1
|
Xu Y, Liu M, Zhao R, Pan Y, Wu P, Zhang C, Chi X, Zhang B, Wu H. TetR family regulator AbrT controls lincomycin production and morphological development in Streptomyces lincolnensis. Microb Cell Fact 2024; 23:223. [PMID: 39118116 PMCID: PMC11308395 DOI: 10.1186/s12934-024-02498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The TetR family of transcriptional regulators (TFRs), serving as crucial regulators of diverse cellular processes, undergo conformational changes induced by small-molecule ligands, which either inhibit or activate them to modulate target gene expression. Some ligands of TFRs in actinomycetes and their regulatory effects have been identified and studied; however, regulatory mechanisms of the TetR family in the lincomycin-producing Streptomyces lincolnensis remain poorly understood. RESULTS In this study, we found that AbrT (SLCG_1979), a TetR family regulator, plays a pivotal role in regulating lincomycin production and morphological development in S. lincolnensis. Deletion of abrT gene resulted in increased lincomycin A (Lin-A) production, but delayed mycelium formation and sporulation on solid media. AbrT directly or indirectly repressed the expression of lincomycin biosynthetic (lin) cluster genes and activated that of the morphological developmental genes amfC, whiB, and ftsZ. We demonstrated that AbrT bound to two motifs (5'-CGCGTACTCGTA-3' and 5'-CGTACGATAGCT-3') present in the bidirectional promoter between abrT and SLCG_1980 genes. This consequently repressed abrT itself and its adjacent gene SLCG_1980 that encodes an arabinose efflux permease. D-arabinose, not naturally occurring as L-arabinose, was identified as the effector molecule of AbrT, reducing its binding affinity to abrT-SLCG_1980 intergenic region. Furthermore, based on functional analysis of the AbrT homologue in Saccharopolyspora erythraea, we inferred that the TetR family regulator AbrT may play an important role in regulating secondary metabolism in actinomycetes. CONCLUSIONS AbrT functions as a regulator for governing lincomycin production and morphological development of S. lincolnensis. Our findings demonstrated that D-arabinose acts as a ligand of AbrT to mediate the regulation of lincomycin biosynthesis in S. lincolnensis. Our findings provide novel insights into ligand-mediated regulation in antibiotic biosynthesis.
Collapse
Affiliation(s)
- Yurong Xu
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Meng Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ruidong Zhao
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yue Pan
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Panpan Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chi Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiangying Chi
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
3
|
Mao Y, Zhang X, Zhou T, Hou B, Ye J, Wu H, Wang R, Zhang H. Three new LmbU targets outside lmb cluster inhibit lincomycin biosynthesis in Streptomyces lincolnensis. Microb Cell Fact 2024; 23:3. [PMID: 38172890 PMCID: PMC10763038 DOI: 10.1186/s12934-023-02284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Antibiotics biosynthesis is usually regulated by the cluster-situated regulatory gene(s) (CSRG(s)), which directly regulate the genes within the corresponding biosynthetic gene cluster (BGC). Previously, we have demonstrated that LmbU functions as a cluster-situated regulator (CSR) of lincomycin. And it has been found that LmbU regulates twenty non-lmb genes through comparative transcriptomic analysis. However, the regulatory mode of CSRs' targets outside the BGC remains unknown. RESULTS We screened the targets of LmbU in the whole genome of Streptomyces lincolnensis and found fourteen candidate targets, among which, eight targets can bind to LmbU by electrophoretic mobility shift assays (EMSA). Reporter assays in vivo revealed that LmbU repressed the transcription of SLINC_0469 and SLINC_1037 while activating the transcription of SLINC_8097. In addition, disruptions of SLINC_0469, SLINC_1037, and SLINC_8097 promoted the production of lincomycin, and qRT-PCR showed that SLINC_0469, SLINC_1037, and SLINC_8097 inhibited transcription of the lmb genes, indicating that all the three regulators can negatively regulate lincomycin biosynthesis. CONCLUSIONS LmbU can directly regulate genes outside the lmb cluster, and these genes can affect both lincomycin biosynthesis and the transcription of lmb genes. Our results first erected the cascade regulatory circuit of LmbU and regulators outside lmb cluster, which provides the theoretical basis for the functional research of LmbU family proteins.
Collapse
Affiliation(s)
- Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xianyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Tianyu Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Xu Y, Yi J, Kai Y, Li B, Liu M, Zhou Q, Wang J, Liu R, Wu H. New targets of TetR-type regulator SLCG_2919 for controlling lincomycin biosynthesis in Streptomyces lincolnensis. J Basic Microbiol 2024; 64:119-127. [PMID: 37562983 DOI: 10.1002/jobm.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
The transcription factor (TF)-mediated regulatory network controlling lincomycin production in Streptomyces lincolnensis is yet to be fully elucidated despite several types of associated TFs having been reported. SLCG_2919, a tetracycline repressor (TetR)-type regulator, was the first TF to be characterized outside the lincomycin biosynthetic cluster to directly suppress the lincomycin biosynthesis in S. lincolnensis. In this study, improved genomic systematic evolution of ligands by exponential enrichment (gSELEX), an in vitro technique, was adopted to capture additional SLCG_2919-targeted sequences harboring the promoter regions of SLCG_6675, SLCG_4123-4124, SLCG_6579, and SLCG_0139-0140. The four DNA fragments were confirmed by electrophoretic mobility shift assays (EMSAs). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) showed that the corresponding target genes SLCG_6675 (anthranilate synthase), SLCG_0139 (LysR family transcriptional regulator), SLCG_0140 (beta-lactamase), SLCG_6579 (cytochrome P450), SLCG_4123 (bifunctional DNA primase/polymerase), and SLCG_4124 (magnesium or magnesium-dependent protein phosphatase) in ΔSLCGL_2919 were differentially increased by 3.3-, 4.2-, 3.2-, 2.5-, 4.6-, and 2.2-fold relative to those in the parental strain S. lincolnensis LCGL. Furthermore, the individual inactivation of these target genes in LCGL reduced the lincomycin yield to varying degrees. This investigation expands on the known DNA targets of SLCG_2919 to control lincomycin production and lays the foundation for improving industrial lincomycin yields via genetic engineering of this regulatory network.
