1
|
Rodrigues R, Sousa C, Barros A, Vale N. Chlamydia trachomatis: From Urogenital Infections to the Pathway of Infertility. Genes (Basel) 2025; 16:205. [PMID: 40004534 PMCID: PMC11855039 DOI: 10.3390/genes16020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Chlamydia trachomatis (CT) is a major cause of sexually transmitted infections (STIs) worldwide, with significant implications for reproductive health. The bacterium's genome contains highly polymorphic regions, influencing both the type and severity of infections. These genetic variations, particularly those occurring in the major outer membrane protein (MOMP) gene, are critical for classifying the bacterium into distinct serovars and enable CT to adapt to diverse host environments, contributing to its immune evasion, persistence, and pathogenicity. Persistent or untreated urogenital infections can lead to chronic inflammation, tissue damage, and pelvic inflammatory disease, ultimately increasing the risk of ectopic pregnancy, spontaneous abortion, and infertility. This review consolidates current knowledge on the genetic diversity of CT, its potential role in modulating infection outcomes, and its immune evasion mechanisms. By integrating scientific evidence linking chlamydial infections to infertility, we underscore the urgent need for targeted research to address this critical public health challenge.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.); (A.B.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, Leça do Balio, 4465-671 Matosinhos, Portugal
| | - Carlos Sousa
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.); (A.B.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, Leça do Balio, 4465-671 Matosinhos, Portugal
| | - Alberto Barros
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.); (A.B.)
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Centre for Reproductive Genetics Alberto Barros, 4100-012 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (R.R.); (C.S.); (A.B.)
- RISE-Health, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Wang J, Wang B, Xiao J, Chen Y, Wang C. Chlamydia psittaci: A zoonotic pathogen causing avian chlamydiosis and psittacosis. Virulence 2024; 15:2428411. [PMID: 39541409 PMCID: PMC11622591 DOI: 10.1080/21505594.2024.2428411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Chlamydia psittaci is an obligate intracellular gram-negative bacterium with a unique biphasic developmental cycle. It is a zoonotic pathogen with a wide range of hosts and can cause avian chlamydiosis in birds and psittacosis in humans. The pathogen is transmitted mainly through horizontal transmission between birds. Cross-species transmission sometimes occurs and human-to-human transmission has recently been confirmed. This review provides an updated overview of C. psittaci from the perspective of both avian chlamydiosis and psittacosis. We include the aspects of genotype, host-pathogen interaction, transmission, epidemiology, detection and diagnosis, clinical manifestation, management, and prevention, aiming to provide a basic understanding of C. psittaci and offer fresh insights focused on zoonosis and cross-species transmission.
Collapse
Affiliation(s)
- Jiewen Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Institute of Cell and Genetics, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Buwei Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Jian Xiao
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuqing Chen
- Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| |
Collapse
|
3
|
Zhang S, Jiang Y, Yu Y, Ouyang X, Zhou D, Song Y, Jiao J. Autophagy: the misty lands of Chlamydia trachomatis infection. Front Cell Infect Microbiol 2024; 14:1442995. [PMID: 39310786 PMCID: PMC11412940 DOI: 10.3389/fcimb.2024.1442995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Chlamydia are Gram-negative, obligate intracellular bacterial pathogens that infect eukaryotic cells and reside within a host-derived vacuole known as the inclusion. To facilitate intracellular replication, these bacteria must engage in host-pathogen interactions to obtain nutrients and membranes required for the growth of the inclusion, thereby sustaining prolonged bacterial colonization. Autophagy is a highly conserved process that delivers cytoplasmic substrates to the lysosome for degradation. Pathogens have developed strategies to manipulate and/or exploit autophagy to promote their replication and persistence. This review delineates recent advances in elucidating the interplay between Chlamydia trachomatis infection and autophagy in recent years, emphasizing the intricate strategies employed by both the Chlamydia pathogens and host cells. Gaining a deeper understanding of these interactions could unveil novel strategies for the prevention and treatment of Chlamydia infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical
Sciences, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical
Sciences, Beijing, China
| |
Collapse
|
4
|
Ghasemian A, Pezeshki B, Memariani M, Mahmoodi S, Kohansal M, Rajabi-Vardanjani H. The Emergence Potential of Chlamydia psittaci and Chlamydia felis as Zoonotic Agents Causing Ocular and Respiratory Infections in Humans and Animals. ARCHIVES OF RAZI INSTITUTE 2024; 79:685-694. [PMID: 40256594 PMCID: PMC12004038 DOI: 10.32592/ari.2024.79.4.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 04/22/2025]
Abstract
Members of the Chlamydiaceae are obligate Gram-negative intracellular pathogens that cause a variety of infectious diseases. As a zoonotic pathogen, Chlamydia psittaci (C. psittaci) has been associated with a wide range of infections in both wild and domestic animals, particularly birds. In humans, C. psittaci causes influenza-like symptoms, pneumonia, endocarditis, fever, chills, myalgia and headache. Similar to other Chlamydia species, the virulence factors of C. psittaci mainly include type III secretion system, type IV system effectors (TARP), CopN, HctA and HctB, OmcA, OmcB, OmpA, major outer membrane protein (MOMP), PorB and Euo. In particular, C. psittaci may predispose patients to other respiratory pathogens. Direct contact and inhalation of contaminated air droplets from birds is a risk factor for transmission of infection. Other risk factors include pregnancy, overcrowding, bird litter, and close contact with cats and dogs. Therefore, greater care should be exercised in close contact with these pet animals. Fortunately, these infections have been treated more effectively thanks to the development of novel drug delivery systems in recent decades. There is no similar review study to assess zoonotic potential of these species. Considering the highly contagious potential of C. psittaci and C. felis, together with the wide host range and available risk factors, appropriate control strategies are essential to prevent their dissemination.
