1
|
Jönsson M, Sigrist R, Gren T, Semenov Petrov M, Marcussen NEJ, Svetlova A, Charusanti P, Gockel P, Palsson BO, Yang L, Özdemir E. Machine learning uncovers the transcriptional regulatory network for the production host Streptomyces albidoflavus. Cell Rep 2025; 44:115392. [PMID: 40057950 DOI: 10.1016/j.celrep.2025.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Streptomyces albidoflavus is a widely used strain for natural product discovery and production through heterologous biosynthetic gene clusters (BGCs). However, the transcriptional regulatory network (TRN) and its impact on secondary metabolism remain poorly understood. Here, we characterize the TRN using independent component analysis on 218 RNA sequencing (RNA-seq) transcriptomes across 88 unique growth conditions. We identify 78 independently modulated sets of genes (iModulons) that quantitatively describe the TRN across diverse conditions. Our analyses reveal (1) TRN adaptation to different growth conditions, (2) conserved and unique characteristics of the TRN across diverse lineages, (3) transcriptional activation of several endogenous BGCs, including surugamide, minimycin, and paulomycin, and (4) inferred functions of 40% of uncharacterized genes in the S. albidoflavus genome. These findings provide a comprehensive and quantitative understanding of the S. albidoflavus TRN, offering a knowledge base for further exploration and experimental validation.
Collapse
Affiliation(s)
- Mathias Jönsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Renata Sigrist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Mykhaylo Semenov Petrov
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Nils Emil Junge Marcussen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Anna Svetlova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Pep Charusanti
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Peter Gockel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lei Yang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| | - Emre Özdemir
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Chigozie VU, Saki M, Esimone CO. Molecular structural arrangement in quorum sensing and bacterial metabolic production. World J Microbiol Biotechnol 2025; 41:71. [PMID: 39939401 DOI: 10.1007/s11274-025-04280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Quorum sensing (QS) regulates bacterial behaviors such as biofilm formation, virulence, and metabolite production through signaling molecules like acyl-homoserine lactones (AHLs), peptides, and AI-2. These signals are pivotal in bacterial communication, influencing pathogenicity and industrial applications. This review explores the molecular architecture of QS signals and their role in metabolite production, emphasizing structural modifications that disrupt bacterial communication to control virulence and enhance industrial processes. Key findings highlight the development of synthetic QS analogs, engineered inhibitors, and microbial consortia as innovative tools in biotechnology and medicine. The review underscores the potential of molecular engineering in managing microbial behaviors and optimizing applications like biofuel production, bioplastics, and anti-virulence therapies. Additionally, cross-species signaling mechanisms, particularly involving AI-2, reveal new opportunities for regulating interspecies cooperation and competition. This synthesis aims to bridge molecular insights with practical applications, showcasing how QS-based technologies can drive advancements in microbial biotechnology and therapeutic strategies.
Collapse
Affiliation(s)
- Victor U Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Ebonyi State, Nigeria.
- International Institute for Pharmaceutical Research (IIPR), Ohaozara, Ebonyi State, Nigeria.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
3
|
Chen H, Liu X, Wei B, Tian Y, Li Y, Zhang J, Tan H, Li J. Identification of a novel butenolide signal system to regulate high production of tylosin in Streptomyces fradiae. Appl Microbiol Biotechnol 2025; 109:18. [PMID: 39841199 PMCID: PMC11754346 DOI: 10.1007/s00253-024-13396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl). Meanwhile, SFB1 biosynthesis is negatively regulated by TylQ (another transcriptional repressor); the disruption of its coding gene tylQ led to increased production of SFB1, which in turn increased the yield of tylosin. Using tylQ disrupted mutant as chassis cell, co-overexpressing transcriptional activators TylR and TylS further increased tylosin yield to 3926 ± 110 mg/L, representing a 2.93-fold improvement over the wild-type strain. Since the quorum sensing signaling system can affect the biosynthesis of many secondary metabolites, thereby this strategy may also be readily applied for improving the titers of other microbial metabolites. KEY POINTS: • SFB1 is a novel γ-butenolide-type quorum sensing signaling molecule of S. fradiae. • SFB1 regulates the production of tylosin. • Engineering SFB1 regulatory cascade improves tylosin production.
Collapse
Affiliation(s)
- Huliang Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoting Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Yu D, Lin H, Bechthold A, Yu X, Ma Z. RS24090, a TetR family transcriptional repressor, negatively affects the rimocidin biosynthesis in Streptomyces rimosus M527. Int J Biol Macromol 2024; 285:138043. [PMID: 39592035 DOI: 10.1016/j.ijbiomac.2024.138043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
The TetR family of regulators (TFRs), commonly reported as repressors, plays a role in regulating secondary metabolite production in Streptomyces. In this study, we sought to elucidate the relationship between TFRs and rimocidin production of Streptomyces rimosus M527. Through transcriptomic analysis, we identified the protein RS24090, which exhibited significant differential expression. Phylogenetic analysis of its amino acid sequence and structural alignment predicted it to be a TetR family regulator. Thus, RS24090 was named TetR24. The role of TetR24 in biosynthesis of rimocidin was verified through gene-deletion, -complementation, and -overexpression experiments. The TetR24 gene-deletion mutant (ΔTetR24), which was generated using CRISPR/Cas9 technology, produced 38.08 % more rimocidin than the wild-type (WT) strain M527. Complementary expression of the TetR24 gene in the mutant ΔTetR24 restored rimocidin production to levels comparable to the WT strain. In contrast, the recombinant strain M527-TetR24, which harbored an overexpression of the TetR24 gene, exhibited a 40.31 % decrease in rimocidin production compared to the WT strain. A similar trend in the transcription levels of the rim genes (rimA, rimC, rimG, rimR1, and rimR2), all located in the rimocidin biosynthetic gene cluster, was revealed by quantitative RT-PCR analysis in M527-ΔTetR24, M527-ΔTetR24::TetR24, and M527-TetR24. EMSA and DNase I footprinting assays confirmed that TetR24 regulates the transcription of rim genes by binding to promoter regions of rimA and rimR2.
