1
|
Jaśkiewicz A, Kunicka-Styczyńska A, Baryga A, Gruska RM, Brzeziński S, Świącik B. Evaluation of the Impact of an Enzymatic Preparation Catalyzing the Decomposition of Raffinose from Poor-Quality Beets during the White Sugar Production Process. Molecules 2024; 29:3526. [PMID: 39124931 PMCID: PMC11314104 DOI: 10.3390/molecules29153526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The study investigates the efficacy of an enzymatic preparation primarily with α-galactosidase activity for improving the quality of white sugar from poor-quality sugar beets. Focused on overcoming raffinose accumulation challenges in sugar beets, especially those harvested prematurely or stored for extended periods, an innovative exploration of enzymatic application in an industrial setting for the first time was conducted. By integrating theoretical calculations and experimental data, the findings reveal that α-galactosidase preparation notably diminishes raffinose content in beet juice, thus enhancing the sucrose yield and overall sugar quality. A reliable method to process lower-quality beets, promising enhanced efficiency in sugar production, was presented. The study also highlights the economic benefits of incorporating enzyme preparation into the production process, demonstrating a notable return on investment and underscoring the potential of enzymatic treatments to address industry challenges.
Collapse
Affiliation(s)
| | - Alina Kunicka-Styczyńska
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland; (A.J.); (A.B.); (R.M.G.); (S.B.); (B.Ś.)
| | | | | | | | | |
Collapse
|
2
|
Menon A, Pandurangan Maragatham V, Samuel M, Arunraj R. Properties and applications of α-galactosidase in agricultural waste processing and secondary agricultural process industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:21-31. [PMID: 37555350 DOI: 10.1002/jsfa.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Agriculture products form the foundation building blocks of our daily lives. Although they have been claimed to be renewable resources with a low carbon footprint, the agricultural community is constantly challenged to overcome two post-harvest bottlenecks: first, farm bio-waste, a substantial economic and environmental burden to the farming sector, and second, an inefficient agricultural processing sector, plagued by the need for significant energy input to generate the products. Both these sectors require extensive processing technologies that are demanding in their energy requirements and expensive. To address these issues, an enzyme(s)-based green chemistry is available to break down complex structures into bio-degradable compounds that source alternate energy with valuable by-products and co-products. α-Galactosidase is a widespread class of glycoside hydroxylases that hydrolyzes α-galactosyl moieties in simple and complex oligo and polysaccharides, glycolipids, and glycoproteins. As a result of its growing importance, in this review we discuss the source of the enzyme, production and purification systems, and enzyme properties. We also elaborate on the enzyme's potential in agricultural bio-waste management, secondary agricultural industries like sugar refining, soymilk derivatives, food and confectionery, and animal feed processing. Insight into this vital enzyme will provide new avenues for less expensive green chemistry-based secondary agricultural processing and agricultural sustainability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anindita Menon
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| | - Vetriselvi Pandurangan Maragatham
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| | - Marcus Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Rex Arunraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| |
Collapse
|
3
|
Zhao K, Pang H, Shao K, Yang Z, Li S, He N. The function of human milk oligosaccharides and their substitute oligosaccharides as probiotics in gut inflammation. Food Funct 2023; 14:7780-7798. [PMID: 37575049 DOI: 10.1039/d3fo02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gut inflammation seriously affects the healthy life of patients, and has a trend of increasing incidence rate. However, the current methods for treating gut inflammation are limited to surgery and drugs, which can cause irreversible damage to patients, especially infants. As natural oligosaccharides in human breast milk, human milk oligosaccharides (HMOs) function as probiotics in treating and preventing gut inflammation: improving the abundance of the gut microbiota, increasing the gut barrier function, and reducing the gut inflammatory reaction. Meanwhile, due to the complexity and high cost of their synthesis, people are searching for functional oligosaccharides that can replace HMOs as a food additive in infants milk powder and adjuvant therapy for chronic inflammation. The purpose of this review is to summarize the therapeutic and preventive effects of HMOs and their substitute functional oligosaccharides as probiotics in gut inflammation, and to summarize the prospect of their application in infant breast milk replacement in the future.