Collapse
Affiliation(s)
- A Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - B Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - M Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - S Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - M Kohansal
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - H Rajabi-Vardanjani
- Department of Occupational Health Engineering, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Diallo A, Overman G, Sah P, Liechti GW. Recognition of Chlamydia trachomatis by Toll-like receptor 9 is altered during persistence. Infect Immun 2024; 92:e0006324. [PMID: 38899879 PMCID: PMC11238561 DOI: 10.1128/iai.00063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA (gDNA). Previous bioinformatic studies have demonstrated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here, we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. Utilizing reporter cell lines, we demonstrate that purified gDNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion, exacerbated by the inhibition of lipooligosaccharide biosynthesis, and is significantly altered during the induction of aberrance/persistence. Our observations support the hypothesis that chlamydial gDNA is released during the conversion between the pathogen's replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly. Given that C. trachomatis inclusions do not co-localize with TLR9-containing vacuoles in the pro-monocytic cell line U937, our findings also hint that chlamydial gDNA is capable of egress from the inclusion, and traffics to TLR9-containing vacuoles via an as yet unknown pathway.
Collapse
Affiliation(s)
- Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Grace Overman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Prakash Sah
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
7
|
Lei W, Wen Y, Yang Y, Liu S, Li Z. Chlamydia trachomatis T3SS Effector CT622 Induces Proinflammatory Cytokines Through TLR2/TLR4-Mediated MAPK/NF-κB Pathways in THP-1 Cells. J Infect Dis 2024; 229:1637-1647. [PMID: 38147361 DOI: 10.1093/infdis/jiad597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND The pathogenesis of Chlamydia trachomatis is associated with the induction of the host inflammatory response; however, the precise underlying molecular mechanisms remain poorly understood. METHODS CT622, a T3SS effector protein, has an important role in the pathogenesis of C trachomatis; however, whether CT622 can induce a host inflammatory response is not understood. Our findings demonstrate that CT622 induces the expression of interleukins 6 and 8 (IL-6 and IL-8). Mechanistically, these effects involve the activation of the MAPK/NF-κB signaling pathways (mitogen-activated protein kinase/nuclear factor κB). RESULTS Interestingly, we demonstrated that the suppression of toll-like receptor 4 using small interfering RNA markedly reduced the phosphorylation of ERK, p38, JNK, and IκBα, concomitant with a significant decrease in IL-6 and IL-8 secretion. Conversely, disruption of toll-like receptor 2 abrogated the CT622-induced upregulation of IL-8 and activation of ERK, whereas IL-6 expression and p38, JNK, and IκBα phosphorylation were unaffected. CONCLUSIONS Taken together, these results indicate that CT622 contributes to the inflammatory response through the toll-like receptor 2/4-mediated MAPK/NF-κB pathways, which provides insight into the molecular pathology of C trachomatis infection.
Collapse
Affiliation(s)
- Wenbo Lei
- School of Nursing, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, Institute of Pathogenic Biology
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yating Wen
- School of Nursing, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, Institute of Pathogenic Biology
| | - Yewei Yang
- School of Nursing, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, Institute of Pathogenic Biology
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongyu Li
- School of Nursing, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, Institute of Pathogenic Biology
| |
Collapse
|
8
|
Pan Q, Zhang Y, Liu T, Xu Q, Wu Q, Xin J. Mycoplasma glycine cleavage system key subunit GcvH is an apoptosis inhibitor targeting host endoplasmic reticulum. PLoS Pathog 2024; 20:e1012266. [PMID: 38787906 PMCID: PMC11156438 DOI: 10.1371/journal.ppat.1012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Mycoplasmas are minimal but notorious bacteria that infect humans and animals. These genome-reduced organisms have evolved strategies to overcome host apoptotic defense and establish persistent infection. Here, using Mycoplasma bovis as a model, we demonstrate that mycoplasma glycine cleavage system (GCS) H protein (GcvH) targets the endoplasmic reticulum (ER) to hijack host apoptosis facilitating bacterial infection. Mechanically, GcvH interacts with the ER-resident kinase Brsk2 and stabilizes it by blocking its autophagic degradation. Brsk2 subsequently disturbs unfolded protein response (UPR) signaling, thereby inhibiting the key apoptotic molecule CHOP expression and ER-mediated intrinsic apoptotic pathway. CHOP mediates a cross-talk between ER- and mitochondria-mediated intrinsic apoptosis. The GcvH N-terminal amino acid 31-35 region is necessary for GcvH interaction with Brsk2, as well as for GcvH to exert anti-apoptotic and potentially pro-infective functions. Notably, targeting Brsk2 to dampen apoptosis may be a conserved strategy for GCS-containing mycoplasmas. Our study reveals a novel role for the conserved metabolic route protein GcvH in Mycoplasma species. It also sheds light on how genome-reduced bacteria exploit a limited number of genomic proteins to resist host cell apoptosis thereby facilitating pathogenesis.
