1
|
Unimke AA, Okezie O, Mohammed SE, Mmuoegbulam AO, Abdullahi S, Ofon UA, Olim DM, Badamasi H, Galadima AI, Fatunla OK, Abdullahi A, Yahaya SM, Ibrahim MM, Muhammad AB, Iya NID, Ayanda OS. Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2870-2893. [PMID: 39612179 DOI: 10.2166/wst.2024.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could be solved by combining remediation techniques. An effective, affordable, and environmentally benign method of reducing petroleum toxins is provided by the advanced idea of bioremediation, which has evolved into nanobioremediation. Environments contaminated with PHCs have been restored through microbe-plant-nanoparticle (NP)-mediated remediation, this review emphasizes how various metallic NPs interact with microbes and plants changing both their activity and that of enzymes, therefore accelerating the remediation process. This work further examines the challenges and possible uses of nanobioremediation, as well as the application of novel technologies in the interactions between bacteria, plants, and NPs for the bioremediation of PHCs. Furthermore, it has been shown that the use of plant-based, microbe-based, microbe-plant-based, and microbe-plant-NP-based techniques to remediate contaminated soils or water bodies is economical and environmentally beneficial. Microbial consortia have been reported as the treasure houses for the cleaning and recovery of hydrocarbon-contaminated environments, and the development of technologies for bioremediation requires an understanding of hydrocarbon degradation mechanisms.
Collapse
Affiliation(s)
- Augustine A Unimke
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria E-mail:
| | - Onyemaechi Okezie
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria
| | - Sa'adatu E Mohammed
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Augusta O Mmuoegbulam
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria
| | - Saidu Abdullahi
- Department of Botany, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Utibe A Ofon
- Department of Microbiology, University of Uyo, Uyo, Nigeria
| | - Denis M Olim
- Department of Soil Science, University of Calabar, Calabar, Nigeria
| | - Hamza Badamasi
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Abdulsalam I Galadima
- Department of Physics, Faculty of Physical Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Aminu Abdullahi
- Department of Biotechnology, Modibbo Adama University Yola, PMB 2076 Yola, Adamawa State, Nigeria
| | - Sharhabil M Yahaya
- Department of Soil Science, Faculty of Agriculture/Institute for Agricultural Research, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Abba B Muhammad
- Department of Mechanical Engineering, University of Maiduguri, Maiduguri, Nigeria
| | - Naseer I Durumin Iya
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Olushola S Ayanda
- Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti, Nigeria
| |
Collapse
|
2
|
Li X, Song C, Kang X, Chen F, Li A, Wang Y, Zou J, Yin J, Li Y, Sun Z, Ma X, Liu J. Assembly and functional profile of rhizosphere microbial community during the Salix viminalis-AMF remediation of polycyclic aromatic hydrocarbon polluted soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122503. [PMID: 39299104 DOI: 10.1016/j.jenvman.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are positive to the phytoremediation by improving plant biomass and soil properties. However, the role of AM plants to the remediation of polycyclic aromatic hydrocarbons (PAHs) is yet to be widely recognized, and the impact of AM plants to indigenous microbial communities during remediation remains unclear. In this work, a 90-day study was conducted to assess the effect of AMF-Salix viminalis on the removal of PAHs, and explore the impact to the microbial community composition, abundance, and function. Results showed that AMF-Salix viminalis effectively enhanced the removal of benzo[a]pyrene, and enriched more PAH-degrading bacteria, consisting of Actinobacteria, Chloroflexi, Sphingomonas, and Stenotrophobacter, as well as fungi including Basidiomycota, Pseudogymnoascus, and Tomentella. For gene function, AM willow enhanced the enrichment of genes involved in amino acid synthesis, aminoacyl-tRNA biosynthesis, and cysteine and methionine metabolism pathways. F. mosseae inoculation had a greater effect on alpha- and beta-diversity of microbial genes at 90 d. Additionally, AMF inoculation significantly increased the soil microbial biomass carbon and organic matter concentration. All together, the microbial community assembly and function shaped by AM willow promoted the dissipation of PAHs. Our results support the effectiveness of AM remediation and contribute to reveal the enhancing-remediation mechanism to PAHs using multi-omics data.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Chuansheng Song
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Fengzhen Chen
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiahui Yin
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; College of Horticulture, Jilin Agricultural University, Changchun, 130000, Jilin, China
| | - Yingying Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaodong Ma