Collapse
Affiliation(s)
- Yurong Xu
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, China
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jing Yi
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yuanzhong Kai
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Binglin Li
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Meng Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Qihua Zhou
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, China
| | - Jingru Wang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, China
| | - Ruihua Liu
- Xinyu Pharmaceutical Co. Ltd., Suzhou, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
5
|
Lin CY, Ru Y, Jin Y, Lin Q, Zhao GR. PAS domain containing regulator SLCG_7083 involved in morphological development and glucose utilization in Streptomyces lincolnensis. Microb Cell Fact 2023; 22:257. [PMID: 38093313 PMCID: PMC10717218 DOI: 10.1186/s12934-023-02263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Streptomyces lincolnensis is well known for producing the clinically important antimicrobial agent lincomycin. The synthetic and regulatory mechanisms on lincomycin biosynthesis have been deeply explored in recent years. However, the regulation involved in primary metabolism have not been fully addressed. RESULTS SLCG_7083 protein contains a Per-Arnt-Sim (PAS) domain at the N-terminus, whose homologous proteins are highly distributed in Streptomyces. The inactivation of the SLCG_7083 gene indicated that SLCG_7083 promotes glucose utilization, slows mycelial growth and affects sporulation in S. lincolnensis. Comparative transcriptomic analysis further revealed that SLCG_7083 represses eight genes involved in sporulation, cell division and lipid metabolism, and activates two genes involved in carbon metabolism. CONCLUSIONS SLCG_7083 is a PAS domain-containing regulator on morphological development and glucose utilization in S. lincolnensis. Our results first revealed the regulatory function of SLCG_7083, and shed new light on the transcriptional effects of SLCG_7083-like family proteins in Streptomyces.
Collapse
Affiliation(s)
- Chun-Yan Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Yixian Ru
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Yanchao Jin
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qi Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China.
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:7501-7514. [DOI: doi.org/10.1007/s00253-023-12756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
|
7
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [DOI: doi.org/10.1007/s11274-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
|
8
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:7501-7514. [PMID: 37768348 DOI: 10.1007/s00253-023-12756-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The Actinomycetes Streptomyces lincolnensis is the producer of lincosamide-type antibiotic lincomycin, a widely utilized drug against Gram-positive bacteria and protozoans. In this work, through gene knockout, complementation, and overexpression experiments, we identified LcbR1 (SLINC_1595), a GntR family transcriptional regulator, as a repressor for lincomycin biosynthesis. Deletion of lcbR1 boosted lincomycin production by 3.8-fold, without obvious change in morphological development or cellular growth. The homologues of LcbR1 are widely distributed in Streptomyces. Heterologous expression of SCO1410 from Streptomyces coelicolor resulted in the reduction of lincomycin yield, implying that the function of LcbR1 is conserved across different species. Alignment among sequences upstream of lcbR1 and their homologues revealed a conserved 16-bp palindrome (-TTGAACGATCCTTCAA-), which was further proven to be the recognition motif of LcbR1 by electrophoretic mobility shift assays (EMSAs). Via this motif, LcbR1 suppressed the transcription of lcbR1 and SLINC_1596 sharing the same bi-directional promoter. SLINC_1596, one important target of LcbR1, exerted a positive effect on lincomycin production. As detected by quantitative real-time PCR (qRT-PCR) analyses, the expressions of all selected structural (lmbA, lmbC, lmbJ, lmbV, and lmbW), resistance (lmrA and lmrB) and regulatory genes (lmrC and lmbU) from lincomycin biosynthesis cluster were upregulated in deletion strain ΔlcbR1 at 48 h of fermentation, while the mRNA amounts of bldD, glnR, ramR, SLCG_Lrp, and SLCG_2919, previously characterized as the regulators on lincomycin production, were decreased in strain ΔlcbR1, although the regulatory effects of LcbR1 on the above differential expression genes seemed to be indirect. Besides, indicated by EMSAs, the expression of lcbR1 might be regulated by GlnR, SLCG_Lrp, and SLCG_2919, which shows the complexity of the regulatory network on lincomycin biosynthesis. KEY POINTS: • LcbR1 is a novel and conservative GntR family regulator regulating lincomycin production. • LcbR1 modulates the expressions of lcbR1 and SLINC_1596 through a palindromic motif. • GlnR, SLCG_Lrp, and SLCG_2919 can control the expression of lcbR1.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [PMID: 37801155 DOI: 10.1007/s11274-023-03788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Regulators belonging to the DeoR family are widely distributed among the bacteria. Few studies have reported that DeoR family proteins regulate secondary metabolism of Streptomyces. This study explored the function of DeoR (SLINC_8027) in Streptomyces lincolnensis. Deletion of deoR in NRRL 2936 led to an increase in cell growth. The lincomycin production of the deoR deleted strain ΔdeoR was 3.4-fold higher than that of the wild strain. This trait can be recovered to a certain extent in the deoR complemented strain ΔdeoR::pdeoR. According to qRT-PCR analysis, DeoR inhibited the transcription of all detectable genes in the lincomycin biosynthesis cluster and repressed the expression of glnR, bldD, and SLCG_Lrp, which encode regulators outside the cluster. DeoR also inhibited the transcription of itself, as revealed by the XylE reporter. Furthermore, we demonstrated that DeoR bound directly to the promoter region of deoR, lmbA, lmbC-D, lmbJ-K, lmrA, lmrC, glnR, and SLCG_Lrp, by recognizing the 5'-CGATCR-3' motif. This study found that versatile regulatory factor DeoR negatively regulates lincomycin biosynthesis and cellular growth in S. lincolnensis, which expanded the regulatory network of lincomycin biosynthesis.
