1
|
Mohamad A, Shah NNAK, Sulaiman A, Mohd Adzahan N, Arshad RN, Aadil RM. The Impact of Pulsed Electric Fields on Milk's Macro- and Micronutrient Profile: A Comprehensive Review. Foods 2023; 12:foods12112114. [PMID: 37297369 DOI: 10.3390/foods12112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Consumers around the world are attracted to products with beneficial effects on health. The stability, functionality, and integrity of milk constituents are crucial determinants of product quality in the dairy industry. Milk contains macronutrients and micronutrients that aid in a wide range of physiological functions in the human body. Deficiencies of these two types of nutrients can confine growth in children and increase the risk of several diseases in adults. The influence of pulsed electric fields (PEF) on milk has been extensively reviewed, mostly concentrating on the inactivation of microbes and enzymes for preservation purposes. Therefore, the information on the variations of milk macro- and micronutrients treated by PEF has yet to be elucidated and it is imperative as it may affect the functionality, stability, and integrity of the milk and dairy products. In this review, we describe in detail the introduction, types, and components of PEF, the inactivation mechanism of biological cells by PEF, as well as the effects of PEF on macro- and micronutrients in milk. In addition, we also cover the limitations that hinder the commercialization and integration of PEF in the food industry and the future outlook for PEF. The present review consolidates the latest research findings investigating the impact of PEF on the nutritional composition of milk. The assimilation of this valuable information aims to empower both industry professionals and consumers, facilitating a thorough understanding and meticulous assessment of the prospective adoption of PEF as an alternative technique for milk pasteurization.
Collapse
Affiliation(s)
- Azizah Mohamad
- Food Biotechnology Research Centre, Agro-Biotechnology Institute (ABI), National Institutes of Biotechnology Malaysia (NIBM), CO MARDI Headquarters, Serdang 43400, Selangor, Malaysia
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Nadiah Abdul Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Selangor, Malaysia
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Zhou J, Hung YC, Xie X. Application of electric field treatment (EFT) for microbial control in water and liquid food. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130561. [PMID: 37055970 DOI: 10.1016/j.jhazmat.2022.130561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 06/19/2023]
Abstract
Water disinfection and food pasteurization are critical to reducing waterborne and foodborne diseases, which have been a pressing public health issue globally. Electrified treatment processes are emerging and have become promising alternatives due to the low cost of electricity, independence of chemicals, and low potential to form by-products. Electric field treatment (EFT) is a physical pathogen inactivation approach, which damages cell membrane by irreversible electroporation. EFT has been studied for both water disinfection and food pasteurization. However, no study has systematically connected the two fields with an up-to-date review. In this article, we first provide a comprehensive background of microbial control in water and food, followed by the introduction of EFT. Subsequently, we summarize the recent EFT studies for pathogen inactivation from three aspects, the processing parameters, its efficacy against different pathogens, and the impact of liquid properties on the inactivation performance. We also review the development of novel configurations and materials for EFT devices to address the current challenges of EFT. This review introduces EFT from an engineering perspective and may serve as a bridge to connect the field of environmental engineering and food science.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yen-Con Hung
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
4
|
Yang Y, Ma S, Guo K, Guo D, Li J, Wang M, Wang Y, Zhang C, Xia X, Shi C. Efficacy of 405-nm LED illumination and citral used alone and in combination for the inactivation of Cronobacter sakazakii in reconstituted powdered infant formula. Food Res Int 2022; 154:111027. [DOI: 10.1016/j.foodres.2022.111027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/30/2021] [Accepted: 02/14/2022] [Indexed: 11/04/2022]
|
5
|
Zhou J, Hung YC, Xie X. Making waves: Pathogen inactivation by electric field treatment: From liquid food to drinking water. WATER RESEARCH 2021; 207:117817. [PMID: 34763276 DOI: 10.1016/j.watres.2021.117817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yen-Con Hung
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Yuliangsih S, Waturangi DE, Yogiara. Microbial analysis and virulence genes detection of milk preserved using heat-assisted pulsed electric field. BMC Res Notes 2021; 14:397. [PMID: 34702364 PMCID: PMC8549208 DOI: 10.1186/s13104-021-05805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Microbial analysis in milk preserved using heat-assisted Pulsed Electric Field (PEF) need to be assessed. In this study we analyze the microbial quality and virulence-associated genes in milk samples preserved using heat-assisted PEF from several producers in Indonesia. Results Milk samples were collected consisting of raw milk, milks taken after the heating, PEF, mixing, cooling, and packaging. Microbiological and Polymerase Chain Reaction (PCR) detection for virulence genes were performed. Heat-assisted PEF treatment gave 2.7–7.47 log reduction for TPC; 1.6–2.56 log reduction for MPN number; 3.13–6.48 log reduction for S. aureus; and for B. cereus there was an increase of 0.76 log and a reduction of 0.46 log. While milk samples from thermal pasteurization gave log reduction numbers of TPC, MPN, and S. aureus respectively 5.28; 2.56; and 4.73, for B. cereus was increasing 2.4 log. Producer C performed the best results with significant reduction compared with others (p < 0.005). There were no colonies of L. monocytogenes found in all of the samples. PCR results showed that milk samples possessed virulence genes 17.5% (10/57) of invA genes, 54.4% (31/57) of nheA genes, 68.4% (39/57) of cytK genes, 38.6% (22/57) of nuc genes, 63.2% (36/57) of ileS genes, while hly and actA genes were not detected. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05805-3.