Collapse
Affiliation(s)
- Dan Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Andreas Bechthold
- University of Freiburg, Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, 79104 Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
5
|
Bontemps Z, Abrouk D, Venier S, Vergne P, Michalet S, Comte G, Moënne-Loccoz Y, Hugoni M. Microbial diversity and secondary metabolism potential in relation to dark alterations in Paleolithic Lascaux Cave. NPJ Biofilms Microbiomes 2024; 10:121. [PMID: 39505900 PMCID: PMC11541736 DOI: 10.1038/s41522-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Tourism in Paleolithic caves can cause an imbalance in cave microbiota and lead to cave wall alterations, such as dark zones. However, the mechanisms driving dark zone formation remain unclear. Using shotgun metagenomics in Lascaux Cave's Apse and Passage across two years, we tested metabarcoding-derived functional hypotheses regarding microbial diversity and metabolic potential in dark zones vs unmarked surfaces nearby. Taxonomic and functional metagenomic profiles were consistent across years but divergent between cave locations. Aromatic compound degradation genes were prevalent inside and outside dark zones, as expected from past biocide usage. Dark zones exhibited enhanced pigment biosynthesis potential (melanin and carotenoids) and melanin was evidenced chemically, while unmarked surfaces showed genes for antimicrobials production, suggesting that antibiosis might restrict the development of pigmented microorganisms and dark zone extension. Thus, this work revealed key functional microbial traits associated with dark zone formation, which helps understand cave alteration processes under severe anthropization.
Collapse
Affiliation(s)
- Zélia Bontemps
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Sita Venier
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Pierre Vergne
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Serge Michalet
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Gilles Comte
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Mylène Hugoni
- Institut Universitaire de France (IUF), Paris, France.
- Université Claude Bernard Lyon 1, CNRS, INSA de Lyon, UMR Microbiologie Adaptation et Pathogénie, Villeurbanne, France.
| |
Collapse
|
6
|
Salehi-Najafabadi A, Tehrani Fateh S, Amoabediny G, Hamedi J. Insights into additional lactone-based signaling circuits in Streptomyces: existence of acyl-homoserine lactones and LuxI/LuxR homologs in six Streptomyces species. Front Microbiol 2024; 15:1342637. [PMID: 38389542 PMCID: PMC10883386 DOI: 10.3389/fmicb.2024.1342637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Acyl-homoserine lactones (AHLs), mediating pivotal physiological activities through quorum sensing (QS), have conventionally been considered limited to Gram-negative bacteria. However, few reports on the existence of AHLs in Gram-positive bacteria have questioned this conception. Streptomyces, as Gram-positive bacteria already utilizing a lactone-based QS molecule (i.e., gamma-butyrolactones), are yet to be explored for producing AHLs, considering their metabolic capacity and physiological distinction. In this regard, our study examined the potential production of AHLs within Streptomyces by deploying HPLC-MS/MS methods, which resulted in the discovery of multiple AHL productions by S. griseus, S. lavendulae FRI-5, S. clavuligerus, S. nodosus, S. lividans, and S. coelicolor A3(2). Each of these Streptomyces species possesses a combination of AHLs of different size ranges, possibly due to their distinct properties and regulatory roles. In light of additional lactone molecules, we further confirm that AHL- and GBL-synthases (i.e., LuxI and AfsA enzyme families, respectively) and their receptors (i.e., LuxR and ArpA) are evolutionarily distinct. To this end, we searched for the components of the AHL signaling circuit, i.e., AHL synthases and receptors, in the Streptomyces genus, and we have identified multiple potential LuxI and LuxR homologs in all 2,336 Streptomyces species included in this study. The 6 Streptomyces of interest in this study also had at least 4 LuxI homologs and 97 LuxR homologs. In conclusion, AHLs and associated gene regulatory systems could be more widespread within the prokaryotic realm than previously believed, potentially contributing to the control of secondary metabolites (e.g., antibiotics) and their complex life cycle, which leads to substantial industrial and clinical applications.