Collapse
Affiliation(s)
- Jingyun Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
10
|
Wu W, Kang Y, Hou B, Ye J, Wang R, Wu H, Zhang H. Characterization of a TetR-type positive regulator AtrA for lincomycin production in Streptomyces lincolnensis. Biosci Biotechnol Biochem 2023; 87:786-795. [DOI: doi.org/10.1093/bbb/zbad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
ABSTRACT
AtrA belongs to the TetR family and has been well characterized for its roles in antibiotic biosynthesis regulation. Here, we identified an AtrA homolog (AtrA-lin) in Streptomyces lincolnensis. Disruption of atrA-lin resulted in reduced lincomycin production, whereas the complement restored the lincomycin production level to that of the wild-type. In addition, atrA-lin disruption did not affect cell growth and morphological differentiation. Furthermore, atrA-lin disruption hindered the transcription of regulatory gene lmbU, structural genes lmbA and lmbW inside the lincomycin biosynthesis gene cluster, and 2 other regulatory genes, adpA and bldA. Completement of atrA-lin restored the transcription of these genes to varying degrees. Notably, we found that AtrA-lin directly binds to the promoter region of lmbU. Collectively, AtrA-lin positively modulated lincomycin production via both pathway-specific and global regulators. This study offers further insights into the functional diversity of AtrA homologs and the mechanism of lincomycin biosynthesis regulation.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| |
Collapse
|
11
|
Kang Y, Wu W, Zhang F, Chen L, Wang R, Ye J, Wu H, Zhang H. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023; 63:622-631. [DOI: doi.org/10.1002/jobm.202200692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 10/09/2023]
Abstract
AbstractLincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l‐tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l‐tyrosine to l‐dihydroxyphenylalanine (l‐DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l‐DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA‐binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Wei Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
12
|
Wang R, Zhou T, Kong F, Hou B, Ye J, Wu H, Zhang H. AflQ1-Q2 represses lincomycin biosynthesis via multiple cascades in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:2933-2945. [DOI: doi.org/10.1007/s00253-023-12429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 10/09/2023]
|
13
|
Wang R, Zhou T, Kong F, Hou B, Ye J, Wu H, Zhang H. AflQ1-Q2 represses lincomycin biosynthesis via multiple cascades in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:2933-2945. [PMID: 36930277 DOI: 10.1007/s00253-023-12429-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
Lincomycin is a broad-spectrum antibiotic and particularly effective against Gram-positive pathogens. Albeit familiar with the biosynthetic mechanism of lincomycin, we know less about its regulation, limiting the rational design for strain improvement. We therefore analyzed two-component systems (TCSs) in Streptomyces lincolnensis, and selected eight TCS gene(s) to construct their deletion mutants utilizing CRISPR/Cas9 system. Among them, lincomycin yield increased in two strains (Δ3900-3901 and Δ5290-5291) while decreased in other four strains (Δ3415-3416, Δ4153-4154, Δ4985, and Δ7949). Considering the conspicuous effect, SLINC_5291-5290 (AflQ1-Q2) was subsequently studied in detail. Its repression on lincomycin biosynthesis was further proved by gene complementation and overexpression. By binding to a 16-bp palindromic motif, the response regulator AflQ1 inhibits the transcription of its encoding gene and the expression of eight operons inside the lincomycin synthetic cluster (headed by lmbA, lmbJ, lmbK, lmbV, lmbW, lmbU, lmrA, and lmrC), as demonstrated by quantitative RT-PCR and electrophoretic mobility shift assays. Besides, the regulatory genes including bldD, glnR, lcbR1, and ramR are also regulated by the TCS. According to the screening towards nitrogen sources, aspartate affects the regulatory behavior of histidine kinase AflQ2. And in return, AflQ1 accelerates aspartate metabolism via ask-asd, asd2, and thrA. In summary, we acquired six novel regulators related to lincomycin biosynthesis, and elucidated the regulatory mechanism of AflQ1-Q2. This highly conserved TCS is a promising target for the construction of antibiotic high-yield strains. KEY POINTS: • AflQ1-Q2 is a repressor for lincomycin production. • AflQ1 modulates the expression of lincomycin biosynthetic and regulatory genes. • Aspartate affects the behavior of AflQ2, and its metabolism is promoted by AflQ1.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianyu Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fanjing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
14
|
Kang Y, Wu W, Zhang F, Chen L, Wang R, Ye J, Wu H, Zhang H. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023. [PMID: 36734183 DOI: 10.1002/jobm.202200692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
Lincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin ) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l-tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l-tyrosine to l-dihydroxyphenylalanine (l-DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l-DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA-binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Tu B, Mao Y, Wang R, Kang Y, Ye J, Zhang H, Wu H. An alternative σ factor σ L sl regulates lincomycin production in Streptomyces lincolnensis. J Basic Microbiol 2023; 63:190-199. [PMID: 36453540 DOI: 10.1002/jobm.202200485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Lincomycin produced by Streptomyces lincolnensis is a critical antibacterial antibiotic in the clinical. To further understand the regulatory mechanism of lincomycin biosynthesis, we identified an alternative σ factor, σL sl , in Streptomyces lincolnensis NRRL 2936. Deletion of sigLsl resulted in an increase in cell growth but a decrease in lincomycin production. σL sl boosted lincomycin biosynthesis by directly stimulating the transcription of four genes (lmbD, lmbV, lmrC, and lmbU) within the lincomycin biosynthetic lmb gene cluster. Besides, σL sl participated in lincomycin biosynthesis by directly stimulating the transcription of mshC, a gene responsible for MSH synthesis. In conclusion, our findings demonstrated that σL sl plays a direct regulatory role in lincomycin biosynthesis. This study extends the understanding of molecular mechanisms of lincomycin biosynthetic regulation.
