1
|
Bartuv R, Berihu M, Medina S, Salim S, Feygenberg O, Faigenboim-Doron A, Zhimo VY, Abdelfattah A, Piombo E, Wisniewski M, Freilich S, Droby S. Functional analysis of the apple fruit microbiome based on shotgun metagenomic sequencing of conventional and organic orchard samples. Environ Microbiol 2023; 25:1728-1746. [PMID: 36807446 DOI: 10.1111/1462-2920.16353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Fruits harbour abundant and diverse microbial communities that protect them from post-harvest pathogens. Identification of functional traits associated with a given microbiota can provide a better understanding of their potential influence. Here, we focused on the epiphytic microbiome of apple fruit. We suggest that shotgun metagenomic data can indicate specific functions carried out by different groups and provide information on their potential impact. Samples were collected from the surface of 'Golden Delicious' apples from four orchards that differ in their geographic location and management practice. Approximately 1 million metagenes were predicted based on a high-quality assembly. Functional profiling of the microbiome of fruits from orchards differing in their management practice revealed a functional shift in the microbiota. The organic orchard microbiome was enriched in pathways involved in plant defence activities; the conventional orchard microbiome was enriched in pathways related to the synthesis of antibiotics. The functional significance of the variations was explored using microbial network modelling algorithms to reveal the metabolic role of specific phylogenetic groups. The analysis identified several associations supported by other published studies. For example, the analysis revealed the nutritional dependencies of the Capnodiales group, including the Alternaria pathogen, on aromatic compounds.
Collapse
Affiliation(s)
- Rotem Bartuv
- Agricultural Research Organization (A.R.O.), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Maria Berihu
- Agricultural Research Organization (A.R.O.), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | - Shlomit Medina
- Agricultural Research Organization (A.R.O.), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | - Shoshana Salim
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Oleg Feygenberg
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Adi Faigenboim-Doron
- Agricultural Research Organization (A.R.O.), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | - V Yeka Zhimo
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Ahmed Abdelfattah
- Department of Microbiome Biotechnology, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Edoardo Piombo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute, and State University, Blacksburg, Virginia, USA
| | - Shiri Freilich
- Agricultural Research Organization (A.R.O.), Institute of Plant Sciences, Rishon LeZion/Ramat Yishay, Israel
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
González Plaza JJ, Hradecký J. The tropical cookbook: Termite diet and phylogenetics—Over geographical origin—Drive the microbiome and functional genetic structure of nests. Front Microbiol 2023; 14:1089525. [PMID: 36998409 PMCID: PMC10043212 DOI: 10.3389/fmicb.2023.1089525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
Termites are key decomposers of dead plant material involved in the organic matter recycling process in warm terrestrial ecosystems. Due to their prominent role as urban pests of timber, research efforts have been directed toward biocontrol strategies aimed to use pathogens in their nest. However, one of the most fascinating aspects of termites is their defense strategies that prevent the growth of detrimental microbiological strains in their nests. One of the controlling factors is the nest allied microbiome. Understanding how allied microbial strains protect termites from pathogen load could provide us with an enhanced repertoire for fighting antimicrobial-resistant strains or mining for genes for bioremediation purposes. However, a necessary first step is to characterize these microbial communities. To gain a deeper understanding of the termite nest microbiome, we used a multi-omics approach for dissecting the nest microbiome in a wide range of termite species. These cover several feeding habits and three geographical locations on two tropical sides of the Atlantic Ocean known to host hyper-diverse communities. Our experimental approach included untargeted volatile metabolomics, targeted evaluation of volatile naphthalene, a taxonomical profile for bacteria and fungi through amplicon sequencing, and further diving into the genetic repertoire through a metagenomic sequencing approach. Naphthalene was present in species belonging to the genera Nasutitermes and Cubitermes. We investigated the apparent differences in terms of bacterial community structure and discovered that feeding habits and phylogenetic relatedness had a greater influence than geographical location. The phylogenetic relatedness among nests' hosts influences primarily bacterial communities, while diet influences fungi. Finally, our metagenomic analysis revealed that the gene content provided both soil-feeding genera with similar functional profiles, while the wood-feeding genus showed a different one. Our results indicate that the nest functional profile is largely influenced by diet and phylogenetic relatedness, irrespective of geographical location.