- Department of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Junxiang Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
3
|
Xue T, Fang Y, Li H, Li M, Li C. The Effects of Exogenous Benzoic Acid on the Physicochemical Properties, Enzyme Activities and Microbial Community Structures of Perilla frutescens Inter-Root Soil. Microorganisms 2024; 12:1190. [PMID: 38930572 PMCID: PMC11206010 DOI: 10.3390/microorganisms12061190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study analyzed the effects of benzoic acid (BA) on the physicochemical properties and microbial community structure of perilla rhizosphere soil. The analysis was based on high-throughput sequencing technology and physiological and biochemical detection. The results showed that with the increase in BA concentration, soil pH significantly decreased, while the contents of total nitrogen (TN), alkaline nitrogen (AN), available phosphorus (AP), and available potassium (AK) significantly increased. The activities of soil conversion enzymes urease and phosphatase significantly increased, but the activities of catalase and peroxidase significantly decreased. This indicates that BA can increase soil enzyme activity and improve nutrient conversion; the addition of BA significantly altered the composition and diversity of soil bacterial and fungal communities. The relative abundance of beneficial bacteria such as Gemmatimonas, Pseudolabrys, and Bradyrhizobium decreased significantly, while the relative abundance of harmful fungi such as Pseudogymnoascus, Pseudoeurotium, and Talaromyces increased significantly. Correlation analysis shows that AP, AN, and TN are the main physicochemical factors affecting the structure of soil microbial communities. This study elucidates the effects of BA on the physicochemical properties and microbial community structure of perilla soil, and preliminarily reveals the mechanism of its allelopathic effect on the growth of perilla.
Collapse
Affiliation(s)
- Tongtong Xue
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (T.X.); (Y.F.); (H.L.)
- Heilongjiang Province Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuxin Fang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (T.X.); (Y.F.); (H.L.)
- Heilongjiang Province Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hui Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (T.X.); (Y.F.); (H.L.)
- Heilongjiang Province Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Mengsha Li
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Chongwei Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (T.X.); (Y.F.); (H.L.)
- Heilongjiang Province Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
4
|
Basiru S, Ait Si Mhand K, Hijri M. Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. MYCORRHIZA 2023; 33:119-137. [PMID: 36961605 DOI: 10.1007/s00572-023-01107-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/21/2023] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are essential components of the plant root mycobiome and are found in approximately 80% of land plants. As obligate plant symbionts, AMF harbor their own microbiota, both inside and outside the plant root system. AMF-associated bacteria (AAB) possess various functional traits, including nitrogen fixation, organic and inorganic phosphate mobilization, growth hormone production, biofilm production, enzymatic capabilities, and biocontrol against pathogen attacks, which not only contribute to the health of the arbuscular mycorrhizal symbiosis but also promote plant growth. Because of this, there is increasing interest in the diversity, functioning, and mechanisms that underlie the complex interactions between AMF, AAB, and plant hosts. This review critically examines AMF-associated bacteria, focusing on AAB diversity, the factors driving richness and community composition of these bacteria across various ecosystems, along with the physical, chemical, and biological connections that enable AMF to select and recruit beneficial bacterial symbionts on and within their structures and hyphospheres. Additionally, potential applications of these bacteria in agriculture are discussed, emphasizing the potential importance of AMF fungal highways in engineering plant rhizosphere and endophyte bacteria communities, and the importance of a functional core of AAB taxa as a promising tool to improve plant and soil productivity. Thus, AMF and their highly diverse bacterial taxa represent important tools that could be efficiently explored in sustainable agriculture, carbon sequestration, and reduction of greenhouse gas emissions related to nitrogen fertilizer applications. Nevertheless, future studies adopting integrated multidisciplinary approaches are crucial to better understand AAB functional diversity and the mechanisms that govern these tripartite relationships.
Collapse
Affiliation(s)
- Sulaimon Basiru
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| | - Khadija Ait Si Mhand
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
- Institut de recherche en biologie végétale (IRBV), Département de Sciences Biologiques, Université de Montréal, QC, Montréal, Canada.