Collapse
Affiliation(s)
- Bingbing Tu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Tu B, Mao Y, Wang R, Kang Y, Ye J, Zhang H, Wu H. An alternative σ factor σ Lsl regulates lincomycin production in Streptomyces lincolnensis. J Basic Microbiol 2023; 63:190-199. [DOI: doi.org/10.1002/jobm.202200485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/31/2022] [Indexed: 10/09/2023]
Abstract
AbstractLincomycin produced by Streptomyces lincolnensis is a critical antibacterial antibiotic in the clinical. To further understand the regulatory mechanism of lincomycin biosynthesis, we identified an alternative σ factor, σLsl, in Streptomyces lincolnensis NRRL 2936. Deletion of sigLsl resulted in an increase in cell growth but a decrease in lincomycin production. σLsl boosted lincomycin biosynthesis by directly stimulating the transcription of four genes (lmbD, lmbV, lmrC, and lmbU) within the lincomycin biosynthetic lmb gene cluster. Besides, σLsl participated in lincomycin biosynthesis by directly stimulating the transcription of mshC, a gene responsible for MSH synthesis. In conclusion, our findings demonstrated that σLsl plays a direct regulatory role in lincomycin biosynthesis. This study extends the understanding of molecular mechanisms of lincomycin biosynthetic regulation.
Collapse
Affiliation(s)
- Bingbing Tu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yue Mao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
17
|
Lu T, Wang Q, Cao Q, Xia Y, Xun L, Liu H. The Pleiotropic Regulator AdpA Regulates the Removal of Excessive Sulfane Sulfur in Streptomyces coelicolor. Antioxidants (Basel) 2023; 12:antiox12020312. [PMID: 36829871 PMCID: PMC9952706 DOI: 10.3390/antiox12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Reactive sulfane sulfur (RSS), including persulfide, polysulfide, and elemental sulfur (S8), has important physiological functions, such as resisting antibiotics in Pseudomonas aeruginosa and Escherichia coli and regulating secondary metabolites production in Streptomyces spp. However, at excessive levels it is toxic. Streptomyces cells may use known enzymes to remove extra sulfane sulfur, and an unknown regulator is involved in the regulation of these enzymes. AdpA is a multi-functional transcriptional regulator universally present in Streptomyces spp. Herein, we report that AdpA was essential for Streptomyces coelicolor survival when facing external RSS stress. AdpA deletion also resulted in intracellular RSS accumulation. Thioredoxins and thioredoxin reductases were responsible for anti-RSS stress via reducing RSS to gaseous hydrogen sulfide (H2S). AdpA directly activated the expression of these enzymes at the presence of excess RSS. Since AdpA and thioredoxin systems are widely present in Streptomyces, this finding unveiled a new mechanism of anti-RSS stress by these bacteria.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Qun Cao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- School of Molecular Biosciences, Washington State University, Pullman, WA 991647520, USA
- Correspondence: (L.X.); (H.L.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Correspondence: (L.X.); (H.L.)
| |
Collapse
|
18
|
Guo S, Leng T, Sun X, Zheng J, Li R, Chen J, Hu F, Liu F, Hua Q. Global Regulator AdpA_1075 Regulates Morphological Differentiation and Ansamitocin Production in Actinosynnema pretiosum subsp. auranticum. Bioengineering (Basel) 2022; 9:719. [PMID: 36421120 PMCID: PMC9687425 DOI: 10.3390/bioengineering9110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/08/2024] Open
Abstract
Actinosynnema pretiosum is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of A. pretiosum in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood in this genus. Herein a continuum of morphological types of a morphologically stable variant was observed during submerged cultures. Expression analysis revealed that the ssgA_6663 and ftsZ_5883 genes are involved in mycelial aggregation and entanglement. Combing morphology observation and morphology engineering, ssgA_6663 was identified to be responsible for the mycelial intertwining during liquid culture. However, down-regulation of ssgA_6663 transcription was caused by inactivation of adpA_1075, gene coding for an AdpA-like protein. Additionally, the overexpression of adpA_1075 led to an 85% increase in AP-3 production. Electrophoretic mobility shift assays (EMSA) revealed that AdpA_1075 may bind the promoter regions of asm28 gene in asm gene cluster as well as the promoter regions of ssgA_6663. These results confirm that adpA_1075 plays a positive role in AP-3 biosynthesis and morphological differentiation.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tingting Leng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiawei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Wang R, Cao Y, Kong F, Hou B, Zhao J, Kang Y, Ye J, Wu H, Zhang H. Developmental regulator RamRsl controls both morphological development and lincomycin biosynthesis in Streptomyces lincolnensis. J Appl Microbiol 2022; 133:400-409. [DOI: doi.org/10.1111/jam.15568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Abstract
Aims
Assessing the role of ramRsl, a gene absent in a lincomycin over-producing strain, in the regulation of morphological development and lincomycin biosynthesis in Streptomyces lincolnensis.