Collapse
|
3
|
Puri P, Sharma JG, Singh R. Biotherapeutic microbial supplementation for ameliorating fish health: developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Anim Health Res Rev 2022; 23:113-135. [PMID: 36597760 DOI: 10.1017/s1466252321000165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nutrition demands in aquaculture can be realized through quality aquafeeds as compounded diets that contribute to the growth and health of aquaculture species. Functional additives in feed, notably probiotics, prebiotics, and their admixture synbiotics, have been recently recognized for their biotherapeutic role as immunostimulants capable of conferring disease resistance, stress tolerance, and gastrointestinal health; counteracting the negative effects of anti-nutrients, pathogenic prevalence, and antimicrobials in finfish aquaculture. Formulated diets based on probiotics, prebiotics, and as a supplemental combination for synbiotics can significantly influence fish gut microbiomes, establishing the modalities of microbial dynamics to maximize host-associated benefits. These microbial functional-feed supplements are acclaimed to be biocompatible, biodegradable, and safe for dietary consumption as well as the environment. In fed fish aquaculture, prebiotic appended probiotic diet 'synbiotic' has propounded larger attention for its additional health and nutritional benefits. Synbiotic, prebiotic, and probiotic usage as functional feeds for finfish aquaculture thus provides promising prospects. Developing trends in their intended application are reviewed here forth.
Collapse
Affiliation(s)
- Parul Puri
- Department of Biotechnology, Delhi Technological University, Delhi, India
- Department of Zoology, Sri Aurobindo College, University of Delhi, Delhi, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
4
|
Liu Q, Zhang H, Chang F, Qiu J, Duan L, Hu G, Zhang Y, Zhang X, Xu L. The effect of graphene photocatalysis on microbial communities in Lake Xingyun, southwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48851-48868. [PMID: 35211854 DOI: 10.1007/s11356-021-18183-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Graphene photocatalysis is a new method for harmful algae and water pollution control. However, microbial communities undergoing graphene photocatalysis treatment in freshwater lakes have been poorly studied. Here, using 16S rRNA and 18S rRNA gene high-throughput sequencing, the responses of microbial communities to graphene photocatalysis were analyzed in the eutrophic lake, Lake Xinyun, southwestern China. For microeukaryotes, we found that Arthropoda was dominant in summer, while its abundant level declined in spring under natural conditions. The evident reduction of Arthropods was observed after graphene photocatalysis treatment in summer and then reached a relatively stable level. For bacteria, Cyanobacteria decreased in summer due to the graphene photocatalysis-mediated inactivation. However, Cyanobacteria was higher in the treated group in spring with a genera group-shift. Functional analysis revealed that microeukaryotes showed higher potential for fatty acid oxidation and TCA cycle in the treated group in summer, but they were more abundant in control in spring. Pathways of starch and sucrose metabolism and galactose metabolism were more abundant in control in summer, while they were enriched in the treated group in spring for bacteria. This study offers insights into the effects of graphene photocatalysis on microbial communities and their functional potential in eutrophic lake.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| | - Jian Qiu
- Jiangsu Shuangliang Graphene Photocatalytic Technology Co., Ltd., Jiangyin, 214444, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Liang Xu
- Jiangsu Shuangliang Graphene Photocatalytic Technology Co., Ltd., Jiangyin, 214444, China
| |
Collapse
|
5
|
Khurana H, Sharma M, Bharti M, Singh DN, Negi RK. Gut milieu shapes the bacterial communities of invasive silver carp. Genomics 2021; 113:815-826. [PMID: 33508444 DOI: 10.1016/j.ygeno.2021.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Silver carp is an invasive fish present in the Gobindsagar reservoir, India and has a profound impact on aquaculture. Understanding taxonomic diversity and functional attributes of gut microbiota will provide insights into the important role of bacteria in metabolism of silver carp that facilitated invasion of this exotic species. Microbial composition in foregut, midgut, hindgut and water samples was analysed using 16S rRNA gene amplicon sequencing. The bacterial communities of water samples were distinct from gut microbiota, and unique microbial assemblages were present in different regions of gut depicting profound impact of gut environment on microflora. Proteobacteria was the most abundant phyla across all samples. Ecological network analysis showed dominance of competitive interactions within posteriors region of the gut, promoting niche specialization. Predictive functional profiling revealed the microbiota specialized in digestive functions in different regions of the gut, which also reflects the dietary profile of silver carp.