Collapse
Affiliation(s)
- Kunyi Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Hao Pang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Kaidi Shao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
4
|
Huang J, Wang X, Chen X, Li H, Chen Y, Hu Z, Yang S. Adaptive Laboratory Evolution and Metabolic Engineering of Zymomonas mobilis for Bioethanol Production Using Molasses. ACS Synth Biol 2023; 12:1297-1307. [PMID: 37036829 DOI: 10.1021/acssynbio.3c00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Molasses with abundant sugars is widely used for bioethanol production. Although the ethanologenic bacterium Zymomonas mobilis can use glucose, fructose, and sucrose for ethanol production, levan production from sucrose reduces the ethanol yield of molasses fermentation. To increase ethanol production from sucrose-rich molasses, Z. mobilis was adapted in molasses, sucrose, and fructose in parallel. Adaptation in fructose is the most effective route to generate an evolved strain F74 with improved molasses utilization, which is majorly due to a G99S mutation in Glf for enhanced fructose import. Subsequent sacB deletion and sacC overexpression in F74 to divert sucrose metabolism from levan production to ethanol production further enhanced ethanol productivity 28.6% to 1.35 g/L/h. The efficient utilization of molasses by diverting sucrose metabolic flux through adaptation and genome engineering not only generated an excellent ethanol producer using molasses but also provided the strategy for developing microbial cell factories.
Collapse
Affiliation(s)
- Ju Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangyu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhousheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
5
|
Coyle H, Wawrousek K. Rhodococcus opacus PD630 Bioconversion of Molasses Desugarized Solubles for Fatty Acid Production. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hanley Coyle
- Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Karen Wawrousek
- Chemical Engineering, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
6
|
Anisha GS. Molecular advances in microbial α-galactosidases: challenges and prospects. World J Microbiol Biotechnol 2022; 38:148. [PMID: 35773364 DOI: 10.1007/s11274-022-03340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022]
Abstract
α-Galactosidase (α-D-galactosidase galactohydrolase; EC 3.2.1.22), is an industrially important enzyme that hydrolyzes the galactose residues in galactooligosaccharides and polysaccharides. The industrial production of α-galactosidase is currently insufficient owing to the high production cost, low production efficiency and low enzyme activity. Recent years have witnessed an increase in the worldwide research on molecular techniques to improve the production efficiency of microbial α-galactosidases. Cloning and overexpression of the gene sequences coding for α-galactosidases can not only increase the enzyme yield but can confer industrially beneficial characteristics to the enzyme protein. This review focuses on the molecular advances in the overexpression of α-galactosidases in bacterial and yeast/fungal expression systems. Recombinant α-galactosidases have improved biochemical and hydrolytic properties compared to their native counterparts. Metabolic engineering of microorganisms to produce high yields of α-galactosidase can also assist in the production of value-added products. Developing new variants of α-galactosidases through directed evolution can yield enzymes with increased catalytic activity and altered regioselectivity. The bottlenecks in the recombinant production of α-galactosidases are also discussed. The knowledge about the hurdles in the overexpression of recombinant proteins illuminates the emerging possibilities of developing a successful microbial cell factory and widens the opportunities for the production of industrially beneficial α-galactosidases.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
7
|
Liu N, Wang H, Yang Z, Zhao K, Li S, He N. The role of functional oligosaccharides as prebiotics in ulcerative colitis. Food Funct 2022; 13:6875-6893. [PMID: 35703137 DOI: 10.1039/d2fo00546h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incidence rate of ulcerative colitis (UC) has increased significantly over the past decades and it places an increasing burden on health and social systems. The current studies on UC implicate a strong correlation between host gut microbiota immunity and the pathogenesis of UC. Meanwhile, more and more functional oligosaccharides have been reported as prebiotics to alleviate UC, since many of them can be metabolized by gut microbiota to produce short-chain fatty acids (SCFAs). The present review is focused on the structure, sources and specific applications of various functional oligosaccharides related to the prevention and treatment of UC. The available evidence for the usage of functional oligosaccharides in UC treatment are summarized, including fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), chito-oligosaccharides (COS), alginate-oligosaccharides (AOS), xylooligosaccharides (XOS), stachyose and inulin.