Methods and Results
The gene ramRsl was deleted from the wild-type strain NRRL 2936 and the ΔramR mutant strain was characterized by a slower growth rate and a delayed morphological differentiation compared to the original strain NRRL 2936. Furthermore, the ΔramR produced 2.6-fold more lincomycin than the original strain, and consistently the level of expression of all lincomycin cluster located genes was enhanced at 48 and 96 h in the ΔramR. Complementation of ΔramR with an intact copy of ramRsl restored all wild-type features, whereas the over-expression of ramRsl led to a reduction of 33% of the lincomycin yield. Furthermore, the level of expression of glnR, bldA and SLCG_2919, three of known lincomycin biosynthesis regulators, was lower in the ΔramR than in the original strain at the early stage of fermentation and we demonstrated, using electrophoretic mobility shift assay and XylE reporter assay, that glnR is a novel direct target of RamR.
Conclusions
Altogether, these results indicated that, beyond promoting the morphological development, RamR regulates negatively lincomycin biosynthesis and positively the expression of the nitrogen regulator GlnR.
Significance and Impact of the Study
We demonstrated that RamR plays a negative role in the regulation of lincomycin biosynthesis in S. lincolnensis. Interestingly, the deletion of this gene in other antibiotic-producing Streptomyces strains might also increase their antibiotic-producing abilities.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yuan Cao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Fanjing Kong
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
20
|
Li C, Wang J, Lin H, Zhang Y, Ma Z, Bechthold A, Yu X. Protein X0P338, a GntR-type pleiotropic regulator for morphological differentiation and secondary metabolites production in Streptomyces diastatochromogenes 1628. J Basic Microbiol 2022; 62:788-800. [PMID: 35485240 DOI: 10.1002/jobm.202200086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022]
Abstract
The nucleoside antibiotic, toyocamycin (TM) exhibits excellent potent activity against several phytopathogenic fungi. Despite of its importance, little is known about key factors regulating TM biosynthesis and morphological differentiation in S. diastatochromogenes 1628. Based on proteomics data obtained from the analysis between wild-type (WT) S. diastatochromogenes 1628 strain and mutant strain 1628-T62 having a low-yield of TM, we observed that the differentially expressed protein, X0P338, which was proposed to be a regulator of the GntR-family, exhibited a higher expression level in S. diastatochromogenes 1628. Therefore, in this study, to explore whether protein X0P338 was involved in morphological differentiation and biosynthesis of secondary metabolites, especially TM, the gene called the gntR sd -encoding protein X0P338 was cloned and over-expressed in WT strain 1628 and mutant strain 1628-T62, respectively. The results indicated that the over-expression of gntR sd enhanced TM production in both strain 1628 (120.6 mg/L vs. 306.6 mg/L) and strain 1628-T62 (15.6 mg/L vs. 258.9 mg/L). Besides, the over-expression of gntR sd had positive and negative effects on morphological differentiation in strain 1628 and strain 1628-T62, respectively. The results also showed opposite effects on tetraene macrolide production during the over-expression of gntR sd in strain 1628 and strain 1628-T62. Moreover, transcription levels of genes involved in morphological differentiation and secondary metabolites production were affected by the over-expression of gntR sd gene, both in strain 1628 and strain 1628-T62. These results confirm that X0P338 as a GntR-type pleiotropic regulator that regulates the morphological differentiation and biosynthesis of secondary metabolites, and especially has a positive effect on TM biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chouqiang Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Juan Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Yongyong Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | | | - Andreas Bechthold
- University of Freiburg, Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Freiburg, Germany
| | | |
Collapse
|
21
|
Sulfane Sulfur Posttranslationally Modifies the Global Regulator AdpA to Influence Actinorhodin Production and Morphological Differentiation of Streptomyces coelicolor. mBio 2022; 13:e0386221. [PMID: 35467418 PMCID: PMC9239190 DOI: 10.1128/mbio.03862-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor AdpA is a key regulator controlling both secondary metabolism and morphological differentiation in Streptomyces. Due to its critical functions, its expression undergoes multilevel regulations at transcriptional, posttranscriptional, and translational levels, yet no posttranslational regulation has been reported. Sulfane sulfur, such as hydro polysulfide (HSnH, n ≥ 2) and organic polysulfide (RSnH, n ≥ 2), is common inside microorganisms, but its physiological functions are largely unclear. Here, we discovered that sulfane sulfur posttranslationally modifies AdpA in Streptomyces coelicolor via specifically reacting with Cys62 of AdpA to form a persulfide (Cys62-SSH). This modification decreases the affinity of AdpA to its self-promoter PadpA, allowing increased expression of adpA, further promoting the expression of its target genes actII-4 and wblA. ActII-4 activates actinorhodin biosynthesis, and WblA regulates morphological development. Bioinformatics analyses indicated that AdpA-Cys62 is highly conserved in Streptomyces, suggesting the prevalence of such modification in this genus. Thus, our study unveils a new type of regulation on the AdpA activity and sheds a light on how sulfane sulfur stimulates the production of antibiotics in Streptomyces.