Collapse
Affiliation(s)
- Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
6
|
Malakar D, Sarathbabu S, Borah P, Kumar NS. Fish gill microbiome from India's largest Brahmaputra River-a trans-border biodiversity hotspot region. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:56. [PMID: 33432373 DOI: 10.1007/s10661-021-08847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
In this study, we sequenced the V3-V4 region of 16S rRNA gene amplicon using paired-end Illumina HiSeq to study the bacterial community in the gills of fish from the bank of the trans-border river of Brahmaputra, Northeast India. Metagenome data consisted of 278,784 reads, 248-bp length, and 56.48% GC content with 85% sequence having a Phred score Q = 30. Community metagenomics revealed a total of 631 genera belonging to 22 different phyla, dominated by Proteobacteria (118,222 features), Firmicutes (101,043 features), Actinobacteria (34,189 features), Bacteroidetes (17,977 features), and Cyanobacteria (2730 features). The bacterial community identified was composed of both pathogenic zoonotic and non-harmful groups. The pathway or functional analysis of the fish gill microbiome exhibited 21 different pathways which also included the pathogenic-related functions. Our data detected a wide group of bacterial communities that will be useful in further isolating and characterizing the pathogenic bacteria from the fish and also to understand the bacterial association in highly consumed fish.
Collapse
Affiliation(s)
- Dipika Malakar
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796 004, India
- Advanced State Biotech Hub, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
| | | | - Probodh Borah
- Advanced State Biotech Hub, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
| | | |
Collapse
|
7
|
Osborne P, Hall LJ, Kronfeld-Schor N, Thybert D, Haerty W. A rather dry subject; investigating the study of arid-associated microbial communities. ENVIRONMENTAL MICROBIOME 2020; 15:20. [PMID: 33902728 PMCID: PMC8067391 DOI: 10.1186/s40793-020-00367-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
Almost one third of Earth's land surface is arid, with deserts alone covering more than 46 million square kilometres. Nearly 2.1 billion people inhabit deserts or drylands and these regions are also home to a great diversity of plant and animal species including many that are unique to them. Aridity is a multifaceted environmental stress combining a lack of water with limited food availability and typically extremes of temperature, impacting animal species across the planet from polar cold valleys, to Andean deserts and the Sahara. These harsh environments are also home to diverse microbial communities, demonstrating the ability of bacteria, fungi and archaea to settle and live in some of the toughest locations known. We now understand that these microbial ecosystems i.e. microbiotas, the sum total of microbial life across and within an environment, interact across both the environment, and the macroscopic organisms residing in these arid environments. Although multiple studies have explored these microbial communities in different arid environments, few studies have examined the microbiota of animals which are themselves arid-adapted. Here we aim to review the interactions between arid environments and the microbial communities which inhabit them, covering hot and cold deserts, the challenges these environments pose and some issues arising from limitations in the field. We also consider the work carried out on arid-adapted animal microbiotas, to investigate if any shared patterns or trends exist, whether between organisms or between the animals and the wider arid environment microbial communities. We determine if there are any patterns across studies potentially demonstrating a general impact of aridity on animal-associated microbiomes or benefits from aridity-adapted microbiomes for animals. In the context of increasing desertification and climate change it is important to understand the connections between the three pillars of microbiome, host genome and environment.
Collapse
Affiliation(s)
- Peter Osborne
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK.
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany
| | | | - David Thybert
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| |
Collapse
|