Collapse
Affiliation(s)
- Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yujuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qingyuan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Xinjiang, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Diallo A, Overman G, Sah P, Liechti GW. Recognition of Chlamydia trachomatis by Toll-Like Receptor 9 is altered during persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579186. [PMID: 38370826 PMCID: PMC10871208 DOI: 10.1101/2024.02.06.579186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA. Previous bioinformatic studies have indicated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. We confirm that hTLR9 colocalizes with chlamydial inclusions in the pro-monocytic cell line, U937. Utilizing HEK293 reporter cell lines, we demonstrate that purified genomic DNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in non-phagocytic HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion and exacerbated by the inhibition of lipooligosaccharide biosynthesis. The induction of aberrance / persistence also significantly alters Chlamydia-specific TLR9 signaling. Our observations support the hypothesis that chlamydial gDNA is released at appreciable levels by the bacterium during the conversion between its replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly.
Collapse
Affiliation(s)
- Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Grace Overman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Prakash Sah
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
| |
Collapse
|
10
|
Boll V, Hermanns T, Uthoff M, Erven I, Hörner EM, Kozjak-Pavlovic V, Baumann U, Hofmann K. Functional and structural diversity in deubiquitinases of the Chlamydia-like bacterium Simkania negevensis. Nat Commun 2023; 14:7335. [PMID: 37957213 PMCID: PMC10643670 DOI: 10.1038/s41467-023-43144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Besides the regulation of many cellular pathways, ubiquitination is important for defense against invading pathogens. Some intracellular bacteria have evolved deubiquitinase (DUB) effector proteins, which interfere with the host ubiquitin system and help the pathogen to evade xenophagy and lysosomal degradation. Most intracellular bacteria encode one or two DUBs, which are often linkage-promiscuous or preferentially cleave K63-linked chains attached to bacteria or bacteria-containing vacuoles. By contrast, the respiratory pathogen Legionella pneumophila possesses a much larger number of DUB effectors, including a K6-specific enzyme belonging to the OTU family and an M1-specific DUB uniquely found in this bacterium. Here, we report that the opportunistic pathogen Simkania negevensis, which is unrelated to Legionella but has a similar lifestyle, encodes a similarly large number of DUBs, including M1- and K6-specific enzymes. Simkania DUBs are highly diverse and include DUB classes never before seen in bacteria. Interestingly, the M1- and K6-specific DUBs of Legionella and Simkania are unrelated, suggesting that their acquisition occurred independently. We characterize the DUB activity of eight Simkania-encoded enzymes belonging to five different DUB classes. We also provide a structural basis for the M1-specificity of a Simkania DUB, which most likely evolved from a eukaryotic otubain-like precursor.
