: PMC9956927 DOI: 10.3390/genes14020488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Fusarium wilt is a major devastating fungal disease of tomato (Solanum lycopersicum L.) caused by Fusarium oxysporum f. sp. lycopersici (Fol) which reduces the yield and production. Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) are two putative negative regulatory genes associated with Fusarium wilt of tomato. Fusarium wilt tolerance in tomato can be developed by targeting these susceptible (S) genes. Due to its efficiency, high target specificity, and versatility, CRISPR/Cas9 has emerged as one of the most promising techniques for knocking out disease susceptibility genes in a variety of model and agricultural plants to increase tolerance/resistance to various plant diseases in recent years. Though alternative methods, like RNAi, have been attempted to knock down these two S genes in order to confer resistance in tomato against Fusarium wilt, there has been no report of employing the CRISPR/Cas9 system for this specific intent. In this study, we provide a comprehensive downstream analysis of the two S genes via CRISPR/Cas9-mediated editing of single (XSP10 and SlSAMT individually) and dual-gene (XSP10 and SlSAMT simultaneously). Prior to directly advancing on to the generation of stable lines, the editing efficacy of the sgRNA-Cas9 complex was first validated using single cell (protoplast) transformation. In the transient leaf disc assay, the dual-gene editing showed strong phenotypic tolerance to Fusarium wilt disease with INDEL mutations than single-gene editing. In stable genetic transformation of tomato at the GE1 generation, dual-gene CRISPR transformants of XSP10 and SlSAMT primarily exhibited INDEL mutations than single-gene-edited lines. The dual-gene CRISPR-edited lines (CRELs) of XSP10 and SlSAMT at GE1 generation conferred a strong phenotypic tolerance to Fusarium wilt disease compared to single-gene-edited lines. Taken together, the reverse genetic studies in transient and stable lines of tomato revealed that, XSP10 and SlSAMT function together as negative regulators in conferring genetic tolerance to Fusarium wilt disease.
Collapse
Affiliation(s)
- Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dhanawantari L. Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
| | - Ajay Kumar Keot
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jitendra Maharana
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Natarajan Velmurugan
- Branch Laboratory-Itanagar, Biological Sciences Division, CSIR-NEIST, Naharlagun 791110, Arunachal Pradesh, India
| | - Kallare P. Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat 785700, Assam, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Hyderabad 502324, Telangana, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
8
|
Zhang Z, Xiao YS, Zhan Y, Zhang Z, Liu Y, Wei Y, Xu T, Li J. Tomato microbiome under long-term organic and conventional farming. IMETA 2022; 1:e48. [PMID: 38868718 PMCID: PMC10989780 DOI: 10.1002/imt2.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 06/14/2024]
Abstract
The compartment niche is the main reason behind the shifts in endophytic bacterial communities. Long-term organic greenhouse exerted limited influence on the variations of endophytic bacterial communities. Organic greenhouse and root had more complex co-occurrence networks than conventional greenhouse and stem, respectively. Cultivable method results found that Protecbacteria, Bacteriodes, and Actinobacteria are the dominant phyla in the endophytes.
Collapse
Affiliation(s)
- Zeyu Zhang
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| | - Yang Sean Xiao
- College of Water Resources and Civil EngineeringChina Agricultural UniversityBeijingChina
| | - Yabin Zhan
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| | - Zengqiang Zhang
- College of Resources and Environmental ScienceNorthwest A&F UniversityYanglinChina
| | - Youzhou Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yuquan Wei
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| | - Ting Xu
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| | - Ji Li
- College of Resources and Environmental ScienceChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Sin WC, Lam HM, Ngai SM. Identification of Diverse Stress-Responsive Xylem Sap Peptides in Soybean. Int J Mol Sci 2022; 23:ijms23158641. [PMID: 35955768 PMCID: PMC9369194 DOI: 10.3390/ijms23158641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.