Collapse
Affiliation(s)
- Suci Yuliangsih
- Indonesian Food and Drug Authority, Jalan Percetakan Negara No. 23, Jakarta Pusat, 10560, Indonesia.,Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| | - Yogiara
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| |
Collapse
|
7
|
Mohamad A, Abdul Karim Shah NN, Sulaiman A, Mohd Adzahan N, Aadil RM. Pulsed electric field of goat milk: Impact on
Escherichia coli
ATCC
8739 and vitamin constituents. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Azizah Mohamad
- Food Biotechnology Centre Agro‐Biotechnology Institute (ABI), National Institutes of Biotechnology Malaysia (NIBM) Serdang Selangor Malaysia
- Department of Process and Food Engineering, Faculty of Engineering Universiti Putra Malaysia Serdang Selangor Malaysia
| | - Nor Nadiah Abdul Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering Universiti Putra Malaysia Serdang Selangor Malaysia
- Halal Product Research Institute, Putra Infoport, Universiti Putra Malaysia Serdang Selangor Malaysia
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering, Faculty of Engineering Universiti Putra Malaysia Serdang Selangor Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor Malaysia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
8
|
Eradication of Saccharomyces cerevisiae by Pulsed Electric Field Treatments. Microorganisms 2020; 8:microorganisms8111684. [PMID: 33138324 PMCID: PMC7692574 DOI: 10.3390/microorganisms8111684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
One of the promising technologies that can inactivate microorganisms without heat is pulsed electric field (PEF) treatment. The aim of this study was to examine the influence of PEF treatment (2.9 kV cm−1, 100 Hz, 5000 pulses in trains mode of 500 pulses with a pulse duration of 10 µs) on Saccharomyces cerevisiae eradication and resealing in different conditions, such as current density (which is influenced by the medium conductivity), the sort of medium (phosphate buffered saline (PBS) vs. yeast malt broth (YMB) and a combined treatment of PEF with the addition of preservatives. When the S. cerevisiae were suspended in PBS, increasing the current density from 0.02 to 3.3 A cm−2 (corresponding to a total specific energy of 22.04 to 614.59 kJ kg−1) led to an increase of S. cerevisiae eradication. At 3.3 A cm−2, a total S. cerevisiae eradication was observed. However, when the S. cerevisiae in PBS was treated with the highest current density of 3.3 A cm−2, followed by dilution in a rich YMB medium, a phenomenon of cell membrane resealing was observed by flow cytometry (FCM) and CFU analysis. The viability of S. cerevisiae was also examined when the culture was exposed to repeating PEF treatments (up to four cycles) with and without the addition of preservatives. This experiment was performed when the S. cerevisiae were suspended in YMB containing tartaric acid (pH 3.4) and ethanol to a final concentration of 10% (v/v), which mimics wine. It was shown that one PEF treatment cycle led to a reduction of 1.35 log10, compared to 2.24 log10 when four cycles were applied. However, no synergic effect was observed when the preservatives, free SO2, and sorbic acid were added. This study shows the important and necessary knowledge about yeast eradication and membrane recovery processes after PEF treatment, in particular for application in the liquid food industry.
Collapse
|
9
|
Thamkaew G, Gómez Galindo F. Influence of pulsed and moderate electric field protocols on the reversible permeabilization and drying of Thai basil leaves. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Al Daccache M, Koubaa M, Maroun RG, Salameh D, Louka N, Vorobiev E. Pulsed electric field-assisted fermentation of Hanseniaspora sp. yeast isolated from Lebanese apples. Food Res Int 2020; 129:108840. [PMID: 32036887 DOI: 10.1016/j.foodres.2019.108840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 01/26/2023]
Abstract
Hanseniaspora sp. yeast was stimulated using pulsed electric field (PEF) during the different fermentation phases. The impact of PEF parameters on the growth rate and substrate consumption was studied. The PEF intensities chosen for this study were mainly in the range of 72-285 V cm-1. A PEF treatment chamber was designed for this study with a ratio of 1:50 between the volume of the fermenter and the volume of the chamber. It allows the recycling of the culture medium using a peristaltic pump, and the yeast treatment by PEF during the fermentation. The continuous circulation of the medium allows avoiding the increase of the temperature inside the fermenter, the cell aggregation, as well as the agitation and the scale-up issues that are associated with the PEF treatment of the entire volume in batch mode. The maximal yeast growth rate was obtained using an electric field strength of 285 V cm-1 applied during both Lag and early exponential phase, and Log phase. This observation was accompanied by a faster consumption of glucose in the medium during the fermentation. Besides, the sensitivity of Hanseniaspora sp. yeast to PEF treatment was more pronounced during the Lag and early exponential phase than the Log phase. The results obtained exposed the great benefit of stimulating Hanseniaspora sp. yeast using moderate PEF as it reduces the fermentation time along with increasing the biomass concentration.
Collapse
Affiliation(s)
- Marina Al Daccache
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France.
| | - Richard G Maroun
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Dominique Salameh
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Nicolas Louka
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA, Laboratoire CTA, Université Saint-Joseph, Beyrouth, Lebanon
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| |
Collapse
|