Collapse
Affiliation(s)
- Amir Salehi-Najafabadi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Sepand Tehrani Fateh
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Amoabediny
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- Faculty of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Loboda M, Biliavska L, Iutynska G, Newitt J, Mariychuk R. Natural Products Biosynthesis by Streptomyces netropsis IMV Ac-5025 under Exogenous Sterol Action. Antibiotics (Basel) 2024; 13:146. [PMID: 38391532 PMCID: PMC10886242 DOI: 10.3390/antibiotics13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Streptomycetes are known as producers of bioactive substances, particularly antibiotics. Streptomyces netropsis IMV Ac-5025 simultaneously produces different classes of antibiotics, including polyene compounds, phytohormones, and sterols, but the metabolic pathways involved in their biosynthesis are largely understudied. The aim of this work was to explore the biosynthesis of polyene antibiotics, sterols, and phytohormones when the producer is cultivated in a nutrient medium supplemented with exogenous β-sitosterol. Gas chromatography and high-performance liquid chromatography were applied to analyze the spectrum of bioactive compounds. The obtained results demonstrated not only an increase in the accumulation of biomass but also polyene antibiotics, intracellular sterols, auxins, and cytokinins, when cultivating S. netropsis IMV Ac-5025 in a liquid medium with the addition of β-sitosterol. The amount of biomass raised 1.5-2-fold, whilst the sum of polyene antibiotics increased 4.5-fold, sterols' sum (ergosterol, cholesterol, stigmasterol, β-sitosterol, and 24-epibrassinolide) by 2.9-fold, auxins' sum (indole-3-acetic acid, indole-3-acetic acid hydrazide, indole-3-carbinol, indole-3-butyric acid, indole-3-carboxaldehyde, and indole-3-carboxylic acid) by 6-fold, and cytokinins' sum (zeatin, isopentyladenine, zeatin riboside, and isopentenyladenosine) by 11-fold. Thus, we put forward the hypothesis that β-sitosterol plays a regulatory role in the network of biosynthetic reactions of S. netropsis IMV Ac-5025.
Collapse
Affiliation(s)
- Mariia Loboda
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Akademika Zabolotnoho Str., 154, 03143 Kyiv, Ukraine
| | - Liudmyla Biliavska
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Akademika Zabolotnoho Str., 154, 03143 Kyiv, Ukraine
| | - Galyna Iutynska
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Akademika Zabolotnoho Str., 154, 03143 Kyiv, Ukraine
| | - Jake Newitt
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Ruslan Mariychuk
- Department of Ecology, Faculty of Humanities and Natural Science, University of Presov, 08001 Presov, Slovakia
| |
Collapse
|
8
|
Mao J, Zhang M, Dai W, Fu C, Wang Z, Wang X, Yao Q, Kong L, Qin J. Metabolic perturbation of Streptomyces albulus by introducing NADP-dependent glyceraldehyde 3-phosphate dehydrogenase. Front Microbiol 2024; 15:1328321. [PMID: 38328422 PMCID: PMC10847347 DOI: 10.3389/fmicb.2024.1328321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
The available resources of Streptomyces represent a valuable repository of bioactive natural products that warrant exploration. Streptomyces albulus is primarily utilized in the industrial synthesis of ε-poly-L-lysine (ε-PL). In this study, the NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) from Streptococcus mutans was heterologously expressed in S. albulus CICC11022, leading to elevated intracellular NADPH levels and reduced NADH and ATP concentrations. The resulting perturbation of S. albulus metabolism was comprehensively analyzed using transcriptomic and metabolomic methodologies. A decrease in production of ε-PL was observed. The expression of gapN significantly impacted on 23 gene clusters responsible for the biosynthesis of secondary metabolites. A comprehensive analysis revealed a total of 21 metabolites exhibiting elevated levels both intracellularly and extracellularly in the gapN expressing strain compared to those in the control strain. These findings underscore the potential of S. albulus to generate diverse bioactive natural products, thus offering valuable insights for the utilization of known Streptomyces resources through genetic manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linghui Kong
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayang Qin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Mao Y, Zhang X, Zhou T, Hou B, Ye J, Wu H, Wang R, Zhang H. Three new LmbU targets outside lmb cluster inhibit lincomycin biosynthesis in Streptomyces lincolnensis. Microb Cell Fact 2024; 23:3. [PMID: 38172890 PMCID: PMC10763038 DOI: 10.1186/s12934-023-02284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Antibiotics biosynthesis is usually regulated by the cluster-situated regulatory gene(s) (CSRG(s)), which directly regulate the genes within the corresponding biosynthetic gene cluster (BGC). Previously, we have demonstrated that LmbU functions as a cluster-situated regulator (CSR) of lincomycin. And it has been found that LmbU regulates twenty non-lmb genes through comparative transcriptomic analysis. However, the regulatory mode of CSRs' targets outside the BGC remains unknown. RESULTS We screened the targets of LmbU in the whole genome of Streptomyces lincolnensis and found fourteen candidate targets, among which, eight targets can bind to LmbU by electrophoretic mobility shift assays (EMSA). Reporter assays in vivo revealed that LmbU repressed the transcription of SLINC_0469 and SLINC_1037 while activating the transcription of SLINC_8097. In addition, disruptions of SLINC_0469, SLINC_1037, and SLINC_8097 promoted the production of lincomycin, and qRT-PCR showed that SLINC_0469, SLINC_1037, and SLINC_8097 inhibited transcription of the lmb genes, indicating that all the three regulators can negatively regulate lincomycin biosynthesis. CONCLUSIONS LmbU can directly regulate genes outside the lmb cluster, and these genes can affect both lincomycin biosynthesis and the transcription of lmb genes. Our results first erected the cascade regulatory circuit of LmbU and regulators outside lmb cluster, which provides the theoretical basis for the functional research of LmbU family proteins.