Collapse
|
22
|
Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb Cell Fact 2022; 21:60. [PMID: 35397580 PMCID: PMC8994273 DOI: 10.1186/s12934-022-01785-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Background AdpA is a global regulator of morphological differentiation and secondary metabolism in Streptomyces, but the regulatory roles of the Streptomyces AdpA family on the biosynthesis of the natural product ε-poly-l-lysine (ε-PL) remain unidentified, and few studies have focused on increasing the production of ε-PL by manipulating transcription factors in Streptomyces. Results In this study, we revealed the regulatory roles of different AdpA homologs in ε-PL biosynthesis and morphological differentiation and effectively promoted ε-PL production and sporulation in Streptomycesalbulus NK660 by heterologously expressing adpA from S.neyagawaensis NRRLB-3092 (adpASn). First, we identified a novel AdpA homolog named AdpASa in S.albulus NK660 and characterized its function as an activator of ε-PL biosynthesis and morphological differentiation. Subsequently, four heterologous AdpA homologs were selected to investigate their phylogenetic relationships and regulatory roles in S.albulus, and AdpASn was demonstrated to have the strongest ability to promote both ε-PL production and sporulation among these five AdpA proteins. The ε-PL yield of S.albulus heterologously expressing adpASn was approximately 3.6-fold higher than that of the control strain. Finally, we clarified the mechanism of AdpASn in enhancing ε-PL biosynthesis and its effect on ε-PL polymerization degree using real-time quantitative PCR, microscale thermophoresis and MALDI-TOF–MS. AdpASn was purified, and its seven direct targets, zwf, tal, pyk2, pta, ack, pepc and a transketolase gene (DC74_2409), were identified, suggesting that AdpASn may cause the redistribution of metabolic flux in central metabolism pathways, which subsequently provides more carbon skeletons and ATP for ε-PL biosynthesis in S.albulus. Conclusions Here, we characterized the positive regulatory roles of Streptomyces AdpA homologs in ε-PL biosynthesis and their effects on morphological differentiation and reported for the first time that AdpASn promotes ε-PL biosynthesis by affecting the transcription of its target genes in central metabolism pathways. These findings supply valuable insights into the regulatory roles of the Streptomyces AdpA family on ε-PL biosynthesis and morphological differentiation and suggest that AdpASn may be an effective global regulator for enhanced production of ε-PL and other valuable secondary metabolites in Streptomyces. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01785-6.
Collapse
|
23
|
Wang R, Cao Y, Kong F, Hou B, Zhao J, Kang Y, Ye J, Wu H, Zhang H. Developmental regulator RamR sl controls both morphological development and lincomycin biosynthesis in Streptomyces lincolnensis. J Appl Microbiol 2022; 133:400-409. [PMID: 35384192 DOI: 10.1111/jam.15568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
AIMS Assessing the role of ramRsl , a gene absent in a lincomycin over-producing strain, in the regulation of morphological development and lincomycin biosynthesis in S. lincolnensis. METHODS AND RESULTS The gene ramRsl was deleted from the wild type strain NRRL 2936 and the ΔramR mutant strain was characterized by a slower growth rate and a delayed morphological differentiation compared to the original strain NRRL 2936. Furthermore, the ΔramR produced 2.6-fold more lincomycin than the original strain, and consistently the level of expression of all lincomycin cluster located genes was enhanced at 48 h and 96 h in the ΔramR. Complementation of ΔramR with an intact copy of ramRsl restored all wild type features whereas the over-expression of ramRsl led to a reduction of 33% of the lincomycin yield. Furthermore, the level of expression of glnR, bldA, and SLCG_2919, three of known lincomycin biosynthesis regulators, was lower in the ΔramR than in the original strain at the early stage of fermentation and we demonstrated, using EMSA and XylE reporter assay, that glnR is a novel direct target of RamR. CONCLUSIONS Altogether these results indicated that, beyond promoting the morphological development, RamR regulates negatively lincomycin biosynthesis and positively the expression of the nitrogen regulator GlnR. SIGNIFICANCE AND IMPACT OF THE STUDY We demonstrated that RamR plays a negative role in the regulation of lincomycin biosynthesis in S. lincolnensis. Interestingly, the deletion of this gene in other antibiotic producing Streptomyces strains might also increase their antibiotic producing abilities.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuan Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fanjing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
24
|
Płachetka M, Krawiec M, Zakrzewska-Czerwińska J, Wolański M. AdpA Positively Regulates Morphological Differentiation and Chloramphenicol Biosynthesis in Streptomyces venezuelae. Microbiol Spectr 2021; 9:e0198121. [PMID: 34878326 PMCID: PMC8653842 DOI: 10.1128/spectrum.01981-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
In members of genus Streptomyces, AdpA is a master transcriptional regulator that controls the expression of hundreds of genes involved in morphological differentiation, secondary metabolite biosynthesis, chromosome replication, etc. However, the function of AdpASv, an AdpA ortholog of Streptomyces venezuelae, is unknown. This bacterial species is a natural producer of chloramphenicol and has recently become a model organism for studies on Streptomyces. Here, we demonstrate that AdpASv is essential for differentiation and antibiotic biosynthesis in S. venezuelae and provide evidence suggesting that AdpASv positively regulates its own gene expression. We speculate that the different modes of AdpA-dependent transcriptional autoregulation observed in S. venezuelae and other Streptomyces species reflect the arrangement of AdpA binding sites in relation to the transcription start site. Lastly, we present preliminary data suggesting that AdpA may undergo a proteolytic processing and we speculate that this may potentially constitute a novel regulatory mechanism controlling cellular abundance of AdpA in Streptomyces. IMPORTANCEStreptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites. Despite extensive studies, the function of AdpA in these processes remains elusive. This work provides insights into the role of a yet unstudied AdpA ortholog of Streptomyces venezuelae, now considered a novel model organism. We found that AdpA plays essential role in morphological differentiation and biosynthesis of chloramphenicol, a broad-spectrum antibiotic. We also propose that AdpA may undergo a proteolytic processing that presumably constitutes a novel mechanism regulating cellular abundance of this master regulator.
