1
|
Mu Y, Tran HH, Xiang Z, Majumder A, Hsu E, Steager E, Koo H, Lee D. Spiky Magnetic Microparticles Synthesized from Microrod-Stabilized Pickering Emulsion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402292. [PMID: 38864236 DOI: 10.1002/smll.202402292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Tailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous for their widespread utilization. In this work, a wet-chemical method is introduced for spiky magnetic particles that are templated from microrod-stabilized Pickering emulsions. The spiky morphology is generated by the upright attachment of silica microrods at the oil-water interface of oil droplets. Spiky magnetic microparticles with control over the length of the spikes are obtained by dispersing hydrophobic magnetic nanoparticles in the oil phase and photopolymerizing the monomer. The spiky morphology dramatically enhances colloidal stability of these particles in high ionic strength solutions and physiologic media such as human saliva and saline-based biofilm suspension. To demonstrate their utility, the spiky magnetic particles are applied for magnetically controlled removal of oral biofilms and retrieval of bacteria for diagnostic sampling. This method expands the toolbox for engineering microparticle morphology and could promote the fabrication of functional magnetic microrobots.
Collapse
Affiliation(s)
- Yijiang Mu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong-Huy Tran
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhenting Xiang
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anirban Majumder
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emery Hsu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward Steager
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun Koo
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Qin H, Anderson D, Zou Z, Higashi D, Borland C, Kreth J, Merritt J. Mass spectrometry and split luciferase complementation assays reveal the MecA protein interactome of Streptococcus mutans. Microbiol Spectr 2024; 12:e0369123. [PMID: 38230956 PMCID: PMC10845952 DOI: 10.1128/spectrum.03691-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
MecA is a highly conserved adaptor protein encoded by prokaryotes from the Bacillota phylum. MecA mutants exhibit similar pleiotropic defects in a variety of organisms, although most of these phenotypes currently lack a mechanistic basis. MecA mediates ClpCP-dependent proteolysis of its substrates, but only several such substrates have been reported in the literature and there are suggestions that proteolysis-independent regulatory mechanisms may also exist. Here, we provide the first comprehensive characterization of the MecA interactome and further assess its regulatory role in Clp-dependent proteolysis. Untargeted coimmunoprecipitation assays coupled with mass spectrometry revealed that the MecA ortholog from the oral pathobiont Streptococcus mutans likely serves as a major protein interaction network hub by potentially complexing with >100 distinct protein substrates, most of which function in highly conserved metabolic pathways. The interactome results were independently verified using a newly developed prokaryotic split luciferase complementation assay (SLCA) to detect MecA protein-protein interactions in vivo. In addition, we further develop a new application of SLCA to support in vivo measurements of MecA relative protein binding affinities. SLCA results were independently verified using targeted coimmunoprecipitation assays, suggesting the general utility of this approach for prokaryotic protein-protein interaction studies. Our results indicate that MecA indeed regulates its interactome through both Clp-dependent proteolysis as well as through an as-yet undefined proteolysis-independent mechanism that may affect more than half of its protein interactome. This suggests a significant aspect of the MecA regulatory function still has yet to be discovered.IMPORTANCEDespite multiple decades of study, the regulatory mechanism and function of MecA have remained largely a mystery. The current study provides the first detailed roadmap to investigate these functions in other medically significant bacteria. Furthermore, this study developed new genetic approaches to assay prokaryotic protein-protein interactions via the split luciferase complementation assay (SLCA). SLCA technology is commonly employed in eukaryotic genetic research but has not yet been established for studies of bacterial protein-protein interactions. The SLCA protein binding affinity assay described here is a new technological advance exclusive to the current study and has not been reported elsewhere.