Collapse
Affiliation(s)
- Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xianyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Tianyu Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
de Lima Júnior AA, de Sousa EC, de Oliveira THB, de Santana RCF, da Silva SKR, Coelho LCBB. Genus Streptomyces: Recent advances for biotechnological purposes. Biotechnol Appl Biochem 2023; 70:1504-1517. [PMID: 36924211 DOI: 10.1002/bab.2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Actinomycetes are a distinct group of filamentous bacteria. The Streptomyces genus within this group has been extensively studied over the years, with substantial contributions to society and science. This genus is known for its antimicrobial production, as well as antitumor, biopesticide, and immunomodulatory properties. Therefore, the extraordinary plasticity of the Streptomyces genus has inspired new research techniques. The newest way of exploring Streptomyces has comprised the discovery of new natural metabolites and the application of emerging tools such as CRISPR technology in drug discovery. In this narrative review, we explore relevant published literature concerning the ongoing novelties of the Streptomyces genus.
Collapse
Affiliation(s)
- Apolonio Alves de Lima Júnior
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Thales Henrique Barbosa de Oliveira
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | | | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|
11
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
12
|
Complete Genome Sequences of Streptomyces albus Strain INA 01303. Microbiol Resour Announc 2022; 11:e0099122. [DOI: 10.1128/mra.00991-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the complete genome sequence of
Streptomyces albus
strain INA 01303, which was isolated from the Salt Lake Tambukan (Russia). The genome consists of a linear 6,840,896-nucleotide chromosome. This strain is predicted to produce a range of novel secondary metabolites with antibiotic activity.
Collapse
|
13
|
Sudha A, Durgadevi D, Archana S, Muthukumar A, Suthin Raj T, Nakkeeran S, Poczai P, Nasif O, Ansari MJ, Sayyed RZ. Unraveling the tripartite interaction of volatile compounds of Streptomyces rochei with grain mold pathogens infecting sorghum. Front Microbiol 2022; 13:923360. [PMID: 35966704 PMCID: PMC9366667 DOI: 10.3389/fmicb.2022.923360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Sorghum is a major grain crop used in traditional meals and health drinks, and as an efficient fuel. However, its productivity, value, germination, and usability are affected by grain mold, which is a severe problem in sorghum production systems, which reduces the yield of harvested grains for consumer use. The organic approach to the management of the disease is essential and will increase consumer demand. Bioactive molecules like mVOC (volatile organic compound) identification are used to unravel the molecules responsible for antifungal activity. The Streptomyces rochei strain (ASH) has been reported to be a potential antagonist to many pathogens, with high levels of VOCs. The present study aimed to study the inhibitory effect of S. rochei on sorghum grain mold pathogens using a dual culture technique and via the production of microbial volatile organic compounds (mVOCs). mVOCs inhibited the mycelial growth of Fusarium moniliforme by 63.75 and Curvularia lunata by 68.52%. mVOCs suppressed mycelial growth and inhibited the production of spores by altering the structure of mycelia in tripartite plate assay. About 45 mVOCs were profiled when Streptomyces rochei interacted with these two pathogens. In the present study, several compounds were upregulated or downregulated by S. rochei, including 2-methyl-1-butanol, methanoazulene, and cedrene. S. rochei emitted novel terpenoid compounds with peak areas, such as myrcene (1.14%), cymene (6.41%), and ç-terpinene (7.32%) upon interaction with F. moniliforme and C. lunata. The peak area of some of the compounds, including furan 2-methyl (0.70%), benzene (1.84%), 1-butanol, 2-methyl-(8.25%), and myrcene (1.12)%, was increased during tripartite interaction with F. moniliforme and C. lunata, which resulted in furan 2-methyl (6.60%), benzene (4.43%), butanol, 2-methyl (18.67%), and myrcene (1.14%). These metabolites were implicated in the sesquiterpenoid and alkane biosynthetic pathways and the oxalic acid degradation pathway. The present study shows how S. rochei exhibits hyperparasitism, competition, and antibiosis via mVOCs. In addition to their antimicrobial functions, these metabolites could also enhance plant growth.