Collapse
|
10
|
Roy A, Kalita B, Jayaprakash A, Kumar A, Lakshmi PTV. Computational identification and characterization of vascular wilt pathogen ( Fusarium oxysporum f. sp. lycopersici) CAZymes in tomato xylem sap. J Biomol Struct Dyn 2022:1-17. [PMID: 35470778 DOI: 10.1080/07391102.2022.2067236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fusarium oxysporum f. sp. lycopersici is a devastating plant pathogenic fungi known for wilt disease in the tomato plant and secrete cell wall degrading enzymes. These enzymes are collectively known as carbohydrate-active enzymes (CAZymes), crucial for growth, colonization and pathogenesis. Therefore, the present study was aimed to identify and annotate pathogen CAZymes in the xylem sap of a susceptible tomato variety using downstream proteomics and meta servers. Further, structural elucidation and conformational stability analysis of the selected CAZyme families were done through homology modeling and molecular dynamics simulation. Among all the fungal proteins identified, the carbohydrate metabolic process was found to be enriched. Most of the annotated CAZymes belonged to the hydrolase and oxidoreductase families, and 90% were soluble and extracellular. Moreover, using a publically available interactome database, interactions were observed between the families acting on chitin, hemicellulose and pectin. Subsequently, important catalytic residues were identified in the candidate CAZymes belonging to carbohydrate esterase (CE8) and glycosyl hydrolase (GH18 and GH28). Further, essential dynamics after molecular simulation of 100 ns revealed the overall behavior of these CAZymes with distinct global minima and transition states in CE8. Thus, our study identified some of the CAZyme families that assist in pathogenesis and growth through host cell wall deconstruction with further structural insight into the selected CAZyme families.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijeet Roy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Barsha Kalita
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Aiswarya Jayaprakash
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Amrendra Kumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - P T V Lakshmi
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
11
|
Kang L, He D, Wang H, Han G, Lv H, Xiao W, Zhang Z, Yan Z, Huang L. "Breeding on Mountains" Resulted in the Reorganization of Endophytic Fungi in Asexually Propagated Plants ( Ligusticum chuanxiong Hort.). FRONTIERS IN PLANT SCIENCE 2021; 12:740456. [PMID: 34858448 PMCID: PMC8631752 DOI: 10.3389/fpls.2021.740456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 05/05/2023]
Abstract
"Breeding on mountains, cultivation in dam areas" is a unique propagation method for the vegetatively propagated plant Ligusticum chuanxiong, including two transplants between the mountain and the dam area. It is well known that the environment can influence the endophytic community structure of plants. However, the change of host endophytic flora caused by transplanting in different places and its influence on asexual reproduction are still poorly understood. We carried out three cycles of cultivation experiments on L. chuanxiong and collected stem nodes (LZ), immature rhizomes (PX), medicinal rhizomes (CX), and rhizosphere. High-throughput sequencing was performed to analyze the endophytic fungi in all samples. We observed that the diversity and richness of endophytic fungi in L. chuanxiong increased as a result of transplanting cultivation from dam areas to mountains. Local transplantation caused minor changes in the endophytic fungus structure of L. chuanxiong, while remote transplantation caused significant changes. Compared with LZ after breeding in the dam area, the LZ after breeding on mountains has more abundant Gibberella, Phoma, Pericona, Paraphoma, and Neocosmospora. The regular pattern of the relative abundance of endophytic fungi is consistent with that of the fungus in the soil, while there are also some cases that the relative abundance of endophytic fungi is the opposite of that of soil fungi. In addition, there is a significant correlation among certain kinds of endophytic fungi whether in the soil or the plants. We have isolated more gibberellin-producing and auxin-producing fungi in the LZ cultivated in the mountains than that in the LZ cultivated in the dam area. The results of pot experiments showed that the three fungi isolated from LZ cultivated in mountainous areas can promote the development of shoots, stem nodes, and internodes of LZ, and increase the activity of plant peroxidase, catalase, phenylalanine ammonia lyase, and other enzymes. We can conclude that transplantation leads to the recombination of the host endophytic fungus, the more significant the difference in the environment is, the greater the reorganization caused by transplanting. Reorganization is determined by the soil environment, hosts, and the interaction of microorganisms. Remote transplantation is a crucial opportunity to reshuffle the micro-ecological structure of the asexual reproduction of plants, and regulate the growth, development, and resistance of plants, and prevent germplasm degradation caused by asexual reproduction.
Collapse
Affiliation(s)
- Lei Kang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongmei He
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory Breeding Base of Dao-di Herbs, Center for Post-doctoral Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiqi Han
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyang Lv
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanting Xiao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanling Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, Center for Post-doctoral Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Stotz HU, Brotherton D, Inal J. Communication is key: Extracellular vesicles as mediators of infection and defence during host-microbe interactions in animals and plants. FEMS Microbiol Rev 2021; 46:6358524. [PMID: 34448857 PMCID: PMC8767456 DOI: 10.1093/femsre/fuab044] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are now understood to be ubiquitous mediators of cellular communication. In this review, we suggest that EVs have evolved into a highly regulated system of communication with complex functions including export of wastes, toxins and nutrients, targeted delivery of immune effectors and vectors of RNA silencing. Eukaryotic EVs come in different shapes and sizes and have been classified according to their biogenesis and size distributions. Small EVs (or exosomes) are released through fusion of endosome-derived multivesicular bodies with the plasma membrane. Medium EVs (or microvesicles) bud off the plasma membrane as a form of exocytosis. Finally, large EVs (or apoptotic bodies) are produced as a result of the apoptotic process. This review considers EV secretion and uptake in four eukaryotic kingdoms, three of which produce cell walls. The impacts cell walls have on EVs in plants and fungi are discussed, as are roles of fungal EVs in virulence. Contributions of plant EVs to development and innate immunity are presented. Compelling cases are sporophytic self-incompatibility and cellular invasion by haustorium-forming filamentous pathogens. The involvement of EVs in all of these eukaryotic processes is reconciled considering their evolutionary history.