Collapse
Affiliation(s)
- Hua Qin
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - David Anderson
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Zhengzhong Zou
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Dustin Higashi
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Borland
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Jens Kreth
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
4
|
Cho H, Ren Z, Divaris K, Roach J, Lin BM, Liu C, Azcarate-Peril MA, Simancas-Pallares MA, Shrestha P, Orlenko A, Ginnis J, North KE, Zandona AGF, Ribeiro AA, Wu D, Koo H. Selenomonas sputigena acts as a pathobiont mediating spatial structure and biofilm virulence in early childhood caries. Nat Commun 2023; 14:2919. [PMID: 37217495 PMCID: PMC10202936 DOI: 10.1038/s41467-023-38346-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Streptococcus mutans has been implicated as the primary pathogen in childhood caries (tooth decay). While the role of polymicrobial communities is appreciated, it remains unclear whether other microorganisms are active contributors or interact with pathogens. Here, we integrate multi-omics of supragingival biofilm (dental plaque) from 416 preschool-age children (208 males and 208 females) in a discovery-validation pipeline to identify disease-relevant inter-species interactions. Sixteen taxa associate with childhood caries in metagenomics-metatranscriptomics analyses. Using multiscale/computational imaging and virulence assays, we examine biofilm formation dynamics, spatial arrangement, and metabolic activity of Selenomonas sputigena, Prevotella salivae and Leptotrichia wadei, either individually or with S. mutans. We show that S. sputigena, a flagellated anaerobe with previously unknown role in supragingival biofilm, becomes trapped in streptococcal exoglucans, loses motility but actively proliferates to build a honeycomb-like multicellular-superstructure encapsulating S. mutans, enhancing acidogenesis. Rodent model experiments reveal an unrecognized ability of S. sputigena to colonize supragingival tooth surfaces. While incapable of causing caries on its own, when co-infected with S. mutans, S. sputigena causes extensive tooth enamel lesions and exacerbates disease severity in vivo. In summary, we discover a pathobiont cooperating with a known pathogen to build a unique spatial structure and heighten biofilm virulence in a prevalent human disease.
Collapse
Affiliation(s)
- Hunyong Cho
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhi Ren
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jeffrey Roach
- UNC Information Technology Services and Research Computing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bridget M Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuwen Liu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miguel A Simancas-Pallares
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Poojan Shrestha
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alena Orlenko
- Artificial Intelligence Innovation Lab, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeannie Ginnis
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Di Wu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hyun Koo
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Mu R, Anderson D, Merritt J, Wu H, Kreth J. Post-translational modification of Streptococcus sanguinis SpxB influences protein solubility and H 2 O 2 production. Mol Oral Microbiol 2021; 36:267-277. [PMID: 34314577 DOI: 10.1111/omi.12348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
Streptococcal pyruvate oxidase (SpxB) is a hydrogen peroxide-generating enzyme and plays a critical role in Streptococcus sanguinis interspecies interactions, but less is known about its biochemistry. We examined SpxB subcellular localization using protein fractionation and microscopy and found SpxB to be primarily cytoplasmic, but a small portion is also membrane associated. Potential post-translational modifications of SpxB were determined using coimmunoprecipitation and mass spectrometry. Two mutant strains were constructed to further validate the presence of predicted site-specific post-translational modifications. These site mutated SpxB proteins exhibited reduced solubility in vivo, which likely contributes to the observed phenotypic changes in colony morphology, bacterial growth, and H2 O2 production. Overall, our data suggest that SpxB post-translational modifications likely play a major role to regulate SpxB function in S. sanguinis.
Collapse
Affiliation(s)
- Rong Mu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.,Department of Integrative Biomedical & Diagnostic Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - David Anderson
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Ribonuclease J-Mediated mRNA Turnover Modulates Cell Shape, Metabolism and Virulence in Corynebacterium diphtheriae. Microorganisms 2021; 9:microorganisms9020389. [PMID: 33672886 PMCID: PMC7917786 DOI: 10.3390/microorganisms9020389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/16/2023] Open
Abstract
Controlled RNA degradation is a crucial process in bacterial cell biology for maintaining proper transcriptome homeostasis and adaptation to changing environments. mRNA turnover in many Gram-positive bacteria involves a specialized ribonuclease called RNase J (RnJ). To date, however, nothing is known about this process in the diphtheria-causative pathogen Corynebacterium diphtheriae, nor is known the identity of this ribonuclease in this organism. Here, we report that C. diphtheriae DIP1463 encodes a predicted RnJ homolog, comprised of a conserved N-terminal β-lactamase domain, followed by β-CASP and C-terminal domains. A recombinant protein encompassing the β-lactamase domain alone displays 5'-exoribonuclease activity, which is abolished by alanine-substitution of the conserved catalytic residues His186 and His188. Intriguingly, deletion of DIP1463/rnj in C. diphtheriae reduces bacterial growth and generates cell shape abnormality with markedly augmented cell width. Comparative RNA-seq analysis revealed that RnJ controls a large regulon encoding many factors predicted to be involved in biosynthesis, regulation, transport, and iron acquisition. One upregulated gene in the ∆rnj mutant is ftsH, coding for a membrane protease (FtsH) involved in cell division, whose overexpression in the wild-type strain also caused cell-width augmentation. Critically, the ∆rnj mutant is severely attenuated in virulence in a Caenorhabditis elegans model of infection, while the FtsH-overexpressing and toxin-less strains exhibit full virulence as the wild-type strain. Evidently, RNase J is a key ribonuclease in C. diphtheriae that post-transcriptionally influences the expression of numerous factors vital to corynebacterial cell physiology and virulence. Our findings have significant implications for basic biological processes and mechanisms of corynebacterial pathogenesis.