| |
Collapse
|
5
|
Chávez-Álvarez K, Del Carmen Rivera-Cruz M, Aceves-Navarro LA, Trujillo-Narcía A, García-de la Cruz R, Vega-López A. Physiological and microbiological hormesis in sedge Eleocharis palustris induced by crude oil in phytoremediation of flooded clay soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1241-1253. [PMID: 36112299 DOI: 10.1007/s10646-022-02583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with petroleum hydrocarbons affects plants and rhizospheric microorganisms. Microbial activity participates in important biochemical processes that stimulate, together with plants, the modification of toxic compounds for organisms. A nine-month experiment was set up to study the effect over time of oil on plant height (cm), formation of new plants, plant matter production (gravimetry), and population of rhizospheric microorganisms (serial dilution) in the sedge Eleocharis palustris. Removal of total petroleum hydrocarbons (soxhlet and gravimetry) from the soil was also evaluated. The means of the evaluated variables registered significant statistical differences (Duncan, p < 0.05) regarding the age of the plant and the amount of crude oil. There was a high correlation between oil and plant height (0.848) and with new plants (0.994). 60 mg oil dose promoted the greatest statistical difference in the amounts of roots and plant biomass (p < 0.05). E. palustris exposed to 60 and 75 mg of oil stimulated high densities of microalgae, actinomycetes, fungi, hydrocarbonoclastic bacteria and Pseudomonas spp; the overall ratio was 2:1 relative to natural attenuation. Plant and microorganism variables evaluated registered physiological and microbiological hormetic indices ≥1, showing a positive linear relationship. Natural attenuation was more efficient in removing crude oil. We conclude that E. palustris is tolerant to oil exposure. It is suggested to combine it with natural attenuation for the optimization of soils contaminated with crude oil.
Collapse
Affiliation(s)
- Karla Chávez-Álvarez
- Colegio de Postgraduados Campus Tabasco, Laboratorio de Microbiología Agrícola y Ambiental. Km 2.5 Periférico Carlos A. Molina, CP 86570 H, Cárdenas, Tabasco, México
| | - María Del Carmen Rivera-Cruz
- Colegio de Postgraduados Campus Tabasco, Laboratorio de Microbiología Agrícola y Ambiental. Km 2.5 Periférico Carlos A. Molina, CP 86570 H, Cárdenas, Tabasco, México.
| | - Lorenzo A Aceves-Navarro
- Colegio de Postgraduados Campus Tabasco, Laboratorio de Microbiología Agrícola y Ambiental. Km 2.5 Periférico Carlos A. Molina, CP 86570 H, Cárdenas, Tabasco, México
| | - Antonio Trujillo-Narcía
- Universidad Popular de la Chontalpa, Cuerpo Académico Energía y Medioambiente. Chontalpa, Carretera Cárdenas-Huimanguillo km 2, Ra. Paso y Playa, H. Cárdenas, CP 86500 H, Cárdenas, Tabasco, México
| | - Rubén García-de la Cruz
- Colegio de Postgraduados Campus Tabasco, Laboratorio de Microbiología Agrícola y Ambiental. Km 2.5 Periférico Carlos A. Molina, CP 86570 H, Cárdenas, Tabasco, México
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, CP 07738, México
| |
Collapse
|
6
|
Hoang SA, Lamb D, Sarkar B, Seshadri B, Kit Yu RM, Anh Tran TK, O'Connor J, Rinklebe J, Kirkham MB, Vo HT, Bolan NS. Phosphorus application enhances alkane hydroxylase gene abundance in the rhizosphere of wild plants grown in petroleum-hydrocarbon-contaminated soil. ENVIRONMENTAL RESEARCH 2022; 204:111924. [PMID: 34487695 DOI: 10.1016/j.envres.2021.111924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
This study assessed the ability of phosphorus (P) fertilizer to remediate the rhizosphere of three wild plant species (Banksia seminuda, a tree; Chloris truncata, a grass; and Hakea prostrata, a shrub) growing in a soil contaminated with total (aliphatic) petroleum hydrocarbon (TPH). Plant growth, photosynthesis (via chlorophyll fluorescence), soil microbial activity, alkane hydroxylase AlkB (aliphatic hydrocarbon-degrading) gene abundance, and TPH removal were evaluated 120 days after planting. Overall, although TPH served as an additional carbon source for soil microorganisms, the presence of TPH in soil resulted in decreased plant growth and photosynthesis. However, growth, photosynthesis, microbial activities, and AlkB gene abundance were enhanced by the application of P fertilizer, thereby increasing TPH removal rates, although the extent and optimum P dosage varied among the plant species. The highest TPH removal (64.66%) was observed in soil planted with the Poaceae species, C. truncata, and amended with 100 mg P kg-1 soil, while H. prostrata showed higher TPH removal compared to the plant belonging to the same Proteaceae family, B. seminuda. The presence of plants resulted in higher AlkB gene abundance and TPH removal relative to the unplanted control. The removal of TPH was associated directly with AlkB gene abundance (R2 > 0.9, p < 0.001), which was affected by plant identity and P levels. The results indicated that an integrated approach involving wild plant species and optimum P amendment, which was determined through experimentation using different plant species, was an efficient way to remediate soil contaminated with TPH.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - James O'Connor