Collapse
Affiliation(s)
- Henrik U Stotz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Dominik Brotherton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jameel Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.,School of Human Sciences, London Metropolitan University, London, N7 8DB, UK
| |
Collapse
|
13
|
Debbarma J, Saikia B, Singha DL, Maharana J, Velmuruagan N, Dekaboruah H, Arunkumar KP, Chikkaputtaiah C. XSP10 and SlSAMT, Fusarium wilt disease responsive genes of tomato ( Solanum lycopersicum L.) express tissue specifically and interact with each other at cytoplasm in vivo. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1559-1575. [PMID: 34366597 PMCID: PMC8295444 DOI: 10.1007/s12298-021-01025-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a major fungal disease of tomato (Solanum lycopersicum L.). Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) have been identified as putative negative regulatory genes associated with Fusarium wilt of tomato. Despite their importance as potential genes for developing Fusarium wilt disease tolerance, very little knowledge is available about their expression, cell biology, and functional genomics. Semi-quantitative and quantitative real-time PCR expression analysis of XSP10 and SlSAMT, in this study, revealed higher expression in root and flower tissue respectively in different tomato cultivars viz. Micro-Tom (MT), Arka Vikas (AV), and Arka Abhed (AA). Therefore, the highly up-regulated expression of XSP10 and SlSAMT in biotic stress susceptible tomato cultivar (AV) than a multiple disease resistant cultivar (AA) suggested the disease susceptibility nature of these genes for Fusarium wilt. Sub-cellular localization analysis through the expression of gateway cloning constructs in tomato protoplasts and seedlings showed the predominant localization of XSP10 in the nucleus and SlSAMT at the cytoplasm. A strong in vivo protein-protein interaction of XSP10 with SlSAMT at cytoplasm from bi-molecular fluorescent complementation study suggested that these two proteins function together in regulating responses to Fusarium wilt tolerance in tomato. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01025-y.
Collapse
Affiliation(s)
- Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 Uttar Pradesh India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 Uttar Pradesh India
| | - Dhanawantari L. Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam India
- Present Address: Institute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Natarajan Velmuruagan
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun, 791110 Arunachal Pradesh India
| | - Hariprasanna Dekaboruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 Uttar Pradesh India
| | - Kallare P. Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat, 785006 Assam India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 Uttar Pradesh India
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
| |
Collapse
|
14
|
de Lamo FJ, Spijkers SB, Takken FLW. Protection to Tomato Wilt Disease Conferred by the Nonpathogen Fusarium oxysporum Fo47 is More Effective Than that Conferred by Avirulent Strains. PHYTOPATHOLOGY 2021; 111:253-257. [PMID: 32720878 DOI: 10.1094/phyto-04-20-0133-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the vascular pathogen Fusarium oxysporum is notorious for being the causal agent of Fusarium wilt disease, the vast majority of F. oxysporum strains are harmless soil and root colonizers. The latter F. oxysporum's are often endophytes colonizing roots intracellularly without negatively affecting plant fitness. Actually, most of them, like Fo47, are beneficial providing biological control to various root pathogens. Interestingly, also pathogenic F. oxysporum inoculated on a resistant host (i.e., avirulent F. oxysporum f. sp. lycopersici) can reduce susceptibility to virulent F. oxysporum strains via a mechanism called "cross protection." It has been hypothesized that cross protection is based on activation of a resistance protein of the host upon recognition of a cognate avirulence (Avr) protein of the pathogen. Currently, it is unknown whether the biocontrol activity of F. oxysporum endophytes utilizes similar mechanisms as cross protection conferred by avirulent pathogens, and whether both provide a quantitative similar level of protection. Here, we show that in tomato biocontrol activity of the Fo47 endophyte to the pathogen F. oxysporum f. sp. lycopersici is more effective than cross protection induced by avirulent F. oxysporum f. sp. lycopersici strains activating either I, I-2, or both resistance proteins upon recognition of Avr1 or the Avr2/Six5 pair, respectively. These findings imply that cross protection and biological control utilize different mechanisms to reduce susceptibility of the host to subsequent infections.