Collapse
Affiliation(s)
| | - Michał Krawiec
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
25
|
Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Balikova Novotna G. Beyond Self-Resistance: ABCF ATPase LmrC Is a Signal-Transducing Component of an Antibiotic-Driven Signaling Cascade Accelerating the Onset of Lincomycin Biosynthesis. mBio 2021; 12:e0173121. [PMID: 34488446 PMCID: PMC8546547 DOI: 10.1128/mbio.01731-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.
Collapse
Affiliation(s)
- Marketa Koberska
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ludmila Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Charles University in Prague, Faculty of Science, Department of Genetics and Microbiology, Prague, Czech Republic
| | - Vladimir Vimberg
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jakub Lenart
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
26
|
Hou B, Wang R, Zou J, Zhang F, Wu H, Ye J, Zhang H. A putative redox‐sensing regulator Rex regulates lincomycin biosynthesis in Streptomyces lincolnensis. J Basic Microbiol 2021; 61:772-781. [DOI: doi.org/10.1002/jobm.202100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/04/2021] [Indexed: 10/09/2023]
Abstract
AbstractLincomycin is an important antimicrobial agent which is widely used in clinical and animal husbandry. The biosynthetic pathway of lincomycin comes to light in the past 10 years, however, the regulatory mechanism is still unclear. In this study, a redox‐sensing regulator Rex from Streptomyces lincolnensis (Rexlin) was identified and characterized to affect cell growth and lincomycin biosynthesis. Disruption of rex resulted in an increase in cell growth, but a decrease in lincomycin production. The results of quantitative real‐time polymerase chain reaction showed that Rexlin can promote transcription of the regulatory gene lmbU and the structural genes lmbA, lmbC, lmbJ, lmbV, and lmbW. However, electrophoretic mobility shift assay analysis demonstrated that Rexlin can not bind to the promoter regions of these genes above. Findings in this study broadened our horizons in the regulatory mechanism of lincomycin production and laid a foundation for strain improvement of antibiotic producers.
Collapse
Affiliation(s)
- Bingbing Hou
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jingyun Zou
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
27
|
Hou B, Wang R, Zou J, Zhang F, Wu H, Ye J, Zhang H. A putative redox-sensing regulator Rex regulates lincomycin biosynthesis in Streptomyces lincolnensis. J Basic Microbiol 2021; 61:772-781. [PMID: 34313330 DOI: 10.1002/jobm.202100249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 01/06/2023]
Abstract
Lincomycin is an important antimicrobial agent which is widely used in clinical and animal husbandry. The biosynthetic pathway of lincomycin comes to light in the past 10 years, however, the regulatory mechanism is still unclear. In this study, a redox-sensing regulator Rex from Streptomyces lincolnensis (Rexlin ) was identified and characterized to affect cell growth and lincomycin biosynthesis. Disruption of rex resulted in an increase in cell growth, but a decrease in lincomycin production. The results of quantitative real-time polymerase chain reaction showed that Rexlin can promote transcription of the regulatory gene lmbU and the structural genes lmbA, lmbC, lmbJ, lmbV, and lmbW. However, electrophoretic mobility shift assay analysis demonstrated that Rexlin can not bind to the promoter regions of these genes above. Findings in this study broadened our horizons in the regulatory mechanism of lincomycin production and laid a foundation for strain improvement of antibiotic producers.
Collapse
Affiliation(s)
- Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jingyun Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
28
|
Liao Z, Song Z, Xu J, Ma Z, Bechthold A, Yu X. Identification of a gene from Streptomyces rimosus M527 negatively affecting rimocidin biosynthesis and morphological differentiation. Appl Microbiol Biotechnol 2020; 104:10191-10202. [PMID: 33057790 DOI: 10.1007/s00253-020-10955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, was found to be highly effective against a broad range of fungal plant pathogens. Current understanding of the regulatory mechanism of rimocidin biosynthesis and morphological differentiation in S. rimosus M527 is limited. NsdA is considered a negative regulator involved in morphological differentiation and biosynthesis of secondary metabolites in some Streptomyces species. In this study, nsdAsr was cloned from S. rimosus M527. The role of nsdAsr in rimocidin biosynthesis and morphological differentiation was investigated by gene deletion, complementation, and over-expression. A ΔnsdAsr mutant was obtained using CRISPR/Cas9. The mutant produced more rimocidin (46%) and accelerated morphological differentiation than the wild-type strain. Over-expression of nsdAsr led to a decrease in rimocidin production and impairment of morphological differentiation. Quantitative RT-PCR analysis revealed that transcription of rim genes responsible for rimocidin biosynthesis was upregulated in the ΔnsdAsr mutant but downregulated in the nsdAsr over-expression strain. Similar effects have been described for Streptomyces coelicolor M145 and the industrial toyocamycin-producing strain Streptomyces diastatochromogenes 1628. KEY POINTS: • A negative regulator for sporulation and rimocidin production was identified. • The CRISPR/Cas9 system was used for gene deletion in S. rimosus M527.