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Huy Thanh Vo
- Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Nanthi S Bolan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
7
|
Fortin Faubert M, Labrecque M, Hijri M. Ectomycorrhizal Fungi Dominated the Root and Rhizosphere Microbial Communities of Two Willow Cultivars Grown for Six-Years in a Mixed-Contaminated Environment. J Fungi (Basel) 2022; 8:jof8020145. [PMID: 35205899 PMCID: PMC8880157 DOI: 10.3390/jof8020145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
There is a growing interest in plant microbiome’s engineering to optimize desired functions such as improved phytoremediation. This study is aimed at examining the microbial communities inhabiting the roots and rhizospheres of two Salix miyabeana cultivars that had been grown in a short-rotation intensive culture (SRIC) system for six years in a soil contaminated with the discharge from a petrochemical factory. DNA was extracted from roots and rhizospheric soils, and fungal ITS and bacterial and archaeal 16S rDNA regions were amplified and sequenced using Illumina MiSeq technology. Cultivars ‘SX61’ and ‘SX64’ were found to harbor a similar diversity of fungal, bacterial, and archaeal amplicon sequence variants (ASVs). As expected, a greater microbial diversity was found in the rhizosphere biotope than in the roots of both cultivars, except for cultivar ‘SX64’, where a similar fungal diversity was observed in both biotopes. However, we found that microbial community structures were cultivar- and biotope-specific. Although the implication of some identified taxa for plant adaptability and biomass production capacity remains to be explored, this study provides valuable and useful information regarding microbes that could potentially favor the implantation and phytoremediation efficiency of Salix miyabeana in mixed contamination sites in similar climatic environments.
Collapse
Affiliation(s)
- Maxime Fortin Faubert
- Institut de Recherche en Biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada; (M.F.F.); (M.L.)
| | - Michel Labrecque
- Institut de Recherche en Biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada; (M.F.F.); (M.L.)
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- Correspondence:
| |
Collapse
|
8
|
The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031231] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phytoremediation is a cost-effective and sustainable technology used to clean up pollutants from soils and waters through the use of plant species. Indeed, plants are naturally capable of absorbing metals and degrading organic molecules. However, in several cases, the presence of contaminants causes plant suffering and limited growth. In such situations, thanks to the production of specific root exudates, plants can engage the most suitable bacteria able to support their growth according to the particular environmental stress. These plant growth-promoting rhizobacteria (PGPR) may facilitate plant growth and development with several beneficial effects, even more evident when plants are grown in critical environmental conditions, such as the presence of toxic contaminants. For instance, PGPR may alleviate metal phytotoxicity by altering metal bioavailability in soil and increasing metal translocation within the plant. Since many of the PGPR are also hydrocarbon oxidizers, they are also able to support and enhance plant biodegradation activity. Besides, PGPR in agriculture can be an excellent support to counter the devastating effects of abiotic stress, such as excessive salinity and drought, replacing expensive inorganic fertilizers that hurt the environment. A better and in-depth understanding of the function and interactions of plants and associated microorganisms directly in the matrix of interest, especially in the presence of persistent contamination, could provide new opportunities for phytoremediation.