Collapse
Affiliation(s)
- Francisco J de Lamo
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Staf B Spijkers
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Frank L W Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
de Lamo FJ, Šimkovicová M, Fresno DH, de Groot T, Tintor N, Rep M, Takken FLW. Pattern-triggered immunity restricts host colonization by endophytic fusaria, but does not affect endophyte-mediated resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:204-215. [PMID: 33205901 PMCID: PMC7814963 DOI: 10.1111/mpp.13018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
Fusarium oxysporum (Fo) is best known as a host-specific vascular pathogen causing major crop losses. Most Fo strains, however, are root endophytes potentially conferring endophyte-mediated resistance (EMR). EMR is a mechanistically poorly understood root-specific induced resistance response induced by endophytic or nonhost pathogenic Fo strains. Like other types of induced immunity, such as systemic acquired resistance or induced systemic resistance, EMR has been proposed to rely on the activation of the pattern-triggered immunity (PTI) system of the plant. PTI is activated upon recognition of conserved microbe-associated molecular patterns (MAMPs) of invading microbes. Here, we investigated the role of PTI in controlling host colonization by Fo endophytes and their ability to induce EMR to the tomato pathogen Fo f. sp. lycopersici (Fol). Transgenic tomato and Arabidopsis plants expressing the Fo effector gene Avr2 are hypersusceptible to bacterial and fungal infection. Here we show that these plants are PTI-compromised and are nonresponsive to bacterial- (flg22) and fungal- (chitosan) MAMPs. We challenged the PTI-compromised tomato mutants with the EMR-conferring Fo endophyte Fo47, the nonhost pathogen Fom (a melon pathogen), and with Fol. Compared to wild-type plants, Avr2-tomato plants became hypercolonized by Fo47 and Fom. Surprisingly, however, EMR towards Fol, induced by either Fo47 or Fom, was unaffected in these plants. These data show that EMR-based disease resistance is independent from the conventional defence pathways triggered by PTI, but that PTI is involved in restricting host colonization by nonpathogenic Fo isolates.
Collapse
Affiliation(s)
- Francisco J. de Lamo
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Margarita Šimkovicová
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - David H. Fresno
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Tamara de Groot
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Nico Tintor
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Martijn Rep
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Frank L. W. Takken
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
16
|
Liu Y, Lin T, Valencia MV, Zhang C, Lv Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules 2021; 26:molecules26030667. [PMID: 33514014 PMCID: PMC7865979 DOI: 10.3390/molecules26030667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
Vascular bundles play important roles in transporting nutrients, growth signals, amino acids, and proteins between aerial and underground tissues. In order to understand these sophisticated processes, a comprehensive analysis of the roles of the components located in the vascular tissues is required. A great deal of data has been obtained from proteomic analyses of vascular tissues in plants, which mainly aim to identify the proteins moving through the vascular tissues. Here, different aspects of the phloem and xylem proteins are reviewed, including their collection methods, and their main biological roles in growth, and biotic and abiotic stress responses. The study of vascular proteomics shows great potential to contribute to our understanding of the biological mechanisms related to development and defense in plants.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Maria Valderrama Valencia
- Departamento Académico de Biología–Universidad Nacional de San Agustin de Arequipa Nro117, Arequipa 04000, Peru;
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (C.Z.); (Z.L.)
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
- Correspondence: (C.Z.); (Z.L.)
| |
Collapse
|
17
|
Leonard M, Kühn A, Harting R, Maurus I, Nagel A, Starke J, Kusch H, Valerius O, Feussner K, Feussner I, Kaever A, Landesfeind M, Morgenstern B, Becher D, Hecker M, Braus-Stromeyer SA, Kronstad JW, Braus GH. Verticillium longisporum Elicits Media-Dependent Secretome Responses With Capacity to Distinguish Between Plant-Related Environments. Front Microbiol 2020; 11:1876. [PMID: 32849460 PMCID: PMC7423881 DOI: 10.3389/fmicb.2020.01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Verticillia cause a vascular wilt disease affecting a broad range of economically valuable crops. The fungus enters its host plants through the roots and colonizes the vascular system. It requires extracellular proteins for a successful plant colonization. The exoproteomes of the allodiploid Verticillium longisporum upon cultivation in different media or xylem sap extracted from its host plant Brassica napus were compared. Secreted fungal proteins were identified by label free liquid chromatography-tandem mass spectrometry screening. V. longisporum induced two main secretion patterns. One response pattern was elicited in various non-plant related environments. The second pattern includes the exoprotein responses to the plant-related media, pectin-rich simulated xylem medium and pure xylem sap, which exhibited similar but additional distinct features. These exoproteomes include a shared core set of 221 secreted and similarly enriched fungal proteins. The pectin-rich medium significantly induced the secretion of 143 proteins including a number of pectin degrading enzymes, whereas xylem sap triggered a smaller but unique fungal exoproteome pattern with 32 enriched proteins. The latter pattern included proteins with domains of known pathogenicity factors, metallopeptidases and carbohydrate-active enzymes. The most abundant proteins of these different groups are the necrosis and ethylene inducing-like proteins Nlp2 and Nlp3, the cerato-platanin proteins Cp1 and Cp2, the metallopeptidases Mep1 and Mep2 and the carbohydrate-active enzymes Gla1, Amy1 and Cbd1. Their pathogenicity contribution was analyzed in the haploid parental strain V. dahliae. Deletion of the majority of the corresponding genes caused no phenotypic changes during ex planta growth or invasion and colonization of tomato plants. However, we discovered that the MEP1, NLP2, and NLP3 deletion strains were compromised in plant infections. Overall, our exoproteome approach revealed that the fungus induces specific secretion responses in different environments. The fungus has a general response to non-plant related media whereas it is able to fine-tune its exoproteome in the presence of plant material. Importantly, the xylem sap-specific exoproteome pinpointed Nlp2 and Nlp3 as single effectors required for successful V. dahliae colonization.