Collapse
Affiliation(s)
- Vanessa Boll
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Matthias Uthoff
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Bayer AG, Research & Development, Pharmaceuticals, Biologics Research, Wuppertal, Germany
| | - Ilka Erven
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Eva-Maria Hörner
- Chair of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Chair of Microbiology, Biocenter, Julius Maximilian University, Würzburg, Würzburg, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
A D, Li J, Zhang D, Xiao B, Bi H. Status of common sexually transmitted infection in population referred for colposcopy and correlation with human papillomavirus infection. BMC Womens Health 2023; 23:579. [PMID: 37940891 PMCID: PMC10634156 DOI: 10.1186/s12905-023-02693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND To investigate the prevalence of common sexually transmitted infections (STIs) and the association of STI/human papillomavirus co-infection in young and middle-aged women with previous abnormal cervical findings referred for colposcopy. METHODS 719 cervical-swab cytobrush specimens were obtained from women aged ≤ 50 years who were referred for colposcopy at Peking University First Hospital due to previous abnormal cervical findings. HPV 21 typing and a panel of pathogenic STIs were tested for using the 21 HPV GenoArray Diagnostic Kit (HBGA-21PKG; HybriBio, Ltd., Chaozhou, China) and a nucleic acid STI detection kit (HybriBio Ltd. Guangzhou, China), after which colposcopy with multipoint positioning biopsy was performed. RESULTS The overall prevalence of STIs among HPV positive women with previous abnormal cervical cancer screening results was 63.7% (458/719), with Ureaplasma parvum serovar 3, Ureaplasma parvum serovar 6 and herpes simplex virus type 2 having significantly higher prevalence among high-risk HPV positive patients (19.3%, Χ2 = 5.725, P = 0.018; 21.5%, Χ2 = 4.439, P = 0.035; 5.7%, Χ2 = 4.184, P = 0.048). Among patients positive for the high-risk human papillomavirus, the prevalence of Neisseria gonorrhoeae infection in human papillomavirus 16/18 positive patients was significantly higher than that in other patients (2.5%, Χ2 = 4.675; P = 0.043). Histopathologically, Chlamydia trachomatis infection was more frequently detected in lower than or equal to low-grade squamous intraepithelial lesion infection status (13.0%, Χ2 = 3.368; P = 0.041). CONCLUSIONS The high prevalence of HPV coinfection with other sexually transmitted pathogens, particularly Ureaplasma parvum serovar 3, Ureaplasma parvum serovar 6, and herpes simplex virus type 2, calls for routine STI screening and effective STI prevention and management in patients with abnormal cervical cancer screening results.
Collapse
Affiliation(s)
- Disi A
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, 100034, China
| | - Jiayue Li
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Dai Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, 100034, China
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, 100034, China.
| | - Hui Bi
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
12
|
Jury B, Fleming C, Huston WM, Luu LDW. Molecular pathogenesis of Chlamydia trachomatis. Front Cell Infect Microbiol 2023; 13:1281823. [PMID: 37920447 PMCID: PMC10619736 DOI: 10.3389/fcimb.2023.1281823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Chlamydia trachomatis is a strict intracellular human pathogen. It is the main bacterial cause of sexually transmitted infections and the etiologic agent of trachoma, which is the leading cause of preventable blindness. Despite over 100 years since C. trachomatis was first identified, there is still no vaccine. However in recent years, the advancement of genetic manipulation approaches for C. trachomatis has increased our understanding of the molecular pathogenesis of C. trachomatis and progress towards a vaccine. In this mini-review, we aimed to outline the factors related to the developmental cycle phase and specific pathogenesis activity of C. trachomatis in order to focus priorities for future genetic approaches. We highlight the factors known to be critical for developmental cycle stages, gene expression regulatory factors, type III secretion system and their effectors, and individual virulence factors with known impacts.
Collapse
Affiliation(s)
- Brittany Jury
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Charlotte Fleming
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Laurence Don Wai Luu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
13
|
Huang Y, Li S, He S, Li Y, He Q, Wu Y. Chlamydia psittaci inclusion membrane protein CPSIT_0842 induces macrophage apoptosis through MAPK/ERK-mediated autophagy. Int J Biochem Cell Biol 2023; 157:106376. [PMID: 36716815 DOI: 10.1016/j.biocel.2023.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Chlamydia psittaci is a multi-host zoonotic pathogen, which mainly infects poultry and inflicts an appreciable economic burden on the livestock farming industry. C. psittaci inclusion membrane proteins are uniquely positioned at the host-pathogen interface and are important virulence proteins. We have previously confirmed that Incs regulate host cell survival to help Chlamydia sp. evade host-cell-mediated defense mechanisms. However, the role of the Inc, CPSIT_0842, in the regulation of cell death following the establishment of persistent C. psittaci infection remains unknown. This study explored the effect of CPSIT_0842 on the crosstalk between the autophagic and apoptotic pathways in macrophages. Results showed that CPSIT_0842 initiated autophagy and blocked autophagic flux in human macrophages, as indicated by autophagy-related protein LC3-II, Beclin-1, and p62 upregulation, autophagosome accumulation, and lysosomal protein LAMP1 diminution. We also showed that the disruption of autophagic flux had a regulatory effect on CPSIT_0842-induced apoptosis. Moreover, the suppression of autophagy initiation by 3-methyladenine attenuated CPSIT_0842-induced apoptosis. By contrast, the induction of autophagic flux by rapamycin did not significantly affect CPSIT_0842-induced apoptosis. Taken together, these findings demonstrate that CPSIT_0842 induced macrophage apoptosis by initiating incomplete autophagy through the MAPK/ERK/mTOR signaling pathway, which may be instrumental to the ability of C. psittaci to evade the host innate immune response and establish persistent infection. The improved understanding of the autophagic and cell death pathways triggered upon bacterial inclusion will likely help in the development of novel treatment strategies for chlamydia infection.