Collapse
Affiliation(s)
- Nian Liu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Haoyu Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Kunyi Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Oceguera-Contreras E, Aguilar-Juarez O, Oseguera-Galindo D, Macías-Barragán J, Ortiz-Torres G, Luisa Pita-López M, Domínguez J, Titov I, Kamen A. Establishment of the upstream processing for renewable production of hydrogen using vermicomposting-tea and molasses as substrate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:279-289. [PMID: 34995855 DOI: 10.1016/j.wasman.2021.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to establish the optimal operational conditions for hydrogen production using vermicomposting-tea and sugarcane molasses as substrate. The experiments were carried out by triplicate in 110 ml serological bottles, a Box-Behnken design of experiments was performed in anaerobic dark conditions. The maximal hydrogen production (HP), hydrogen production rate (HPR), and hydrogen yield (HY) attained were 1021.0 mlL-1, 5.32 mlL-1h-1, and 60.3 mlLH2-1/gTCC, respectively. The statistical model showed that the optimal operational conditions for pH, molasses concentration, and temperature were 6.5; 30 % (v/v) and 25 °C. The bioreactor run showed 17.202 L of hydrogen, 0.58 Lh-1, and 77.2 mlH2gTCC-1 For HP, HPR, and HY. Chemometric analysis for the volatile fatty acids obtained at the fermentation showed that only two principal components are required to explain 90 % of the variance. The representative pathways for hydrogen production were acetic and butyric acids. This study established the operational conditions for the upstream processing amenable to pilot and industrial-scale operations. Our results add value to molasses within the circular economy for hydrogen production using a novel consortium from vermicompost.
Collapse
Affiliation(s)
- Edén Oceguera-Contreras
- Laboratorio de Sistemas Biológicos, Centro Universitario de los Valles, Universidad de Guadalajara. Carretera Guadalajara-Ameca km. 45.5, C.P. 46600. Ameca, Jalisco, México.
| | - Oscar Aguilar-Juarez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Avenida de los normalistas No. 800, Colinas de la Normal, C.P. 4470, Guadalajara, Jalisco, México
| | - David Oseguera-Galindo
- Laboratorio de Sistemas Biológicos, Centro Universitario de los Valles, Universidad de Guadalajara. Carretera Guadalajara-Ameca km. 45.5, C.P. 46600. Ameca, Jalisco, México
| | - José Macías-Barragán
- Laboratorio de Sistemas Biológicos, Centro Universitario de los Valles, Universidad de Guadalajara. Carretera Guadalajara-Ameca km. 45.5, C.P. 46600. Ameca, Jalisco, México
| | - Gerardo Ortiz-Torres
- Laboratorio de Mecatrónica, Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca km. 45.5, C.P. 46600. Ameca, Jalisco, México
| | - María Luisa Pita-López
- Centro de Investigación en Biología Molecular de las Enfermedades Crónicas (CIBIMEC). Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, C.P. 49000. Zapotlán el Grande, Jalisco, México
| | - Jorge Domínguez
- Departamento de Ecología e Bioloxía Animal (GEA), Universidad de Vigo. As lagoas Marcosende, Vigo E-36310, Vigo, España
| | - Igor Titov
- Technological Institute of Information and Electronic Radio, Vladimir University, 600026, Vladimir st, Gorki d. 87, Vladimir, Russia
| | - Amine Kamen
- Department of Bioengineering, 3480 Rue University, McConnell Engineering Building, McGill University, Montreal, QC H3A OE9, Canada
| |
Collapse
|
9
|
Novoselov AG, Sorokin SA, Baranov IV, Martyushev NV, Rumiantceva ON, Fedorov AA. Comprehensive Studies of the Processes of the Molecular Transfer of the Momentum, Thermal Energy and Mass in the Nutrient Media of Biotechnological Industries. Bioengineering (Basel) 2022; 9:18. [PMID: 35049728 PMCID: PMC8772945 DOI: 10.3390/bioengineering9010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 11/16/2022] Open
Abstract