Collapse
|
9
|
Yang B, Balazs KR, Butterfield BJ, Laushman KM, Munson SM, Gornish ES, Barberán A. Does restoration of plant diversity trigger concomitant soil microbiome changes in dryland ecosystems? J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ben Yang
- Department of Environmental Science University of Arizona Tucson AZ USA
| | - Kathleen R. Balazs
- Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA
| | - Bradley J. Butterfield
- Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff AZ USA
| | | | - Seth M. Munson
- U.S. Geological Survey Southwest Biological Science Center Flagstaff AZ USA
| | - Elise S. Gornish
- University of Arizona School of Natural Resources and the Environment Tucson AZ USA
| | - Albert Barberán
- Department of Environmental Science University of Arizona Tucson AZ USA
| |
Collapse
|
10
|
Salix purpurea and Eleocharis obtusa Rhizospheres Harbor a Diverse Rhizospheric Bacterial Community Characterized by Hydrocarbons Degradation Potentials and Plant Growth-Promoting Properties. PLANTS 2021; 10:plants10101987. [PMID: 34685796 PMCID: PMC8538330 DOI: 10.3390/plants10101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Phytoremediation, a method of phytomanagement using the plant holobiont to clean up polluted soils, is particularly effective for degrading organic pollutants. However, the respective contributions of host plants and their associated microbiota within the holobiont to the efficiency of phytoremediation is poorly understood. The identification of plant-associated bacteria capable of efficiently utilizing these compounds as a carbon source while stimulating plant-growth is a keystone for phytomanagement engineering. In this study, we sampled the rhizosphere and the surrounding bulk soil of Salixpurpurea and Eleocharis obusta from the site of a former petrochemical plant in Varennes, QC, Canada. Our objectives were to: (i) isolate and identify indigenous bacteria inhabiting these biotopes; (ii) assess the ability of isolated bacteria to utilize alkanes and polycyclic aromatic hydrocarbons (PAHS) as the sole carbon source, and (iii) determine the plant growth-promoting (PGP) potential of the isolates using five key traits. A total of 438 morphologically different bacterial isolates were obtained, purified, preserved and identified through PCR and 16S rRNA gene sequencing. Identified isolates represent 62 genera. Approximately, 32% of bacterial isolates were able to utilize all five different hydrocarbons compounds. Additionally, 5% of tested isolates belonging to genera Pseudomonas, Acinetobacter, Serratia, Klebsiella, Microbacterium, Bacillus and Stenotrophomonas possessed all five of the tested PGP functional traits. This culture collection of diverse, petroleum-hydrocarbon degrading bacteria, with multiple PGP traits, represents a valuable resource for future use in environmental bio- and phyto-technology applications.
Collapse
|
11
|
Zuzolo D, Sciarrillo R, Postiglione A, Guarino C. The remediation potential for PAHs of Verbascum sinuatum L. combined with an enhanced rhizosphere landscape: A full-scale mesocosm experiment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00657. [PMID: 34277366 PMCID: PMC8264111 DOI: 10.1016/j.btre.2021.e00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
A full-scale mesocosm study was conducted to depict how integrated biological systems interact to adapt to contaminant stress and improve remediation of polycyclic aromatic hydrocarbons (PAHs)contaminated soils. The combination of Verbascum sinuatum L. and microbial consortium (fungi and bacteria) was employed along with three differently contaminated soils. After 240 days the highest PAHs removal (up to 68 %) and 6-rings compounds decrease was found in soil with lower pollution and cation exchange capacity. V. sinuatum showed a significant adaptability over time in terms of redox biology. Soil enzyme activities and microscopic evidences proved a rising plant-microorganisms association and a successful mycorrhization, arising from the inoculation of our consortia. In addition, an enhanced richness of PAHs degrading genes was achieved. Microbial co-metabolism, helped by the establishment of complex relationships with hosting plant, demonstrated to be suitable for the degradation of high molecular weight PAHs and represents a biotechnology with great prospects.
Collapse
|
12
|
Ahmed B, Hijri M. Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. J Cannabis Res 2021; 3:25. [PMID: 34217364 PMCID: PMC8254954 DOI: 10.1186/s42238-021-00082-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cannabis growing practices and particularly indoor cultivation conditions have a great influence on the production of cannabinoids. Plant-associated microbes may affect nutrient acquisition by the plant. However, beneficial microbes influencing cannabinoid biosynthesis remain largely unexplored and unexploited in cannabis production. OBJECTIVE To summarize study outcomes on bacterial and fungal communities associated with cannabis using high-throughput sequencing technologies and to uncover microbial interactions, species diversity, and microbial network connections that potentially influence secondary metabolite production in cannabis. MATERIALS AND METHOD A mini review was conducted including recent publications on cannabis and their associated microbiota and secondary metabolite production. RESULTS In this review, we provide an overview of the potential role of the soil microbiome in production of cannabinoids, and discussed that manipulation of cannabis-associated