Collapse
Affiliation(s)
- Miriam Leonard
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Anika Kühn
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Kirstin Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Burkhard Morgenstern
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Dörte Becher
- Department Microbial Proteomics, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
A non-invasive soil-based setup to study tomato root volatiles released by healthy and infected roots. Sci Rep 2020; 10:12704. [PMID: 32728091 PMCID: PMC7391657 DOI: 10.1038/s41598-020-69468-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 06/24/2020] [Indexed: 01/14/2023] Open
Abstract
The role of root exudates in mediating plant–microbe interactions has been well documented. However, the function of volatile organic compounds (VOCs) emitted by plant roots has only recently begun to attract attention. This newly recognized relevance of belowground VOCs has so far mostly been tested using systems limited to a two-compartment Petri-dish design. Furthermore, many of the plant–microbe interaction studies have only investigated the effects of microbial VOCs on plant growth. Here, we go two steps further. First we investigated the volatile profile of healthy and pathogen (Fusarium oxysporum) infected tomato roots grown in soil. We then used a unique soil-based olfactometer-choice assay to compare the migration pattern of four beneficial bacteria (Bacillus spp.) towards the roots of the tomato plants. We demonstrate that the blend of root-emitted VOCs differs between healthy and diseased plants. Our results show that VOCs are involved in attracting bacteria to plant roots.
Collapse
|
19
|
Agrahari RK, Singh P, Koyama H, Panda SK. Plant-microbe Interactions for Sustainable Agriculture in the Post-genomic Era. Curr Genomics 2020; 21:168-178. [PMID: 33071611 PMCID: PMC7521031 DOI: 10.2174/1389202921999200505082116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plant-microbe interactions are both symbiotic and antagonistic, and the knowledge of both these interactions is equally important for the progress of agricultural practice and produce. This review gives an insight into the recent advances that have been made in the plant-microbe interaction study in the post-genomic era and the application of those for enhancing agricultural production. Adoption of next-generation sequencing (NGS) and marker assisted selection of resistant genes in plants, equipped with cloning and recombination techniques, has progressed the techniques for the development of resistant plant varieties by leaps and bounds. Genome-wide association studies (GWAS) of both plants and microbes have made the selection of desirable traits in plants and manipulation of the genomes of both plants and microbes effortless and less time-consuming. Stress tolerance in plants has been shown to be accentuated by association of certain microorganisms with the plant, the study and application of the same have helped develop stress-resistant varieties of crops. Beneficial microbes associated with plants are being extensively used for the development of microbial consortia that can be applied directly to the plants or the soil. Next-generation sequencing approaches have made it possible to identify the function of microbes associated in the plant microbiome that are both culturable and non-culturable, thus opening up new doors and possibilities for the use of these huge resources of microbes that can have a potential impact on agriculture.
Collapse
Affiliation(s)
| | | | | | - Sanjib Kumar Panda
- Address correspondence to this author at the Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer 305817, Rajasthan, India; Tel: 9435370608; E-mail:
| |
Collapse
|
20
|
de Lamo FJ, Takken FLW. Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:37. [PMID: 32117376 PMCID: PMC7015898 DOI: 10.3389/fpls.2020.00037] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
Interactions between plants and the root-colonizing fungus Fusarium oxysporum (Fo) can be neutral, beneficial, or detrimental for the host. Fo is infamous for its ability to cause wilt, root-, and foot-rot in many plant species, including many agronomically important crops. However, Fo also has another face; as a root endophyte, it can reduce disease caused by vascular pathogens such as Verticillium dahliae and pathogenic Fo strains. Fo also confers protection to root pathogens like Pythium ultimum, but typically not to pathogens attacking above-ground tissues such as Botrytis cinerea or Phytophthora capsici. Endophytes confer biocontrol either directly by interacting with pathogens via mycoparasitism, antibiosis, or by competition for nutrients or root niches, or indirectly by inducing resistance mechanisms in the host. Fo endophytes such as Fo47 and CS-20 differ from Fo pathogens in their effector gene content, host colonization mechanism, location in the plant, and induced host-responses. Whereas endophytic strains trigger localized cell death in the root cortex, and transiently induce immune signaling and papilla formation, these responses are largely suppressed by pathogenic Fo strains. The ability of pathogenic strains to compromise immune signaling and cell death is likely attributable to their host-specific effector repertoire. The lower number of effector genes in endophytes as compared to pathogens provides a means to distinguish them from each other. Co-inoculation of a biocontrol-conferring Fo and a pathogenic Fo strain on tomato reduces disease, and although the pathogen still colonizes the xylem vessels this has surprisingly little effect on the xylem sap proteome composition. In this tripartite interaction the accumulation of just two PR proteins, NP24 (a PR-5) and a β-glucanase, was affected. The Fo-induced resistance response in tomato appears to be distinct from induced systemic resistance (ISR) or systemic acquired resistance (SAR), as the phytohormones jasmonate, ethylene, and salicylic acid are not required. In this review, we summarize our molecular understanding of Fo-induced resistance in a model and identify caveats in our knowledge.