This article puts forward arguments in favor of the necessity of conducting complex measurements of molecular transport coefficients that quantitatively determine the coefficients of dynamic viscosity, thermal diffusivity and molecular diffusion. The rheological studies have been carried out on the viscometers of two types: those with a rolling ball (HÖPPLER® KF 3.2.), and those with a rotary one (Rheotest RN 4.1.). The thermophysical studies have been performed using the analyzer Hot Disk TPS 2500S. The measurements have been taken in the temperature range of 283 to 363 K. The concentration of dry substances has varied from 16.2 to 77.7% dry wt. An empirical equation for calculating the density of aqueous solutions of beet molasses has been obtained. The diagrams of the dependence of the dynamic viscosity on the shear rate in the range of 1 s-1 to 500 s-1 at different temperatures have been provided. The diagrams of the dependence of the coefficients of thermal conductivity and thermal diffusivity on the temperature and the concentration of dry substances have been presented, and empirical equations for their calculation have been obtained. The findings can be used for engineering calculations of hydrodynamic and heat-exchange processes in biotechnological equipment.
Collapse
Affiliation(s)
- Aleksandr G. Novoselov
- Faculty of Biotechnologies, ITMO University, Kronverkskiy Prospekt, 49, 197101 St. Petersburg, Russia;
| | - Sergei A. Sorokin
- Faculty of Energy and Ecotechnology, ITMO University, Kronverkskiy Prospekt, 49, 197101 St. Petersburg, Russia; (S.A.S.); (O.N.R.)
| | - Igor V. Baranov
- School of Biotechnology and Cryogenic Systems, ITMO University, Kronverkskiy Prospekt, 49, 197101 St. Petersburg, Russia;
| | - Nikita V. Martyushev
- Materials Science Department, Tomsk Polytechnic University, 30, Lenina Ave., 634050 Tomsk, Russia;
| | - Olga N. Rumiantceva
- Faculty of Energy and Ecotechnology, ITMO University, Kronverkskiy Prospekt, 49, 197101 St. Petersburg, Russia; (S.A.S.); (O.N.R.)
| | - Aleksey A. Fedorov
- Faculty of Biotechnologies, ITMO University, Kronverkskiy Prospekt, 49, 197101 St. Petersburg, Russia;
| |
Collapse
|
10
|
Anisha GS. Microbial α-galactosidases: Efficient biocatalysts for bioprocess technology. BIORESOURCE TECHNOLOGY 2022; 344:126293. [PMID: 34752888 DOI: 10.1016/j.biortech.2021.126293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Galactomannans, abundantly present in plant biomass, can be used as renewable fermentation feedstock for biorefineries working for the production of bioethanol and other value-added products. The complete and efficient bioconversion of biomass to fermentable sugars for the generation of biofuels and other value-added products require the concerted action of accessory enzymes like α-galactosidases, which can work in cohesion with other carbohydrases in an enzyme cocktail. In the paper industry, α-galactosidases enhance the bleaching effect of endo-β-1,4-mannanases on softwood kraft pulp. Microbial α-galactosidases also find applications in the treatment of legume foods, recovery of sucrose from sugar beet syrup, improving the rheological properties of galactomannans, and synthesis of α-galactooligosaccharides to be used as functional food ingredients. Owing to their industrial applications, there is a surge in the research focused on α-galactosidases. The current review illustrates the diverse industrial applications of microbial α-galactosidases and their challenges and prospects.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
11
|