Collapse
|
7
|
Muthunayake NS, Tomares DT, Childers WS, Schrader JM. Phase-separated bacterial ribonucleoprotein bodies organize mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1599. [PMID: 32445438 PMCID: PMC7554086 DOI: 10.1002/wrna.1599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
Abstract
In bacteria, mRNA decay is controlled by megadalton scale macromolecular assemblies called, "RNA degradosomes," composed of nucleases and other RNA decay associated proteins. Recent advances in bacterial cell biology have shown that RNA degradosomes can assemble into phase-separated structures, termed bacterial ribonucleoprotein bodies (BR-bodies), with many analogous properties to eukaryotic processing bodies and stress granules. This review will highlight the functional role that BR-bodies play in the mRNA decay process through its organization into a membraneless organelle in the bacterial cytoplasm. This review will also highlight the phylogenetic distribution of BR-bodies across bacterial species, which suggests that these phase-separated structures are broadly distributed across bacteria, and in evolutionarily related mitochondria and chloroplasts. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
8
|
Abstract
Posttranscriptional regulation is a major level of gene expression control in any cell. In bacteria, multiprotein machines called RNA degradosomes are central for RNA processing and degradation, and some were reported to be compartmentalized inside these organelleless cells. The minimal RNA degradosome of the important gastric pathogen Helicobacter pylori is composed of the essential ribonuclease RNase J and RhpA, its sole DEAD box RNA helicase, and plays a major role in the regulation of mRNA decay and adaptation to gastric colonization. Here, the subcellular localization of the H. pylori RNA degradosome was investigated using cellular fractionation and both confocal and superresolution microscopy. We established that RNase J and RhpA are peripheral inner membrane proteins and that this association was mediated neither by ribosomes nor by RNA nor by the RNase Y membrane protein. In live H. pylori cells, we observed that fluorescent RNase J and RhpA protein fusions assemble into nonpolar foci. We identified factors that regulate the formation of these foci without affecting the degradosome membrane association. Flotillin, a bacterial membrane scaffolding protein, and free RNA promote focus formation in H. pylori Finally, RNase J-GFP (RNase J-green fluorescent protein) molecules and foci in cells were quantified by three-dimensional (3D) single-molecule fluorescence localization microscopy. The number and size of the RNase J foci were found to be scaled with growth phase and cell volume as previously reported for eukaryotic ribonucleoprotein granules. In conclusion, we propose that membrane compartmentalization and the regulated clustering of RNase J-based degradosome hubs represent important levels of control of their activity and specificity.IMPORTANCE Helicobacter pylori is a bacterial pathogen that chronically colonizes the stomach of half of the human population worldwide. Infection by H. pylori can lead to the development of gastric pathologies such as ulcers and adenocarcinoma, which causes up to 800,000 deaths in the world each year. Persistent colonization by H. pylori relies on regulation of the expression of adaptation-related genes. One major level of such control is posttranscriptional regulation, which, in H. pylori, largely relies on a multiprotein molecular machine, an RNA degradosome, that we previously discovered. In this study, we established that the two protein partners of this machine are associated with the membrane of H. pylori Using cutting-edge microscopy, we showed that these complexes assemble into hubs whose formation is regulated by free RNA and scaled with bacterial size and growth phase. Organelleless cellular compartmentalization of molecular machines into hubs emerges as an important regulatory level in bacteria.
Collapse
|