Collapse
Affiliation(s)
- Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Zhangqing Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China.
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
29
|
Wang R, Kong F, Wu H, Hou B, Kang Y, Cao Y, Duan S, Ye J, Zhang H. Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [DOI: doi.org/10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
30
|
Zhou Q, Ning S, Luo Y. Coordinated regulation for nature products discovery and overproduction in Streptomyces. Synth Syst Biotechnol 2020; 5:49-58. [PMID: 32346621 PMCID: PMC7176746 DOI: 10.1016/j.synbio.2020.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Streptomyces is an important treasure trove for natural products discovery. In recent years, many scientists focused on the genetic modification and metabolic regulation of Streptomyces to obtain diverse bioactive compounds with high yields. This review summarized the commonly used regulatory strategies for natural products discovery and overproduction in Streptomyces from three main aspects, including regulator-related strategies, promoter engineering, as well as other strategies employing transposons, signal factors, or feedback regulations. It is expected that the metabolic regulation network of Streptomyces will be elucidated more comprehensively to shed light on natural products research in the future.
Collapse
Affiliation(s)
- Qun Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuqing Ning
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
31
|
Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [PMID: 32322696 PMCID: PMC7160387 DOI: 10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
The lincosamide family antibiotic lincomycin is a widely used antibacterial pharmaceutical generated by Streptomyces lincolnensis, and the high-yield strain B48 produces 2.5 g/L lincomycin, approximately 30-fold as the wild-type strain NRRL 2936. Here, the genome of S. lincolnensis B48 was completely sequenced, revealing a ~10.0 Mb single chromosome with 71.03% G + C content. Based on the genomic information, lincomycin-related primary metabolism network was constructed and the secondary metabolic potential was analyzed. In order to dissect the overproduction mechanism, a comparative genomic analysis with NRRL 2936 was performed. Three large deletions (LDI-III), one large inverted duplication (LID), one long inversion and 80 small variations (including 50 single nucleotide variations, 13 insertions and 17 deletions) were found in B48 genome. Then several crucial mutants contributing to higher production phenotype were validated. Deleting of a MarR-type regulator-encoding gene slinc377 from LDI, and the whole 24.7 kb LDII in NRRL 2936 enhanced lincomycin titer by 244% and 284%, respectively. Besides, lincomycin production of NRRL 2936 was increased to 7.7-fold when a 71 kb supercluster BGC33 from LDIII was eliminated. As for the duplication region, overexpression of the cluster situated genes lmbB2 and lmbU, as well as two novel transcriptional regulator-encoding genes (slinc191 and slinc348) elevated lincomycin titer by 77%, 75%, 114% and 702%, respectively. Furthermore, three negative correlation genes (slinc6156, slinc4481 and slinc6011) on lincomycin biosynthesis, participating in regulation were found out. And surprisingly, inactivation of RNase J-encoding gene slinc6156 and TPR (tetratricopeptide repeat) domain-containing protein-encoding gene slinc4481 achieved lincomycin titer equivalent to 83% and 68% of B48, respectively, to 22.4 and 18.4-fold compared to NRRL 2936. Therefore, the comparative genomics approach combined with confirmatory experiments identified that large fragment deletion, long sequence duplication, along with several mutations of genes, especially regulator genes, are crucial for lincomycin overproduction.
Collapse
|
32
|
Lin CY, Pang AP, Zhang Y, Qiao J, Zhao GR. Comparative transcriptomic analysis reveals the significant pleiotropic regulatory effects of LmbU on lincomycin biosynthesis. Microb Cell Fact 2020; 19:30. [PMID: 32050973 PMCID: PMC7014725 DOI: 10.1186/s12934-020-01298-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/05/2020] [Indexed: 01/02/2023] Open
Abstract
Background Lincomycin, produced by Streptomyces lincolnensis, is a lincosamide antibiotic and widely used for the treatment of the infective diseases caused by Gram-positive bacteria. The mechanisms of lincomycin biosynthesis have been deeply explored in recent years. However, the regulatory effects of LmbU that is a transcriptional regulator in lincomycin biosynthetic (lmb) gene cluster have not been fully addressed. Results LmbU was used to search for homologous LmbU (LmbU-like) proteins in the genomes of actinobacteria, and the results showed that LmbU-like proteins are highly distributed regulators in the biosynthetic gene clusters (BGCs) of secondary metabolites or/and out of the BGCs in actinomycetes. The overexpression, inactivation and complementation of the lmbU gene indicated that LmbU positively controls lincomycin biosynthesis in S. lincolnensis. Comparative transcriptomic analysis further revealed that LmbU activates the 28 lmb genes at whole lmb cluster manner. Furthermore, LmbU represses the transcription of the non-lmb gene hpdA in the biosynthesis of l-tyrosine, the precursor of lincomycin. LmbU up-regulates nineteen non-lmb genes, which would be involved in multi-drug flux to self-resistance, nitrate and sugar transmembrane transport and utilization, and redox metabolisms. Conclusions LmbU is a significant pleiotropic transcriptional regulator in lincomycin biosynthesis by entirely activating the lmb cluster and regulating the non-lmb genes in Streptomyces lincolnensis. Our results first revealed the pleiotropic regulatory function of LmbU, and shed new light on the transcriptional effects of LmbU-like family proteins on antibiotic biosynthesis in actinomycetes.
Collapse
Affiliation(s)
- Chun-Yan Lin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Ai-Ping Pang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yue Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China. .,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|