microbiome obtained through soil amendment interventions of diversified microbial communities sourced from natural forest soil could potentially help producers of cannabis to improve yields of cannabinoids and enhance the balance of cannabidiol (CBD) and tetrahydrocannabinol (THC) proportions. CONCLUSION Cannabis is one of the oldest cultivated crops in history, grown for food, fiber, and drugs for thousands of years. Extension of genetic variation in cannabis has developed into wide-ranging varieties with various complementary phenotypes and secondary metabolites. For medical or pharmaceutical purposes, the ratio of CBD to THC is key. Therefore, studying soil microbiota associated with cannabis and its potential impact on secondary metabolites production could be useful when selecting microorganisms as bioinoculant agents for enhanced organic cannabinoid production.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| |
Collapse
|
13
|
Hoang SA, Lamb D, Seshadri B, Sarkar B, Cheng Y, Wang L, Bolan NS. Petroleum hydrocarbon rhizoremediation and soil microbial activity improvement via cluster root formation by wild proteaceae plant species. CHEMOSPHERE 2021; 275:130135. [PMID: 33984915 DOI: 10.1016/j.chemosphere.2021.130135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Rhizoremediation potential of different wild plant species for total (aliphatic) petroleum hydrocarbon (TPH)-contaminated soils was investigated. Three-week-old seedlings of Acacia inaequilatera, Acacia pyrifolia, Acacia stellaticeps, Banksia seminuda, Chloris truncata, Hakea prostrata, Hardenbergia violacea, and Triodia wiseana were transplanted in a soil contaminated with diesel and engine oil as TPH at pollution levels of 4,370 (TPH1) and 7,500 (TPH2) mg kg-1, and an uncontaminated control (TPH0). After 150 days, the presence of TPH negatively affected the plant growth, but the growth inhibition effect varied between the plant species. Plant growth and associated root biomass influenced the activity of rhizo-microbiome. The presence of B. seminuda, C. truncata, and H. prostrata significantly increased the TPH removal rate (up to 30% compared to the unplanted treatment) due to the stimulation of rhizosphere microorganisms. No significant difference was observed between TPH1 and TPH2 regarding the plant tolerance and rhizoremediation potentials of the three plant species. The presence of TPH stimulated cluster root formation in B. seminuda and H. prostrata which was associated with enhanced TPH remediation of these two members of Proteaceae family. These results indicated that B. seminuda, C. truncata, and H. prostrata wild plant species could be suitable candidates for the rhizoremediation of TPH-contaminated soil.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Dane Lamb
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, PO Box 18, Callaghan, NSW, 2308, Australia; The Global Innovation Centre for Advanced Nanotechnology, University of Newcastle, Callaghan, NSW, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, PO Box 18, Callaghan, NSW, 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Ying Cheng
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, PO Box 18, Callaghan, NSW, 2308, Australia
| | - Liang Wang
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, PO Box 18, Callaghan, NSW, 2308, Australia
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, PO Box 18, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
14
|
Clary Sage Cultivation and Mycorrhizal Inoculation Influence the Rhizosphere Fungal Community of an Aged Trace-Element Polluted Soil. Microorganisms 2021; 9:microorganisms9061333. [PMID: 34205382 PMCID: PMC8234821 DOI: 10.3390/microorganisms9061333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Soil fungal communities play a central role in natural systems and agroecosystems. As such, they have attracted significant research interest. However, the fungal microbiota of aromatic plants, such as clary sage (Salvia sclarea L.), remain unexplored. This is especially the case in trace element (TE)-polluted conditions and within the framework of phytomanagement approaches. The presence of high concentrations of TEs in soils can negatively affect not only microbial diversity and community composition but also plant establishment and growth. Hence, the objective of this study is to investigate the soil fungal and arbuscular mycorrhizal fungi (AMF) community composition and their changes over time in TE-polluted soils in the vicinity of a former lead smelter and under the cultivation of clary sage. We used Illumina MiSeq amplicon sequencing to evaluate the effects of in situ clary sage cultivation over two successive years, combined or not with exogenous AMF inoculation, on the rhizospheric soil and root fungal communities. We obtained 1239 and 569 fungal amplicon sequence variants (ASV), respectively, in the rhizospheric soil and roots of S. sclarea under TE-polluted conditions. Remarkably, 69 AMF species were detected at our experimental site, belonging to 12 AMF genera. Furthermore, the inoculation treatment significantly shaped the fungal communities in soil and increased the number of AMF ASVs in clary sage roots. In addition, clary sage cultivation over successive years could be one of the explanatory parameters for the inter-annual variation in both fungal and AMF communities in the soil and root biotopes. Our data provide new insights on fungal and AMF communities in the rhizospheric soil and roots of an aromatic plant, clary sage, grown in TE-polluted agricultural soil.
