1
|
Steffen R, Ogoniak L, Grundmann N, Pawluchin A, Soehnlein O, Schmitz J. paPAML: An Improved Computational Tool to Explore Selection Pressure on Protein-Coding Sequences. Genes (Basel) 2022; 13:1090. [PMID: 35741852 PMCID: PMC9222883 DOI: 10.3390/genes13061090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Evolution is change over time. Although neutral changes promoted by drift effects are most reliable for phylogenetic reconstructions, selection-relevant changes are of only limited use to reconstruct phylogenies. On the other hand, comparative analyses of neutral and selected changes of protein-coding DNA sequences (CDS) retrospectively tell us about episodic constrained, relaxed, and adaptive incidences. The ratio of sites with nonsynonymous (amino acid altering) versus synonymous (not altering) mutations directly measures selection pressure and can be analysed by using the Phylogenetic Analysis by Maximum Likelihood (PAML) software package. We developed a CDS extractor for compiling protein-coding sequences (CDS-extractor) and parallel PAML (paPAML) to simplify, amplify, and accelerate selection analyses via parallel processing, including detection of negatively selected sites. paPAML compiles results of site, branch-site, and branch models and detects site-specific negative selection with the output of a codon list labelling significance values. The tool simplifies selection analyses for casual and inexperienced users and accelerates computing speeds up to the number of allocated computer threads. We then applied paPAML to examine the evolutionary impact on a new GINS Complex Subunit 3 exon, and neutrophil-associated as well as lysin and apolipoprotein genes. Compared with codeml (PAML version 4.9j) and HyPhy (HyPhy FEL version 2.5.26), all paPAML test runs performed with 10 computing threads led to identical selection pressure results, whereas the total selection analysis via paPAML, including all model comparisons, was about 3 to 5 times faster than the longest running codeml model and about 7 to 15 times faster than the entire processing time of these codeml runs.
Collapse
Affiliation(s)
- Raphael Steffen
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (L.O.); (A.P.); (O.S.)
| | - Lynn Ogoniak
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (L.O.); (A.P.); (O.S.)
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, 48149 Münster, Germany;
| | - Norbert Grundmann
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, 48149 Münster, Germany;
| | - Anna Pawluchin
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (L.O.); (A.P.); (O.S.)
| | - Oliver Soehnlein
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (L.O.); (A.P.); (O.S.)
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany; (L.O.); (A.P.); (O.S.)
| |
Collapse
|
2
|
Nezametdinova VZ, Yunes RA, Dukhinova MS, Alekseeva MG, Danilenko VN. The Role of the PFNA Operon of Bifidobacteria in the Recognition of Host's Immune Signals: Prospects for the Use of the FN3 Protein in the Treatment of COVID-19. Int J Mol Sci 2021; 22:ijms22179219. [PMID: 34502130 PMCID: PMC8430577 DOI: 10.3390/ijms22179219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Bifidobacteria are some of the major agents that shaped the immune system of many members of the animal kingdom during their evolution. Over recent years, the question of concrete mechanisms underlying the immunomodulatory properties of bifidobacteria has been addressed in both animal and human studies. A possible candidate for this role has been discovered recently. The PFNA cluster, consisting of five core genes, pkb2, fn3, aaa-atp, duf58, tgm, has been found in all gut-dwelling autochthonous bifidobacterial species of humans. The sensory region of the species-specific serine-threonine protein kinase (PKB2), the transmembrane region of the microbial transglutaminase (TGM), and the type-III fibronectin domain-containing protein (FN3) encoded by the I gene imply that the PFNA cluster might be implicated in the interaction between bacteria and the host immune system. Moreover, the FN3 protein encoded by one of the genes making up the PFNA cluster, contains domains and motifs of cytokine receptors capable of selectively binding TNF-α. The PFNA cluster could play an important role for sensing signals of the immune system. Among the practical implications of this finding is the creation of anti-inflammatory drugs aimed at alleviating cytokine storms, one of the dire consequences resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Venera Z. Nezametdinova
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Roman A. Yunes
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Marina S. Dukhinova
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Maria G. Alekseeva
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, The Vavilov Institute of General Genetics, 117971 Moscow, Russia; (V.Z.N.); (R.A.Y.); (M.G.A.)