Collapse
Affiliation(s)
- A. Sudha
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - D. Durgadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S. Archana
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - A. Muthukumar
- Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India
| | - T. Suthin Raj
- Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India
| | - S. Nakkeeran
- Department of Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, (Mahatma Jyotiba Phule Rohilkhand University, Bareilly), Moradabad, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G. B. Patel Science, and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
14
|
Xu Z, Ji L, Tang W, Guo L, Gao C, Chen X, Liu J, Hu G, Liu L. Metabolic engineering of Streptomyces to enhance the synthesis of valuable natural products. ENGINEERING MICROBIOLOGY 2022; 2:100022. [PMID: 39628845 PMCID: PMC11611008 DOI: 10.1016/j.engmic.2022.100022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/06/2024]
Abstract
The mycelial bacterium Streptomyces is a workhorse for producing natural products, serving as a key source of drugs and other valuable chemicals. However, its complicated life cycle, silent biosynthetic gene clusters (BGCs), and poorly characterized metabolic mechanisms limit efficient production of natural products. Therefore, a metabolic engineering strategy, including traditional and emerging tools from different disciplines, was developed to further enhance natural product synthesis by Streptomyces. Here, current trends in systems metabolic engineering, including tools and strategies, are reviewed. Particularly, this review focuses on recent developments in the selection of methods for regulating the Streptomyces life cycle, strategies for the activation of silent gene clusters, and the exploration of regulatory mechanisms governing antibiotic production. Finally, future challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zuwei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lihao Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenxiu Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Santamaría RI, Martínez-Carrasco A, Martín J, Tormo JR, Pérez-Victoria I, González I, Genilloud O, Reyes F, Díaz M. Grapevine Xylem Sap Is a Potent Elicitor of Antibiotic Production in Streptomyces spp. Antibiotics (Basel) 2022; 11:672. [PMID: 35625316 PMCID: PMC9137808 DOI: 10.3390/antibiotics11050672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Streptomyces bacteria produce a wide number of antibiotics and antitumor compounds that have attracted the attention of pharmaceutical and biotech companies. In this study, we provide evidence showing that the xylem sap from grapevines has a positive effect on the production of different antibiotics by several Streptomyces species, including S. ambofaciens ATCC 23877 and S. argillaceus ATCC 12596 among others. The production of several already known compounds was induced: actinomycin D, chromomycin A3, fungichromin B, mithramycin A, etc., and four compounds with molecular formulas not included in the Dictionary of Natural Products (DNP v28.2) were also produced. The molecules present in the xylem sap that acts as elicitors were smaller than 3 kDa and soluble in water and insoluble in ether, ethyl acetate, or methanol. A combination of potassium citrate and di-D-fructose dianhydrides (related to levanbiose or inulobiose) seemed to be the main effectors identified from the active fraction. However, the level of induction obtained in the presence of these compounds mix was weaker and delayed with respect to the one got when using the whole xylem sap or the 3 kDa sap fraction, suggesting that another, not identified, elicitor must be also implied in this induction.
Collapse
Affiliation(s)
- Ramón I. Santamaría
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, C/Zacarías González nº 2, 37007 Salamanca, Spain;
| | - Ana Martínez-Carrasco
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, C/Zacarías González nº 2, 37007 Salamanca, Spain;
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.M.); (J.R.T.); (I.P.-V.); (I.G.); (O.G.); (F.R.)
| | - José R. Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.M.); (J.R.T.); (I.P.-V.); (I.G.); (O.G.); (F.R.)
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.M.); (J.R.T.); (I.P.-V.); (I.G.); (O.G.); (F.R.)
| | - Ignacio González
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.M.); (J.R.T.); (I.P.-V.); (I.G.); (O.G.); (F.R.)
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.M.); (J.R.T.); (I.P.-V.); (I.G.); (O.G.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.M.); (J.R.T.); (I.P.-V.); (I.G.); (O.G.); (F.R.)
| | - Margarita Díaz
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, C/Zacarías González nº 2, 37007 Salamanca, Spain;
| |
Collapse
|
16
|
A New Family of Transcriptional Regulators Activating Biosynthetic Gene Clusters for Secondary Metabolites. Int J Mol Sci 2022; 23:ijms23052455. [PMID: 35269603 PMCID: PMC8910723 DOI: 10.3390/ijms23052455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022] Open
Abstract
We previously identified the aur1 biosynthetic gene cluster (BGC) in Streptomyceslavendulae subsp. lavendulae CCM 3239 (formerly Streptomycesaureofaciens CCM 3239), which is responsible for the production of the unusual angucycline-like antibiotic auricin. Auricin is produced in a narrow interval of the growth phase after entering the stationary phase, after which it is degraded due to its instability at the high pH values reached after the production phase. The complex regulation of auricin BGC is responsible for this specific production by several regulators, including the key activator Aur1P, which belongs to the family of atypical response regulators. The aur1P gene forms an operon with the downstream aur1O gene, which encodes an unknown protein without any conserved domain. Homologous aur1O genes have been found in several BGCs, which are mainly responsible for the production of angucycline antibiotics. Deletion of the aur1O gene led to a dramatic reduction in auricin production. Transcription from the previously characterized Aur1P-dependent biosynthetic aur1Ap promoter was similarly reduced in the S. lavendulaeaur1O mutant strain. The aur1O-specific coactivation of the aur1Ap promoter was demonstrated in a heterologous system using a luciferase reporter gene. In addition, the interaction between Aur1O and Aur1P has been demonstrated by a bacterial two-hybrid system. These results suggest that Aur1O is a specific coactivator of this key auricin-specific positive regulator Aur1P. Bioinformatics analysis of Aur1O and its homologues in other BGCs revealed that they represent a new family of transcriptional coactivators involved in the regulation of secondary metabolite biosynthesis. However, they are divided into two distinct sequence-specific subclasses, each of which is likely to interact with a different family of positive regulators.