Collapse
|
15
|
Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS. Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123282. [PMID: 32634659 DOI: 10.1016/j.jhazmat.2020.123282] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 05/22/2023]
Abstract
Rhizoremediation is increasingly becoming a green and sustainable alternative to physico-chemical methods for remediation of contaminated environments through the utilization of symbiotic relationship between plants and their associated soil microorganisms in the root zone. The overall efficiency can be enhanced by identifying suitable plant-microbe combinations for specific contaminants and supporting the process with the application of appropriate soil amendments. This approach not only involves promoting the existing activity of plants and soil microbes, but also introduces an adequate number of microorganisms with specific catabolic activity. Here, we reviewed recent literature on the main mechanisms and key factors in the rhizoremediation process with a particular focus on soils contaminated with total petroleum hydrocarbon (TPH). We then discuss the potential of different soil amendments to accelerate the remediation efficiency based on biostimulation and bioaugmentation processes. Notwithstanding some successes in well-controlled environments, rhizoremediation of TPH under field conditions is still not widespread and considered less attractive than physico-chemical methods. We catalogued the major pitfalls of this remediation approach at the field scale in TPH-contaminated sites and, provide some applicable situations for the future successful use of in situ rhizoremediation of TPH-contaminated soils.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Dane Lamb
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
16
|
Raveau R, Fontaine J, Hijri M, Lounès-Hadj Sahraoui A. The Aromatic Plant Clary Sage Shaped Bacterial Communities in the Roots and in the Trace Element-Contaminated Soil More Than Mycorrhizal Inoculation - A Two-Year Monitoring Field Trial. Front Microbiol 2020; 11:586050. [PMID: 33424786 PMCID: PMC7794003 DOI: 10.3389/fmicb.2020.586050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
To cope with soil contamination by trace elements (TE), phytomanagement has attracted much attention as being an eco-friendly and cost-effective green approach. In this context, aromatic plants could represent a good option not only to immobilize TE, but also to use their biomass to extract essential oils, resulting in high added-value products suitable for non-food valorization. However, the influence of aromatic plants cultivation on the bacterial community structure and functioning in the rhizosphere microbiota remains unknown. Thus, the present study aims at determining in TE-aged contaminated soil (Pb - 394 ppm, Zn - 443 ppm, and Cd - 7ppm, respectively, 11, 6, and 17 times higher than the ordinary amounts in regional agricultural soils) the effects of perennial clary sage (Salvia sclarea L.) cultivation, during two successive years of growth and inoculated with arbuscular mycorrhizal fungi, on rhizosphere bacterial diversity and community structure. Illumina MiSeq amplicon sequencing targeting bacterial 16S rRNA gene was used to assess bacterial diversity and community structure changes. Bioinformatic analysis of sequencing datasets resulted in 4691 and 2728 bacterial Amplicon Sequence Variants (ASVs) in soil and root biotopes, respectively. Our findings have shown that the cultivation of clary sage displayed a significant year-to-year effect, on both bacterial richness and community structures. We found that the abundance of plant-growth promoting rhizobacteria significantly increased in roots during the second growing season. However, we didn't observe any significant effect of mycorrhizal inoculation neither on bacterial diversity nor on community structure. Our study brings new evidence in TE-contaminated areas of the effect of a vegetation cover with clary sage cultivation on the microbial soil functioning.
Collapse
Affiliation(s)
- Robin Raveau
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV) de l’Université de Montréal, Montreal, QC, Canada
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| |
Collapse
|
17
|
Wang L, Gan Y, Bainard LD, Hamel C, St-Arnaud M, Hijri M. Expression of N-cycling genes of root microbiomes provides insights for sustaining oilseed crop production. Environ Microbiol 2020; 22:4545-4556. [PMID: 32656968 DOI: 10.1111/1462-2920.15161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 11/28/2022]
Abstract
Agricultural production is dependent on inputs of nitrogen (N) whose cycle relies on soil and crop microbiomes. Crop diversification has increased productivity; however, its impact on the expression of microbial genes involved in N-cycling pathways remains unknown. Here, we assessed N-cycling gene expression patterns in the root and rhizosphere microbiomes of five oilseed crops as influenced by three 2-year crop rotations. The first phase consisted of fallow, lentil or wheat, and the second phase consisted of one of five oilseed crops. Expression of bacterial amoA, nirK and nirS genes showed that the microbiome of Ethiopian mustard had the lowest and that of camelina the highest potential for N loss. A preceding rotation phase of lentil significantly increased the expression of nifH gene by 23% compared with wheat and improved nxrA gene expression by 51% with chemical fallow in the following oilseed crops respectively. Lentil substantially increased biological N2 fixation and reduced denitrification in the following oilseed crops. Our results also revealed that most N-cycling gene transcripts are more abundant in the microbiomes associated with roots than with the rhizosphere. The outcome of our investigation brings a new level of understanding on how crop diversification and rotation sequences are related to N-cycling in annual cropping systems.