Collapse
Affiliation(s)
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Abstract
The third edition of "Plant Proteomics Methods and Protocols," with the title "Advances in Proteomics Techniques, Data Validation, and Integration with Other Classic and -Omics Approaches in the Systems Biology Direction," was conceived as being based on the success of the previous editions, and the continuous advances and improvements in proteomic techniques, equipment, and bioinformatics tools, and their uses in basic and translational plant biology research that has occurred in the past 5 years (in round figures, of around 22,000 publications referenced in WoS, 2000 were devoted to plants).The monograph contains 29 chapters with detailed proteomics protocols commonly employed in plant biology research. They present recent advances at all workflow stages, starting from the laboratory (tissue and cell fractionation, protein extraction, depletion, purification, separation, MS analysis, quantification) and ending on the computer (algorithms for protein identification and quantification, bioinformatics tools for data analysis, databases and repositories). At the end of each chapter there are enough explanatory notes and comments to make the protocols easily applicable to other biological systems and/or studies, discussing limitations, artifacts, or pitfalls. For that reason, as with the previous editions, it would be especially useful for beginners or novices.Out of the 29 chapters, six are devoted to descriptive proteomics, with a special emphasis on subcellular protein profiling (Chapters 5 - 10 ), six to PTMs (Chapters 11 , and 14 - 18 ), three to protein interactions (Chapters 19 - 21 ), and two to specific proteins, peroxidases (Chapter 24 ) and proteases and protease inhibitors (Chapter 26 ). The book reflects the new trajectory in MS-based protein identification and quantification, moving from the classic gel-based approaches to the most recent labeling (Chapters 10 , 11 , 29 ), shotgun (Chapters 5 , 7 , 12 , 15 ), parallel reaction monitoring (Chapter 16 ), and targeted data acquisition (Chapter 13 ). MS imaging (Chapter 25 ), the only in vivo MS-based proteomics strategy, is far from being fully optimized and exploited in plant biology research. A confident protein identification and quantitation, especially in orphan species, of low-abundance proteins, is still a challenging task (Chapters 4 , 28 ).What is really new is the use of different techniques for proteomics data validation and their integration into other classic and -omics approaches in the systems biology direction. Chapter 2 reports on multiple extractions in a single experiment of the different biomolecules, nucleic acids, proteins, and metabolites. Chapter 27 describes how metabolic pathways can be reconstructed from multiple -omics data, and Chapter 3 network building. Finally, Chapters 22 and 23 deal with, respectively, the search for allele-specific proteins and proteogenomics.Around 200 groups were, almost 1 year ago, invited to take part in this edition. Unfortunately, only 10% of them kindly accepted. My gratitude to those who accepted our invitation but also to those who did not, as all of them have contributed to the plant proteomics field. I will enlist, in this introductory chapter, following my own judgment, some of the relevant papers published in the past 5 years, those that have shown us how to enhance and exploit the potential of proteomics in plant biology research, without aiming at giving a too exhaustive list.
Collapse
Affiliation(s)
- Jesus V Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain.
| |
Collapse
|
22
|
del Barrio-Duque A, Ley J, Samad A, Antonielli L, Sessitsch A, Compant S. Beneficial Endophytic Bacteria- Serendipita indica Interaction for Crop Enhancement and Resistance to Phytopathogens. Front Microbiol 2019; 10:2888. [PMID: 31921065 PMCID: PMC6930893 DOI: 10.3389/fmicb.2019.02888] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Serendipita (=Piriformospora) indica is a fungal endophytic symbiont with the capabilities to enhance plant growth and confer resistance to different stresses. However, the application of this fungus in the field has led to inconsistent results, perhaps due to antagonism with other microbes. Here, we studied the impact of individual bacterial isolates from the endophytic bacterial community on the in vitro growth of S. indica. We further analyzed how combinations of bacteria and S. indica influence plant growth and protection against the phytopathogens Fusarium oxysporum and Rhizoctonia solani. Bacterial strains of the genera Bacillus, Enterobacter and Burkholderia negatively affected S. indica growth on plates, whereas Mycolicibacterium, Rhizobium, Paenibacillus strains and several other bacteria from different taxa stimulated fungal growth. To further explore the potential of bacteria positively interacting with S. indica, four of the most promising strains belonging to the genus Mycolicibacterium were selected for further experiments. Some dual inoculations of S. indica and Mycolicibacterium strains boosted the beneficial effects triggered by S. indica, further enhancing the growth of tomato plants, and alleviating the symptoms caused by the phytopathogens F. oxysporum and R. solani. However, some combinations of S. indica and bacteria were less effective than individual inoculations. By analyzing the genomes of the Mycolicibacterium strains, we revealed that these bacteria encode several genes predicted to be involved in the stimulation of S. indica growth, plant development and tolerance to abiotic and biotic stresses. Particularly, a high number of genes related to vitamin and nitrogen metabolism were detected. Taking into consideration multiple interactions on and inside plants, we showed in this study that some bacterial strains may induce beneficial effects on S. indica and could have an outstanding influence on the plant-fungus symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
23
|
Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS One 2019; 14:e0223847. [PMID: 31703074 PMCID: PMC6839845 DOI: 10.1371/journal.pone.0223847] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/30/2019] [Indexed: 11/19/2022] Open
Abstract
Plants harbor diverse bacterial communities, which play crucial roles in plant health and growth, in their rhizosphere, phyllosphere and endosphere. Tomato is an important model for studying plant-microbe interactions, but comparison of its associated bacterial community is still lacking. In this study, using Illumina sequencing of 16S rRNA amplicons, we characterized and compared the bacterial size and community from rootzone soil as well as the rhizosphere, phyllosphere and endosphere of roots, stems, leaves, fruits and seeds of tomato plants that were grown in greenhouse conditions. Habitat (soil, phyllospheric, and endophytic) structured the community. The bacterial communities from the soil-type samples (rootzone soil and rhizosphere) showed the highest richness and diversity. The lowest bacterial diversity occurred in the phyllospheric samples, while the lowest richness occurred in the endosphere. Among the endophytic samples, both bacterial diversity and richness varied in different tissues, with the highest values in roots. The most abundant phyla in the tomato-associated community was Proteobacteria, with the exception of the seeds and jelly, where both Proteobacteria and Firmicutes were dominant. At the genus level, the sequences of Pseudomonas and Acinetobacter were prevalent in the rhizosphere, and in the phyllosphere, more than 97% of the sequences were assigned to Acinetobacter. For the endophytes, Acinetobacter, Enterobacter, and Pseudomonas were the abundant genera in the roots, stems and leaves. In the fruits, the bacterial endophytes varied in different compartments, with Enterobacter being enriched in the pericarp and seeds, Acinetobacter in the placenta, and Weissella in the jelly. The present data provide a comprehensive description of the tomato-associated bacterial community and will be useful for better understanding plant-microbe interactions and selecting suitable bacterial taxa for tomato production.
Collapse
|
24
|
Sarkar D, Rovenich H, Jeena G, Nizam S, Tissier A, Balcke GU, Mahdi LK, Bonkowski M, Langen G, Zuccaro A. The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. THE NEW PHYTOLOGIST 2019; 224:886-901. [PMID: 31074884 DOI: 10.1111/nph.15904] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
In nature, beneficial and pathogenic fungi often simultaneously colonise plants. Despite substantial efforts to understand the composition of natural plant-microbe communities, the mechanisms driving such multipartite interactions remain largely unknown. Here we address how the interaction between the beneficial root endophyte Serendipita vermifera and the pathogen Bipolaris sorokiniana affects fungal behaviour and determines barley host responses using a gnotobiotic soil-based split-root system. Fungal confrontation in soil resulted in induction of B. sorokiniana genes involved in secondary metabolism and a significant repression of genes encoding putative effectors. In S. vermifera, genes encoding hydrolytic enzymes were strongly induced. This antagonistic response was not activated during the tripartite interaction in barley roots. Instead, we observed a specific induction of S. vermifera genes involved in detoxification and redox homeostasis. Pathogen infection but not endophyte colonisation resulted in substantial host transcriptional reprogramming and activation of defence. In the presence of S. vermifera, pathogen infection and disease symptoms were significantly reduced despite no marked alterations of the plant transcriptional response. The activation of stress response genes and concomitant repression of putative effector gene expression in B. sorokiniana during confrontation with the endophyte suggest a reduction of the pathogen's virulence potential before host plant infection.
Collapse
Affiliation(s)
- Debika Sarkar
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Hanna Rovenich
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Ganga Jeena
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Shadab Nizam
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Lisa K Mahdi
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Michael Bonkowski
- Institute of Zoology, Terrestrial Ecology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| |
Collapse
|
25
|
Sefloo NG, Wieczorek K, Steinkellner S, Hage-Ahmed K. Serendipita Species Trigger Cultivar-Specific Responses to Fusarium Wilt in Tomato. AGRONOMY-BASEL 2019; 9:595. [PMID: 31857912 PMCID: PMC6923139 DOI: 10.3390/agronomy9100595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endophytic fungi Serendipita indica and S. vermifera have recently gained increasing attention due to their beneficial effects on plant growth and plant health. Little is known about other species, such as S. williamsii and S. herbamans. To test their biocontrol and growth-promoting potential, susceptible and tolerant tomato cultivars (Kremser Perle and Micro-Tom, respectively) were inoculated with S. williamsii, S. herbamans, S. indica, or S. vermifera and challenged with the soilborne pathogen Fusarium oxysporum f. sp. lycopersici (Fol) in greenhouse experiments. Furthermore, in vitro assays on the direct inhibitory effects of Serendipita spp. against Fol were performed. Negative effects of Fol on phenological growth in the susceptible cultivar were alleviated by all four applied Serendipita spp. Apart from these similar effects on biometric parameters, disease incidence was only reduced by S. herbamans and S. vermifera. In the tolerant cultivar, disease parameters remained unaffected although shoot dry mass was negatively affected by S. vermifera. Direct effects of Serendipita spp. against Fol were not evident in the in vitro assays indicating an indirect effect via the host plant. Our results highlight the importance of identifying cultivar-specific effects in pathogen–endophyte–plant interactions to determine the most beneficial combinations.