Collapse
|
17
|
Alsaedi ZS, Ashy RA, Shami AY, Majeed MA, Alswat AM, Baz L, Baeshen MN, Jalal RS. Metagenomic study of the communities of bacterial endophytes in the desert plant Senna Italica and their role in abiotic stress resistance in the plant. BRAZ J BIOL 2022; 82:e267584. [DOI: 10.1590/1519-6984.267584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/22/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract Plant leaves and roots are home to diverse communities of bacteria, which play a significant role in plant health and growth. Although one of the most unfriendly environments for plant growth is deserts, desert plants can influence their surrounding microbial population and choose favorable bacteria that encourage their growth under these severe circumstances. Senna italica is known for its excellent medicinal values as a traditional medical plant, but little is known about its associated endophytic bacterial community under extreme conditions. In the present study, metagenomic sequencing of 16S rRNA was used to report the diversity of endophytic bacterial communities associated with the leaves and roots of the desert medicinal plant Senna italica that was collected from the Asfan region in northeast Jeddah, Saudi Arabia. Analyses of the 16S rRNA sequences at the taxonomic phylum level revealed that bacterial communities in the roots and leaves samples belonged to five phyla, including Cyanobacteria, Proteobacteria, Actinobacteria, Firmicutes, and unclassified phyla. Results indicated that the most common phyla were Cyanobacteria/Chloroplast and Actinobacteria. Analysis of the 16S rRNA sequences at the taxonomic phylum level revealed that bacterial communities in the roots and leaves samples belonged to twelve genera at the taxonomic genus level. The most abundant ones were highlighted for further analysis, including Okibacterium and Streptomyces found in Actinobacteria, which were the dominant genus in roots samples. However, Streptophyta found in Cyanobacteria/Chloroplast was the dominant genus in leaf samples. Metagenomic analysis of medicinal plants leads to identifying novel organisms or genes that may have a role in abiotic stress resistance in the plant. The study of endophytic microbiome taxonomic, phylogenetic, and functional diversity will better know innovative candidates that may be selected as biological agents to enhance agricultural and industrial processes, especially for crop desert agricultural improvement.
Collapse
Affiliation(s)
| | | | - A. Y. Shami
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | | - L. Baz
- King Abdulaziz University, Saudi Arabia
| | | | | |
Collapse
|
18
|
Lima C, Ahmed S, Xu Y, Muhamadali H, Parry C, McGalliard RJ, Carrol ED, Goodacre R. Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level. Chem Sci 2022; 13:8171-8179. [PMID: 35919437 PMCID: PMC9278432 DOI: 10.1039/d2sc02493d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life-threatening clinical condition responsible for approximately 11 million deaths worldwide. Rapid and accurate identification of pathogenic bacteria and its antimicrobial susceptibility play a critical role in reducing the morbidity and mortality rates related to sepsis. Raman and infrared spectroscopies have great potential to be used as diagnostic tools for rapid and culture-free detection of bacterial infections. Despite numerous reports using both methods to analyse bacterial samples, there is to date no study collecting both Raman and infrared signatures from clinical samples simultaneously due to instrument incompatibilities. Here, we report for the first time the use of an emerging technology that provides infrared signatures via optical photothermal infrared (O-PTIR) spectroscopy and Raman spectra simultaneously. We use this approach to analyse 12 bacterial clinical isolates including six isolates of Gram-negative and six Gram-positive bacteria commonly associated with bloodstream infection in humans. To benchmark the single cell spectra obtained by O-PTIR spectroscopy, infrared signatures were also collected from bulk samples via both FTIR and O-PTIR spectroscopies. Our findings showed significant similarity and high reproducibility in the infrared signatures obtained by all three approaches, including similar discrimination patterns when subjected to clustering algorithms. Principal component analysis (PCA) showed that O-PTIR and Raman data acquired simultaneously from bulk bacterial isolates displayed different clustering patterns due to the ability of both methods to probe metabolites produced by bacteria. By contrast, signatures of microbial pigments were identified in Raman spectra, providing complementary and orthogonal information compared to infrared, which may be advantageous as it has been demonstrated that certain pigments play an important role in bacterial virulence. We found that infrared spectroscopy showed higher sensitivity than Raman for the analysis of individual cells. Despite the different patterns obtained by using Raman and infrared spectral data as input for clustering algorithms, our findings showed high data reproducibility in both approaches as the biological replicates from each bacterial strain clustered together. Overall, we show that Raman and infrared spectroscopy offer both advantages and disadvantages and, therefore, having both techniques combined in one single technology is a powerful tool with promising applications in clinical microbiology. O-PTIR was used for simultaneous collection of infrared and Raman spectra from clinical pathogens associated with bloodstream infections.![]()
Collapse
Affiliation(s)
- Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Shwan Ahmed
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Environment and Quality Control, Kurdistan Institution for Strategic Studies and Scientific Research, Kurdistan Region, Iraq
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Christopher Parry
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Rachel J. McGalliard
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Enitan D. Carrol
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
19
|
A Glossary for Chemical Approaches towards Unlocking the Trove of Metabolic Treasures in Actinomycetes. Molecules 2021; 27:molecules27010142. [PMID: 35011373 PMCID: PMC8746466 DOI: 10.3390/molecules27010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Actinobacterial natural products showed a critical basis for the discovery of new antibiotics as well as other lead secondary metabolites. Varied environmental and physiological signals touch the antibiotic machinery that faced a serious decline in the last decades. The reason was exposed by genomic sequencing data, which revealed that Actinomycetes harbor a large portion of silent biosynthetic gene clusters in their genomes that encrypt for secondary metabolites. These gene clusters are linked with a great reservoir of yet unknown molecules, and arranging them is considered a major challenge for biotechnology approaches. In the present paper, we discuss the recent strategies that have been taken to augment the yield of secondary metabolites via awakening these cryptic genes in Actinomycetes with emphasis on chemical signaling molecules used to induce the antibiotics biosynthesis. The rationale, types, applications and mechanisms are discussed in detail, to reveal the productive path for the unearthing of new metabolites, covering the literature until the end of 2020.