Collapse
Affiliation(s)
- Li Wang
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montréal, QC, H1X 2B2, Canada
| | - Yantai Gan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada
| | - Luke D Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada
| | - Chantal Hamel
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec City, QC, G1V 2J3, Canada
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montréal, QC, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montréal, QC, H1X 2B2, Canada.,AgroBiosciences, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| |
Collapse
|
18
|
Dagher DJ, de la Providencia IE, Pitre FE, St-Arnaud M, Hijri M. Arbuscular Mycorrhizal Fungal Assemblages Significantly Shifted upon Bacterial Inoculation in Non-Contaminated and Petroleum-Contaminated Environments. Microorganisms 2020; 8:E602. [PMID: 32326329 PMCID: PMC7232219 DOI: 10.3390/microorganisms8040602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to reduce plant stress and improve their health and growth, making them important components of the plant-root associated microbiome, especially in stressful conditions such as petroleum hydrocarbons (PHs) contaminated environments. Purposely manipulating the root-associated AMF assemblages in order to improve plant health and modulate their interaction with the rhizosphere microbes could lead to increased agricultural crop yields and phytoremediation performance by the host plant and its root-associated microbiota. In this study, we tested whether repeated inoculations with a Proteobacteria consortium influenced plant productivity and the AMF assemblages associated with the root and rhizosphere of four plant species growing either in non-contaminated natural soil or in sediments contaminated with petroleum hydrocarbons. A mesocosm experiment was performed in a randomized complete block design in four blocks with two factors: (1) substrate contamination (contaminated or not contaminated), and (2) inoculation (or not) with a bacterial consortium composed of ten isolates of Proteobacteria. Plants were grown in a greenhouse over four months, after which the effect of treatments on plant biomass and petroleum hydrocarbon concentrations in the substrate were determined. MiSeq amplicon sequencing, targeting the 18S rRNA gene, was used to assess AMF community structures in the roots and rhizosphere of plants growing in both contaminated and non-contaminated substrates. We also investigated the contribution of plant identity and biotope (plant roots and rhizospheric soil) in shaping the associated AMF assemblages. Our results showed that while inoculation caused a significant shift in AMF communities, the substrate contamination had a much stronger influence on their structure, followed by the biotope and plant identity to a lesser extent. Moreover, inoculation significantly increased plant biomass production and was associated with a decreased petroleum hydrocarbons dissipation in the contaminated soil. The outcome of this study provides knowledge on the factors influencing the diversity and community structure of AMF associated with indigenous plants following repeated inoculation of a bacterial consortium. It highlights the dominance of soil chemical properties, such as petroleum hydrocarbon presence, over biotic factors and inputs, such as plant species and microbial inoculations, in determining the plant-associated arbuscular mycorrhizal fungi communities.
Collapse
Affiliation(s)
- Dimitri J. Dagher
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (D.J.D.); (F.E.P.); (M.S.-A.)
| | | | - Frédéric E. Pitre
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (D.J.D.); (F.E.P.); (M.S.-A.)
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (D.J.D.); (F.E.P.); (M.S.-A.)
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (D.J.D.); (F.E.P.); (M.S.-A.)
- AgroBioSciences, University Mohammed VI Polytechnic, Lot 660–Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
19
|
Affiliation(s)
- Likun Wang
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
20
|
Mapping Microbial Capacities for Bioremediation: Genes to Genomics. Indian J Microbiol 2019; 60:45-53. [PMID: 32089573 DOI: 10.1007/s12088-019-00842-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Bioremediation is a process wherein the decontamination strategies are designed so that a site could achieve the environmental abiotic and biotic parameters close to its baseline. In the process, the driving force is the available microbial genetic degradative capabilities, which are supported by required nutrients so that the desired expression of these capabilities could be exploited in favour of removal of pollutants. With genomics tools not only the available abilities could be estimated but their dynamic performance could also be established. These tools are now playing important role in bioprocess optimization, which not only derive the bio-stimulation plans but also could suggest possible genetic bio-augmentation options.
Collapse
|