- Correspondence:
| |
Collapse
|
3
|
Dyakov IN, Mavletova DA, Chernyshova IN, Snegireva NA, Gavrilova MV, Bushkova KK, Dyachkova MS, Alekseeva MG, Danilenko VN. FN3 protein fragment containing two type III fibronectin domains from B. longum GT15 binds to human tumor necrosis factor alpha in vitro. Anaerobe 2020; 65:102247. [PMID: 32771620 PMCID: PMC7409735 DOI: 10.1016/j.anaerobe.2020.102247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Most species of the genus Bifidobacterium contain the gene cluster PFNA, which is presumably involved in the species-specific communication between bacteria and their hosts. The gene cluster PFNA consists of five genes including fn3, which codes for a protein containing two fibronectin type III domains. Each fibronectin domain contains sites similar to cytokine-binding sites of human receptors. Based on this finding we assumed that this protein would bind specifically to human cytokines in vitro. We cloned a fragment of the fn3 gene (1503 bp; 501 aa) containing two fibronectin domains, from the strain B. longum subsp. longum GT15. After cloning the fragment into the expression vector pET16b and expressing it in E. coli, the protein product was purified to a homogenous state for further analysis. Using the immunoferment method, we tested the purified fragment's ability to bind the following human cytokines: IL-1β, IL-6, IL-10, TNFα. We developed a sandwich ELISA system to detect any specific interactions between the purified protein and any of the studied cytokines. We found that the purified protein fragment only binds to TNFα.
Collapse
Affiliation(s)
- Ilya N Dyakov
- I.I, Mechnikov Research Institute for Vaccines and Sera, Malyj Kazennyj Per., 5, Moscow, Russia, 105064
| | - Dilara A Mavletova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina St., 3, Moscow, Russia, 119991
| | - Irina N Chernyshova
- I.I, Mechnikov Research Institute for Vaccines and Sera, Malyj Kazennyj Per., 5, Moscow, Russia, 105064
| | - Nadezda A Snegireva
- I.I, Mechnikov Research Institute for Vaccines and Sera, Malyj Kazennyj Per., 5, Moscow, Russia, 105064
| | - Marina V Gavrilova
- I.I, Mechnikov Research Institute for Vaccines and Sera, Malyj Kazennyj Per., 5, Moscow, Russia, 105064
| | - Kristina K Bushkova
- I.I, Mechnikov Research Institute for Vaccines and Sera, Malyj Kazennyj Per., 5, Moscow, Russia, 105064
| | - Marina S Dyachkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina St., 3, Moscow, Russia, 119991
| | - Maria G Alekseeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina St., 3, Moscow, Russia, 119991
| | - Valery N Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina St., 3, Moscow, Russia, 119991; Peoples' Friendship University of Russia (RUDN University), Faculty of Ecology, International Institute for Strategic Development of Sectoral Economics, Miklukho-Maklaya St., 6, Moscow, Russia, 117198; Pharmabiotics Limited Liability Company, Bolshoy Boulevard, 42, Bldg. 1, 1238, Moscow, Russia, 121205.
| |
Collapse
|
4
|
Modesto M, Satti M, Watanabe K, Scarafile D, Huang CH, Liou JS, Tamura T, Saito S, Watanabe M, Mori K, Huang L, Sandri C, Spiezio C, Arita M, Mattarelli P. Phylogenetic characterization of two novel species of the genus Bifidobacterium: Bifidobacterium saimiriisciurei sp. nov. and Bifidobacterium platyrrhinorum sp. nov. Syst Appl Microbiol 2020; 43:126111. [PMID: 32847786 DOI: 10.1016/j.syapm.2020.126111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
Three bifidobacterial Gram-stain-positive, non-spore forming and fructose-6-phosphate phosphoketolase-positive strains, SMA1T, SMB2 and SMA15T were isolated from the faeces of two adult males of the squirrel monkey (Saimiri sciureus). On the basis of 16S rRNA gene sequence similarities, the type strain of Bifidobacterium primatium DSM 100687T (99.3%; similarity) was the closest neighbour to strains SMA1T and SMB2, whereas the type strain of Bifidobacterium stellenboschense DSM 23968T (96.5%) was the closest neighbour to strain SMA15T. The average nucleotide identity (ANI) values of SMA1T and SAM15T with the closely related type strains were 93.7% and 88.1%, respectively. The in silico DNA‒DNA hybridization values with the closest neighbours were 53.1% and 36.9%, respectively. GC contents of strains SMA1T and SMA15T were 63.6 and 66.4 mol%, respectively. Based on the phylogenetic, genotypic and phenotypic data obtained, the strains SMA1T and SMA15T clearly represent two novel taxa within the genus Bifidobacterium for which the names Bifidobacterium saimiriisciurei sp. nov. (type strain SMA1T = BCRC 81223T = NBRC 114049T = DSM 106020T) and Bifidobacterium platyrrhinorum sp. nov. (type strain SMA15T = BCRC 81224T = NBRC 114051T = DSM 106029T) are proposed.
Collapse
Affiliation(s)
- Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Maria Satti
- Department of Genetics, SOKENDAI University (National Institute of Genetics), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Koichi Watanabe
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Tomohiko Tamura
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satomi Saito
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mizuki Watanabe
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Koji Mori
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Camillo Sandri
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Masanori Arita
- RIKEN Centerfor Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 2230-0045, Japan; Bioinformation and DDBJ Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|