Collapse
|
20
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Polyketide Starter and Extender Units Serve as Regulatory Ligands to Coordinate the Biosynthesis of Antibiotics in Actinomycetes. mBio 2021; 12:e0229821. [PMID: 34579580 PMCID: PMC8546615 DOI: 10.1128/mbio.02298-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Polyketides are one of the largest categories of secondary metabolites, and their biosynthesis is initiated by polyketide synthases (PKSs) using coenzyme A esters of short fatty acids (acyl-CoAs) as starter and extender units. In this study, we discover a universal regulatory mechanism in which the starter and extender units, beyond direct precursors of polyketides, function as ligands to coordinate the biosynthesis of antibiotics in actinomycetes. A novel acyl-CoA responsive TetR-like regulator (AcrT) is identified in an erythromycin-producing strain of Saccharopolyspora erythraea. AcrT shows the highest binding affinity to the promoter of the PKS-encoding gene eryAI in the DNA affinity capture assay (DACA) and directly represses the biosynthesis of erythromycin. Propionyl-CoA (P-CoA) and methylmalonyl-CoA (MM-CoA) as the starter and extender units for erythromycin biosynthesis can serve as the ligands to release AcrT from PeryAI, resulting in an improved erythromycin yield. Intriguingly, anabolic pathways of the two acyl-CoAs are also suppressed by AcrT through inhibition of the transcription of acetyl-CoA (A-CoA) and P-CoA carboxylase genes and stimulation of the transcription of citrate synthase genes, which is beneficial to bacterial growth. As P-CoA and MM-CoA accumulate, they act as ligands in turn to release AcrT from those targets, resulting in a redistribution of more A-CoA to P-CoA and MM-CoA against citrate. Furthermore, based on analyses of AcrT homologs in Streptomyces avermitilis and Streptomyces coelicolor, it is believed that polyketide starter and extender units have a prevalent, crucial role as ligands in modulating antibiotic biosynthesis in actinomycetes.
Collapse
|
22
|
Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Balikova Novotna G. Beyond Self-Resistance: ABCF ATPase LmrC Is a Signal-Transducing Component of an Antibiotic-Driven Signaling Cascade Accelerating the Onset of Lincomycin Biosynthesis. mBio 2021; 12:e0173121. [PMID: 34488446 PMCID: PMC8546547 DOI: 10.1128/mbio.01731-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.
Collapse
Affiliation(s)
- Marketa Koberska
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ludmila Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Charles University in Prague, Faculty of Science, Department of Genetics and Microbiology, Prague, Czech Republic
| | - Vladimir Vimberg
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jakub Lenart
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Vesela
- Institute of Microbiology, The Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
23
|
Lioy VS, Lorenzi JN, Najah S, Poinsignon T, Leh H, Saulnier C, Aigle B, Lautru S, Thibessard A, Lespinet O, Leblond P, Jaszczyszyn Y, Gorrichon K, Varoquaux N, Junier I, Boccard F, Pernodet JL, Bury-Moné S. Dynamics of the compartmentalized Streptomyces chromosome during metabolic differentiation. Nat Commun 2021; 12:5221. [PMID: 34471117 PMCID: PMC8410849 DOI: 10.1038/s41467-021-25462-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria of the genus Streptomyces are prolific producers of specialized metabolites, including antibiotics. The linear chromosome includes a central region harboring core genes, as well as extremities enriched in specialized metabolite biosynthetic gene clusters. Here, we show that chromosome structure in Streptomyces ambofaciens correlates with genetic compartmentalization during exponential phase. Conserved, large and highly transcribed genes form boundaries that segment the central part of the chromosome into domains, whereas the terminal ends tend to be transcriptionally quiescent compartments with different structural features. The onset of metabolic differentiation is accompanied by a rearrangement of chromosome architecture, from a rather 'open' to a 'closed' conformation, in which highly expressed specialized metabolite biosynthetic genes form new boundaries. Thus, our results indicate that the linear chromosome of S. ambofaciens is partitioned into structurally distinct entities, suggesting a link between chromosome folding, gene expression and genome evolution.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Jean-Noël Lorenzi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Soumaya Najah
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Thibault Poinsignon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hervé Leh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Corinne Saulnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kevin Gorrichon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nelle Varoquaux
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
24
|
Yan Q, Liu M, Kidarsa T, Johnson CP, Loper JE. Two Pathway-Specific Transcriptional Regulators, PltR and PltZ, Coordinate Autoinduction of Pyoluteorin in Pseudomonas protegens Pf-5. Microorganisms 2021; 9:microorganisms9071489. [PMID: 34361923 PMCID: PMC8305169 DOI: 10.3390/microorganisms9071489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