Different-ligand and different-metal xylaratogermanates as effectors of Penicillium restrictum IMV F-100139 α-L-rhamnosidase and α-galactosidase. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Wang QQ, Yang M, Hao JH, Ma ZC. Direct Isomaltulose Synthesis From Beet Molasses by Immobilized Sucrose Isomerase. Front Bioeng Biotechnol 2021; 9:691547. [PMID: 34336804 PMCID: PMC8322766 DOI: 10.3389/fbioe.2021.691547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Isomaltulose is becoming a focus as a functional sweetener for sucrose substitutes; however, isomaltulose production using sucrose as the substrate is not economical. Low-cost feedstocks are needed for their production. In this study, beet molasses (BM) was introduced as the substrate to produce isomaltulose for the first time. Immobilized sucrose isomerase (SIase) was proved as the most efficient biocatalyst for isomaltulose synthesis from sulfuric acid (H2SO4) pretreated BM followed by centrifugation for the removal of insoluble matters and reducing viscosity. The effect of different factors on isomaltulose production is investigated. The isomaltulose still achieved a high concentration of 446.4 ± 5.5 g/L (purity of 85.8%) with a yield of 0.94 ± 0.02 g/g under the best conditions (800 g/L pretreated BM, 15 U immobilized SIase/g dosage, 40°C, pH of 5.5, and 10 h) in the eighth batch. Immobilized SIase used in repeated batch reaction showed good reusability to convert pretreated BM into isomaltulose since the sucrose conversion rate remained 97.5% in the same batch and even above 94% after 11 batches. Significant cost reduction of feedstock costs was also confirmed by economic analysis. The findings indicated that this two-step process to produce isomaltulose using low-cost BM and immobilized SIase is feasible. This process has the potential to be effective and promising for industrial production and application of isomaltulose as a functional sweetener for sucrose substitute.
Collapse
Affiliation(s)
- Qin-Qing Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Yang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Hua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zai-Chao Ma
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Li Y, Wang J, Liu N, Ke L, Zhao X, Qi G. Microbial synthesis of poly-γ-glutamic acid (γ-PGA) with fulvic acid powder, the waste from yeast molasses fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:180. [PMID: 33133238 PMCID: PMC7594462 DOI: 10.1186/s13068-020-01818-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Molasses is a wildly used feedstock for fermentation, but it also poses a severe wastewater-disposal problem worldwide. Recently, the wastewater from yeast molasses fermentation is being processed into fulvic acid (FA) powder as a fertilizer for crops, but it consequently induces a problem of soil acidification after being directly applied into soil. In this study, the low-cost FA powder was bioconverted into a value-added product of γ-PGA by a glutamate-independent producer of Bacillus velezensis GJ11. RESULTS FA power could partially substitute the high-cost substrates such as sodium glutamate and citrate sodium for producing γ-PGA. With FA powder in the fermentation medium, the amount of sodium glutamate and citrate sodium used for producing γ-PGA were both decreased around one-third. Moreover, FA powder could completely substitute Mg2+, Mn2+, Ca2+, and Fe3+ in the fermentation medium for producing γ-PGA. In the optimized medium with FA powder, the γ-PGA was produced at 42.55 g/L with a productivity of 1.15 g/(L·h), while only 2.87 g/L was produced in the medium without FA powder. Hydrolyzed γ-PGA could trigger induced systemic resistance (ISR), e.g., H2O2 accumulation and callose deposition, against the pathogen's infection in plants. Further investigations found that the ISR triggered by γ-PGA hydrolysates was dependent on the ethylene (ET) signaling and nonexpressor of pathogenesis-related proteins 1 (NPR1). CONCLUSIONS To our knowledge, this is the first report to use the industry waste, FA powder, as a sustainable substrate for microbial synthesis of γ-PGA. This bioprocess can not only develop a new way to use FA powder as a cheap feedstock for producing γ-PGA, but also help to reduce pollution from the wastewater of yeast molasses fermentation.