Collapse
Affiliation(s)
- Yanru Huang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China
| | - Sijia Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China
| | - Siqin He
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China; Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang 421000, Hunan, China
| | - Qingzhi He
- School of Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
14
|
Shu M, Bu J, Lei W, Chen L, Zhou Z, Lu C, Chen C, Li Z. Pgp3 protein of Chlamydia trachomatis inhibits apoptosis via HO-1 upregulation mediated by PI3K/Akt activation. Microb Pathog 2023; 178:106056. [PMID: 36893904 DOI: 10.1016/j.micpath.2023.106056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
As an obligate intracellular pathogen, Chlamydia trachomatis assumes various strategies to inhibit host cells apoptosis, thereby providing a suitable intracellular environment to ensure completion of the development cycle. In the current study, we revealed that Pgp3 protein, one of eight plasmid proteins of C. trachomatis that has been illustrated as the key virulence factor, increased HO-1 expression to suppress apoptosis, and downregulation of HO-1 with siRNA-HO-1 failed to exert anti-apoptosis activity of Pgp3 protein. Moreover, treatment of PI3K/Akt pathway inhibitor and Nrf2 inhibitor evidently reduced HO-1 expression and Nrf2 nuclear translocation was blocked by PI3K/Akt pathway inhibitor. These findings highlight that induction of HO-1 expression by Pgp3 protein is probably due to regulation of Nrf2 nuclear translocation activated by PI3K/Akt pathway, which provide clues on how C. trachomatis adjusts apoptosis.
Collapse
Affiliation(s)
- Mingyi Shu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Jichang Bu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Lili Chen
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Zhou Zhou
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Chaoqun Chen
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
15
|
Tim-3 blockade enhances the clearance of Chlamydia psittaci in the lung by promoting a cell-mediated immune response. Int Immunopharmacol 2023; 116:109780. [PMID: 36720194 DOI: 10.1016/j.intimp.2023.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
Chlamydia psittaci is remarkable at disrupting immunity and thus poses a great risk to the animal industry and public health. Immune inhibitory molecule upregulation and the accumulation of specialized cells play key roles in chlamydial clearance. It is clear that the T-cell immunoglobulin and mucin domain protein 3 receptor (Tim-3) can regulate effector T cells in infectious disease. However, the immunomodulatory effect of Tim-3 in C. psittaci infection remains unknown. Thus, the expression of Tim-3 in effector T cells and its immune regulatory function during C. psittaci infection were investigated. The level of Tim-3 on CD4+ and CD8+ T cells was meaningfully higher in C. psittaci-infected mice. Blockade of Tim-3 signaling by anti-Tim-3 antibody showed accelerated C. psittaci clearance and less pathological changes in the lung than isotype immunoglobulin treatment. Furthermore, treatment with anti-Tim-3 antibody greatly enhanced the levels of IFN-γ and interleukin (IL)-22/IL-17, which were correlated with an improved Th1- and Th17-mediated immune response, and decreased IL-10, which were related with a decreased Treg immune response. In conclusion, Tim-3 expression in effector T cells negatively regulates Th1 and Th17 immune responses against C. psittaci respiratory infection.
Collapse
|
16
|
Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions. Nat Rev Microbiol 2023:10.1038/s41579-023-00860-y. [PMID: 36788308 DOI: 10.1038/s41579-023-00860-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
In recent years, substantial progress has been made in the understanding of the intracellular lifestyle of Chlamydia trachomatis and how the bacteria establish themselves in the human host. As an obligate intracellular pathogenic bacterium with a strongly reduced coding capacity, C. trachomatis depends on the provision of nutrients from the host cell. In this Review, we summarize the current understanding of how C. trachomatis establishes its intracellular replication niche, how its metabolism functions in the host cell, how it can defend itself against the cell autonomous and innate immune response and how it overcomes adverse situations through the transition to a persistent state. In particular, we focus on those processes for which a mechanistic understanding has been achieved.
Collapse
|
17
|
Scharbaai-Vázquez R, J. López Font F, A. Zayas Rodríguez F. Persistence in Chlamydia. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chlamydia spp. are important causes of acute and persistent/chronic infections. All Chlamydia spp. display a unique biphasic developmental cycle alternating between an infectious elementary body (EB) and a replicative form, the reticulate body (RB), followed by the multiplication of RBs by binary fission and progressive differentiation back into EBs. During its intracellular life, Chlamydia employs multiple mechanisms to ensure its persistence inside the host. These include evasion of diverse innate immune responses, modulation of host cell structure and endocytosis, inhibition of apoptosis, activation of pro-signaling pathways, and conversion to enlarged, non-replicative but viable “aberrant bodies” (ABs). Early research described several systems for Chlamydial persistence with a significant number of variables that make a direct comparison of results difficult. Now, emerging tools for genetic manipulations in Chlamydia and advances in global microarray, transcriptomics, and proteomics have opened new and exciting opportunities to understand the persistent state of Chlamydia and link the immune and molecular events of persistence with the pathogenesis of recurrent and chronic Chlamydial infections. This chapter reviews our current understanding and advances in the molecular biology of Chlamydia persistence.