Collapse
|
26
|
Constantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW. Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. FRONTIERS IN PLANT SCIENCE 2019; 10:979. [PMID: 31417594 PMCID: PMC6685397 DOI: 10.3389/fpls.2019.00979] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/11/2019] [Indexed: 05/21/2023]
Abstract
Root endophytes can confer resistance against plant pathogens by direct antagonism or via the host by triggering induced resistance. The latter response typically relies on jasmonic acid (JA)/ethylene (ET)-depended signaling pathways, but can also be triggered via salicylic acid (SA)-dependent signaling pathways. Here, we set out to determine if endophyte-mediated resistance (EMR), conferred by the Fusarium endophyte Fo47, against Fusarium wilt disease in tomato is mediated via SA, ET or JA. To test the contribution of SA, ET, and JA in EMR we performed bioassays with Fo47 and Fusarium oxysporum f. sp. lycopersici in tomato plants impaired in SA accumulation (NahG), JA biosynthesis (def1) or ET-production (ACD) and -sensing (Nr). We observed that the colonization pattern of Fo47 in stems of wildtype plants was indistinguishable from that of the hormone mutants. Surprisingly, EMR was not compromised in the lines affected in JA, ET, or SA signaling. The independence of EMR on SA, JA, and ET implies that this induced resistance-response against Fusarium wilt disease is distinct from the classical Induced Systemic Resistance (ISR) response, providing exciting possibilities for control of wilt diseases independent of conventional defense pathways.
Collapse
|
27
|
Srinivas C, Nirmala Devi D, Narasimha Murthy K, Mohan CD, Lakshmeesha TR, Singh B, Kalagatur NK, Niranjana SR, Hashem A, Alqarawi AA, Tabassum B, Abd Allah EF, Chandra Nayaka S. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity- A review. Saudi J Biol Sci 2019; 26:1315-1324. [PMID: 31762590 PMCID: PMC6864208 DOI: 10.1016/j.sjbs.2019.06.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 01/01/2023] Open
Abstract
Tomato (Lycopersicon esculentum) is one of the widely grown vegetables worldwide. Fusarium oxysporum f. sp. lycopersici (FOL) is the significant contributory pathogen of tomato vascular wilt. The initial symptoms of the disease appear in the lower leaves gradually, trail by wilting of the plants. It has been reported that FOL penetrates the tomato plant, colonizing and leaving the vascular tissue dark brown, and this discoloration extends to the apex, leading to the plants wilting, collapsing and dying. Therefore, it has been widely accepted that wilting caused by this fungus is the result of a combination of various physiological activities, including the accumulation of fungal mycelia in and around xylem, mycotoxin production, inactivation of host defense, and the production of tyloses; however, wilting symptoms are variable. Therefore, the selection of molecular markers may be a more effective means of screening tomato races. Several studies on the detection of FOL have been carried out and have suggested the potency of the technique for diagnosing FOL. This review focuses on biology and variability of FOL, understanding and presenting a holistic picture of the vascular wilt disease of tomato in relation to disease model, biology, virulence. We conclude that genomic and proteomic approachesare greater tools for identification of informative candidates involved in pathogenicity, which can be considered as one of the approaches in managing the disease.
Collapse
Affiliation(s)
- C Srinivas
- Department of Studies in Microbiology and Biotechnology, Bangalore University, Bengaluru, Karnataka, India
| | - D Nirmala Devi
- Department of Microbiology, Ramaiah College of Arts, Science and Commerce, Bengaluru, Karnataka, India
| | - K Narasimha Murthy
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore,India
| | | | - T R Lakshmeesha
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore,India
| | | | - Naveen Kumar Kalagatur
- Department of Immunology and Toxicology, DRDO-BU-Centre for Life Sciences, Coimbatore, India
| | - S R Niranjana
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore,India
| | - Abeer Hashem
- Plant Production Department, College of Food and Agriculture Science, King SaudUniversity, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Alqarawi
- Plant Production Department, College of Food and Agriculture Science, King SaudUniversity, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Baby Tabassum
- Toxicology Laboratory, Department of Zoology, Govt. Raza P.G. College Rampur, 244901 U.P., India
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King SaudUniversity, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - S Chandra Nayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore,India
| |
Collapse
|