Collapse
Affiliation(s)
- Yazhou Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jianghan Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Na Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Luxin Ke
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
14
|
Fonseca LM, Parreiras LS, Murakami MT. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:93. [PMID: 32461765 PMCID: PMC7243233 DOI: 10.1186/s13068-020-01732-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The path for the development of hypersecreting strains of Trichoderma reesei capable of producing industrially relevant enzyme titers remains elusive despite over 70 years of research and industrial utilization. Herein, we describe the rational engineering of the publicly available T. reesei RUT-C30 strain and a customized process for cellulase production based on agroindustrial by-products. RESULTS A CRISPR/Cas9 system was used to introduce six genetic modifications in RUT-C30. Implemented changes included the constitutive expression of a mutated allele of the cellulase master regulator XYR1, the expression of two heterologous enzymes, the β-glucosidase CEL3A from Talaromyces emersonii and the invertase SUC1 from Aspergillus niger, and the deletion of genes encoding the cellulase repressor ACE1 and the extracellular proteases SLP1 and PEP1. These alterations resulted in a remarkable increase of protein secretion rates by RUT-C30 and amended its well described β-glucosidase deficiency while enabling the utilization of sucrose and eliminating the requirement of inducing sugars for enzyme production. With a developed sugarcane molasses-based bioprocess, the engineered strain reached an extracellular protein titer of 80.6 g L-1 (0.24 g L-1 h-1), which is the highest experimentally supported titer so far reported for T. reesei. The produced enzyme cocktail displayed increased levels of cellulase and hemicellulase activities, with particularly large increments being observed for the specific activities of β-glucosidase (72-fold) and xylanase (42-fold). Notably, it also exhibited a saccharification efficiency similar to that of a commercially available cellulase preparation in the deconstruction of industrially pretreated sugarcane straw. CONCLUSION This work demonstrates the rational steps for the development of a cellulase hyperproducing strain from a well-characterized genetic background available in the public domain, the RUT-C30, associated with an industrially relevant bioprocess, paving new perspectives for Trichoderma research on cellulase production.
Collapse
Affiliation(s)
- Lucas Miranda Fonseca
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| | - Lucas Salera Parreiras
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100 Brazil
| |
Collapse
|
15
|
Bhatia S, Singh A, Batra N, Singh J. Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol 2019; 150:1294-1313. [PMID: 31747573 DOI: 10.1016/j.ijbiomac.2019.10.140] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
α-Galactosidase, (E.C. 3.2.1.22) is an exoglycosidase that target galactooligosaccharides such as raffinose, melibiose, stachyose and branched polysaccharides like galactomannans and galacto-glucomannans by catalysing the hydrolysis of α-1,6 linked terminal galactose residues. The enzyme has been isolated and characterized from microbial, plant and animal sources. This ubiquitous enzyme possesses physiological significance and immense industrial potential. Optimization of the growth conditions and efficient purification strategies can lead to a significant increase in the enzyme production. To boost commercial productivity, cloning of novel α-galactosidase genes and their heterologous expression in suitable host has gained popularity. Enzyme immobilization leads to its greater reutilization, superior thermostability, pH tolerance and increased activity. The enzyme is well explored in food industry in the removal of raffinose family oligosaccharides (RFOs) in soymilk and sugar crystallization process. It also improves animal feed quality and biomass processing. Applications of the enzyme is in the area of biomedicine includes therapeutic advances in treatment of Fabry disease, blood group conversion and removal of α-gal type immunogenic epitopes in xenotransplantation. With considerable biotechnological applications, this enzyme has been vastly commercialized and holds greater future prospects.
Collapse
Affiliation(s)
- Sonu Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Abhinashi Singh
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|