Collapse
|
18
|
He Z, Wang C, Wang J, Zheng K, Ding N, Yu M, Li W, Tang Y, Li Y, Xiao J, Liang M, Wu Y. Chlamydia psittaci inhibits apoptosis of human neutrophils by activating P2X7 receptor expression. Int J Med Microbiol 2022; 312:151571. [PMID: 36511277 DOI: 10.1016/j.ijmm.2022.151571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
This study tested the hypothesis that Chlamydia psittaci (C. psittaci) survives and multiplies in human neutrophils by activating P2X7, a nonselective cationic channel receptor expressed constitutively on the surface of these cells. Findings illustrated that P2X7 receptor expression was enhanced in C. psittaci-infected neutrophils. C. psittaci was able to inhibite spontaneous apoptosis of neutrophils through mitochondrial-induced ATP release and IL-8 production. Importantly, inhibiting ATP activation of the P2X7 receptor with AZ10606120 promotes apoptosis, while stimulating P2X7 receptor expression with BzATP delayed spontaneous apoptosis of human neutrophils, suggesting that C. psittaci inhibits apoptosis of human neutrophils by activating P2X7 receptor. This study reveals new insights into the survival advantages of the latent persistent state of C. psittaci and the mechanism by which it evades the innate immune response.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Weiwei Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yuanyuan Tang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Jian Xiao
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mingxing Liang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
19
|
Wang J, Wang K. New insights into Chlamydia pathogenesis: Role of leukemia inhibitory factor. Front Cell Infect Microbiol 2022; 12:1029178. [PMID: 36329823 PMCID: PMC9623337 DOI: 10.3389/fcimb.2022.1029178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the leading cause of bacterial sexually transmitted infections worldwide. Since the symptoms of Ct infection are often subtle or absent, most people are unaware of their infection until they are tested or develop severe complications such as infertility. It is believed that the primary culprit of Ct-associated tissue damage is unresolved chronic inflammation, resulting in aberrant production of cytokines, chemokines, and growth factors, as well as dysregulated tissue influx of innate and adaptive immune cells. A member of the IL-6 cytokine family, leukemia inhibitory factor (LIF), is one of the cytokines induced by Ct infection but its role in Ct pathogenesis is unclear. In this article, we review the biology of LIF and LIF receptor (LIFR)-mediated signaling pathways, summarize the physiological role of LIF in the reproductive system, and discuss the impact of LIF in chronic inflammatory conditions and its implication in Ct pathogenesis. Under normal circumstances, LIF is produced to maintain epithelial homeostasis and tissue repair, including the aftermath of Ct infection. However, LIF/LIFR-mediated signaling – particularly prolonged strong signaling – can gradually transform the microenvironment of the fallopian tube by altering the fate of epithelial cells and the cellular composition of epithelium. This harmful transformation of epithelium may be a key process that leads to an enhanced risk of infertility, ectopic pregnancy and cancer following Ct infection.
Collapse
Affiliation(s)
- Jun Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- *Correspondence: Jun Wang,
| | - Katherine Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
| |
Collapse
|
20
|
Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071065. [PMID: 35888153 PMCID: PMC9323215 DOI: 10.3390/life12071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Currently, Chlamydia trachomatis still possesses a significant impact on public health, with more than 130 million new cases each year, alongside a high prevalence of asymptomatic infections (approximately 80% in women and 50% in men). C. trachomatis infection involves a wide range of different cell types, from cervical epithelial cells, testicular Sertoli cells to Synovial cells, leading to a broad spectrum of pathologies of varying severity both in women and in men. Several two-dimensional in vitro cellular models have been employed for investigating C. trachomatis host–cell interaction, although they present several limitations, such as the inability to mimic the complex and dynamically changing structure of in vivo human host-tissues. Here, we present a brief overview of the most cutting-edge three-dimensional cell-culture models that mimic the pathophysiology of in vivo human tissues and organs for better translating experimental findings into a clinical setting. Future perspectives in the field of C. trachomatis research are also provided.
Collapse
|
21
|
Wen Y, Luo F, Zhao L, Su S, Lei W, Liu Y, Shi K, Li Z. Long Non-Coding RNA FGD5-AS1 Induced by Chlamydia trachomatis Infection Inhibits Apoptosis via Wnt/β-Catenin Signaling Pathway. Front Cell Infect Microbiol 2021; 11:701352. [PMID: 34568091 PMCID: PMC8460124 DOI: 10.3389/fcimb.2021.701352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Chlamydia trachomatis (Ct) is one of the most common bacterial sexually transmitted infection (STI) pathogens in the world, but the exact pathogenic mechanism still needs to be further elucidated. Long non-coding RNAs (lncRNAs) have become vital regulators in many biological processes. Their role in the interaction between Ct and host cells has not been reported. Methods Microarrays were used to study the expression profiles of lncRNAs and mRNAs in HeLa cells at 12, 24, and 40 h post-infection (hpi). Differentially expressed lncRNAs and mRNAs were verified by RT-qPCR. Coding-non-coding (CNC) network analysis showed co-expression molecules of selected lncRNA. Western blot, flow cytometry, and indirect immunofluorescence were used to detect the effect of lncRNA FGD5-AS1 on apoptosis during Ct infection. Results Compared with the uninfected group, the number of differential lncRNAs were 2,130, 1,081, and 1,101 at 12, 24, and 40 hpi, and the number of differential mRNAs was 1,998, 1,129, and 1,330, respectively. Ct induced differential expression of large amounts of lncRNAs and mRNAs in HeLa cells, indicating that lncRNAs may play roles in the pathogenesis of Ct. RT-qPCR verified six differential lncRNAs and six differential mRNAs, confirming the reliability of the microarray. Among these molecules, lncRNA FGD5-AS1 was found to be upregulated at 12 and 24 hpi. Coding-non-coding (CNC) network analysis showed that co-expressed differential molecules of FGD5-AS1 at 12 and 24 hpi were enriched in the DNA replication and Wnt signaling pathway. The downregulation of FGD5-AS1 decreased the expression of β-catenin and inhibited the translocation of β-catenin and the DNA replication, while it promoted apoptosis of the host cells. Conclusions DNA replication and apoptosis of host cells were affected by upregulating FGD5-AS1 via Wnt/β-catenin pathway during Ct infection. This study provides evidence that lncRNAs are involved in the coaction between Ct and hosts, and provides new insights into the study of lncRNAs that regulate chlamydial infection.
Collapse
Affiliation(s)
- Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yi Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Keliang Shi
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
22
|
He Z, Xiao J, Wang J, Lu S, Zheng K, Yu M, Liu J, Wang C, Ding N, Liang M, Wu Y. The Chlamydia psittaci Inclusion Membrane Protein 0556 Inhibits Human Neutrophils Apoptosis Through PI3K/AKT and NF-κB Signaling Pathways. Front Immunol 2021; 12:694573. [PMID: 34484191 PMCID: PMC8414580 DOI: 10.3389/fimmu.2021.694573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023] Open
Abstract
Inclusion membrane proteins (Incs) play an important role in the structure and stability of chlamydial inclusion and the interaction between Chlamydia spp. and their hosts. Following Chlamydia infection through the respiratory tract, human polymorphonuclear neutrophils (hPMN) not only act as the primary immune cells reaching the lungs, but also serve as reservoir for Chlamydia. We have previously identified a Chlamydia psittaci hypothetical protein, CPSIT_0556, as a medium expressed inclusion membrane protein. However, the role of inclusion membrane protein, CPSIT_0556 in regulating hPMN functions remains unknown. In the present study, we found that CPSIT_0556 could not only inhibit hPMN apoptosis through the PI3K/Akt and NF-κB signaling pathways by releasing IL-8, but also delays procaspase-3 processing and inhibits caspase-3 activity in hPMN. Up-regulating the expression of anti-apoptotic protein Mcl-1 and down-regulating the expression of pro-apoptotic protein Bax could also inhibit the translocalization of Bax in the cytoplasm into the mitochondria, as well as induce the transfer of p65 NF-κB from the cytoplasm to the nucleus. Overall, our findings demonstrate that CPSIT_0556 could inhibit hPMN apoptosis through PI3K/Akt and NF-κB pathways and provide new insights towards understanding a better understanding of the molecular pathogenesis and immune escape mechanisms of C. psittaci.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jian Xiao
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jie Liu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Mingxing Liang
- Department of Clinical Laboratory, The Affiliated Huaihua Hospital of University of South China, Huaihua, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
23
|
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021; 9:660259. [PMID: 33898462 PMCID: PMC8060502 DOI: 10.3389/fcell.2021.660259] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
The central nervous system (CNS) has very limited capacity to regenerate after traumatic injury or disease. In contrast, the peripheral nervous system (PNS) has far greater capacity for regeneration. This difference can be partly attributed to variances in glial-mediated functions, such as axon guidance, structural support, secretion of growth factors and phagocytic activity. Due to their growth-promoting characteristic, transplantation of PNS glia has been trialed for neural repair. After peripheral nerve injuries, Schwann cells (SCs, the main PNS glia) phagocytose myelin debris and attract macrophages to the injury site to aid in debris clearance. One peripheral nerve, the olfactory nerve, is unique in that it continuously regenerates throughout life. The olfactory nerve glia, olfactory ensheathing cells (OECs), are the primary phagocytes within this nerve, continuously clearing axonal debris arising from the normal regeneration of the nerve and after injury. In contrast to SCs, OECs do not appear to attract macrophages. SCs and OECs also respond to and phagocytose bacteria, a function likely critical for tackling microbial invasion of the CNS via peripheral nerves. However, phagocytosis is not always effective; inflammation, aging and/or genetic factors may contribute to compromised phagocytic activity. Here, we highlight the diverse roles of SCs and OECs with the focus on their phagocytic activity under physiological and pathological conditions. We also explore why understanding the contribution of peripheral glia phagocytosis may provide us with translational strategies for achieving axonal regeneration of the injured nervous system and potentially for the treatment of certain neurological diseases.
Collapse
Affiliation(s)
- Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mariyam Murtaza
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
24
|
Wen Y, Chen H, Luo F, Zhao L, Shu M, Su S, Zhao Y, Huang Q, Li Z. Chlamydia trachomatis Plasmid Protein pORF5 Up-Regulates ZFAS1 to Promote Host Cell Survival via MAPK/p38 Pathway. Front Microbiol 2020; 11:593295. [PMID: 33391210 PMCID: PMC7773608 DOI: 10.3389/fmicb.2020.593295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to play essential roles in many diseases. However, few studies have shown that lncRNAs take part in the pathogenesis of Chlamydia trachomatis (C. trachomatis). Here, we used a lncRNA microarray to detect the global lncRNA expression profiles in HeLa cells transfected with pORF5 plasmid protein, an important virulence factor for C. trachomatis. The differentially expressed lncRNAs and mRNAs screened by microarray were selected for validation by quantitative real-time PCR. The up-regulated lncRNA zinc finger antisense 1 (ZFAS1) was presumed to involved in MAPK pathways by bioinformatics analysis. Inhibition of ZFAS1 decreased the apoptotic rate of pORF5 and reduced the infectivity of C. trachomatis, and MAPK/p38 pathway was involved in anti-apoptotic effect induced by ZFAS1. Therefore, the present study confirmed that pORF5 up-regulates ZFAS1 to promote host cell survival via MAPK/p38 pathway and influences the infectivity of C. trachomatis.
Collapse
Affiliation(s)
- Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Hongliang Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yuqi Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Qiulin Huang
- Department of General Surgery, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
25
|
Chen H, Luo L, Wen Y, He B, Ling H, Shui J, He P, Hou X, Tang S, Li Z. Chlamydia trachomatis and Human Papillomavirus Infection in Women From Southern Hunan Province in China: A Large Observational Study. Front Microbiol 2020; 11:827. [PMID: 32431682 PMCID: PMC7214719 DOI: 10.3389/fmicb.2020.00827] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Chlamydia trachomatis and human papillomavirus (HPV) are the most common pathogens of sexually transmitted infections (STIs), which can increase the risk of cervical cancer and infertility. The purpose of this study was to evaluate the prevalence, genotype and risk factors of C. trachomatis and/or HPV infection in women attending the annual physical examination, assistant reproductive treatment and visiting the gynecology clinics from Southern Hunan province in China. Cervical-swab samples were collected from 5006 participants. We found that the overall prevalence of C. trachomatis, HPV infection and C. trachomatis/HPV coinfection was 4.7% (236/5006), 15.5% (778/5006) and 1.2% (59/5006), while the prevalence of asymptomatic infection of that was 3.8% (38/1006), 10.8% (109/1006) and 0.6% (6/1006), respectively. Furthermore, 25.0% (59/236) of C. trachomatis infection and 7.6% (59/778) of HPV infection were attributable to C. trachomatis and HPV coinfection. C. trachomatis and HPV infection were more often observed in young women of less than 25 years (10.4% and 21.3%, respectively) and in the outpatients from gynecology clinics (5.2% and 18.0%, respectively). Of note, a higher prevalence of C. trachomatis infection was observed in HPV-positive women (7.6%) than HPV- negative ones (4.2%), and vice versa. The top three C. trachomatis genotypes were E (1.4%), F (1.1%) and J (0.8%), and the counterparts of HPV genotypes were HPV52 (4.2%), HPV16 (2.3%) and HPV58 (2.2%), respectively. Among the 151 outpatients with colposcopy data, HPV infection was associated with severe cervical lesions with OR of 15.86 (95% CI 3.14–80.0, P < 0.001) while C. trachomatis infection was more likely associated with a low grade colposcopy impression (OR = 3.25, 95% CI: 1.22–8.65, P = 0.018). Our data highlight the high prevalence of asymptomatic C. trachomatis and HPV infection, particularly among women of <25 years. The two pathogens may serve as mutual risk factors to increase the risk of infections and cervical lesions. Widespread implementation of HPV and C. trachomatis screening programs, especially for young women, would be an effective strategy to relieve the burden of sexually transmitted infections.
Collapse
Affiliation(s)
- Hongliang Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Lipei Luo
- Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People's Hospital, Chenzhou, China.,Affiliated Chenzhou Hospital, Southern Medical University, Guangzhou, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Bei He
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Hua Ling
- Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People's Hospital, Chenzhou, China.,Affiliated Chenzhou Hospital, Southern Medical University, Guangzhou, China
| | - Jinwei Shui
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ping He
- Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Xiaoli Hou
- Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Shixing Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
26
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|