Antibiotic biosynthesis by microorganisms is commonly regulated through autoinduction, which allows producers to quickly amplify the production of antibiotics in response to environmental cues. Antibiotic autoinduction generally involves one pathway-specific transcriptional regulator that perceives an antibiotic as a signal and then directly stimulates transcription of the antibiotic biosynthesis genes. Pyoluteorin is an autoregulated antibiotic produced by some Pseudomonas spp. including the soil bacterium Pseudomonas protegens Pf-5. In this study, we show that PltR, a known pathway-specific transcriptional activator of pyoluteorin biosynthesis genes, is necessary but not sufficient for pyoluteorin autoinduction in Pf-5. We found that pyoluteorin is perceived as an inducer by PltZ, a second pathway-specific transcriptional regulator that directly represses the expression of genes encoding a transporter in the pyoluteorin gene cluster. Mutation of pltZ abolished the autoinducing effect of pyoluteorin on the transcription of pyoluteorin biosynthesis genes. Overall, our results support an alternative mechanism of antibiotic autoinduction by which the two pathway-specific transcriptional regulators PltR and PltZ coordinate the autoinduction of pyoluteorin in Pf-5. Possible mechanisms by which PltR and PltZ mediate the autoinduction of pyoluteorin are discussed.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence:
| | - Mary Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Teresa Kidarsa
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| | - Colin P. Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| |
Collapse
|
25
|
Pleiotropic effects of ActVI-ORFA as an unusual regulatory factor identified in the biosynthetic pathway of actinorhodin in Streptomyces coelicolor. Microbiol Res 2021; 250:126792. [PMID: 34082307 DOI: 10.1016/j.micres.2021.126792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Regulatory networks play critical roles in controlling the the biosynthesis of natural products in Streptomyces. ActVI-ORFA, a regulatory factor encoded by the actinorhodin biosynthetic gene cluster (act cluster), positively controls the production of actinorhodin (ACT) in Streptomyces coelicolor, although its regulatory mechanism remains obscure. This study aimed to identify the regulatory targets of ActVI-ORFA. Deletion of ActVI-ORFA caused the differential expression of hundreds of proteins, as determined by two-dimensional electrophoresis and peptide mass fingerprinting analysis. qRT-PCR analysis of some genes encoding these differentially expressed proteins, including act genes and non-act genes, confirmed that ActVI-ORFA could control their transcriptional levels. In an electrophoretic mobility shift assay with a promoter region of a target gene located in the act cluster, no binding was detected, consistent with the lack of a recognizable DNA-binding domain in ActVI-ORFA. Overall, our findings suggest that ActVI-ORFA is a pleiotropic regulatory factor that controls multiple physiological pathways, including secondary metabolite production, probably via an indirect mode.
Collapse
|
26
|
Wu QB, Chen XA, Lv ZY, Zhang XY, Liu Y, Li YQ. Activation and discovery of tsukubarubicin from Streptomyces tsukubaensis through overexpressing SARPs. Appl Microbiol Biotechnol 2021; 105:4731-4741. [PMID: 34021812 DOI: 10.1007/s00253-021-11344-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022]
Abstract
Genome sequencing has revealed that each Streptomyces contains a wide range of biosynthetic gene clusters (BGCs) and has the capability to produce more novel natural products than what is expected. However, most gene clusters for secondary metabolite biosynthesis are cryptic under normal growth conditions. In Streptomyces tsukubaensis, combining overexpression of the putative SARPs (Streptomyces antibiotic regulatory proteins) and bioactivity-guided screening, the silent gene cluster (tsu) was successfully activated and a novel bioactive anthracycline tsukubarubicin was further isolated and identified. Biological activity assays demonstrated that tsukubarubicin possessed much better antitumor bioactivities against various human cancer cell lines (especially the breast cancer cell lines) than clinically used doxorubicin. Moreover, the previously unreported gene cluster (tsu) for biosynthesis of tsukubarubicin was first characterized and detailed annotations of this gene cluster were also conducted. Our strategy presented in this work is broadly applicable in other Streptomyces and will assist in enriching the natural products for potential drug leads. KEY POINTS: • Generally scalable strategy to activate silent gene clusters by manipulating SARPs. • The novel anthracycline tsukubarubicin with potent antitumor bioactivities. • Identification and annotation of the previously uncharacterized tsu gene cluster.
Collapse
Affiliation(s)
- Qing-Bin Wu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhong-Yuan Lv
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Ying Zhang
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Liu
- Zhejiang University College of Life Sciences, Hangzhou, 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Yang Y, Sun Q, Liu Y, Yin H, Yang W, Wang Y, Liu Y, Li Y, Pang S, Liu W, Zhang Q, Yuan F, Qiu S, Li J, Wang X, Fan K, Wang W, Li Z, Yin S. Development of a pyrF-based counterselectable system for targeted gene deletion in Streptomyces rimosus. J Zhejiang Univ Sci B 2021; 22:383-396. [PMID: 33973420 DOI: 10.1631/jzus.b2000606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Streptomyces produces many valuable and important biomolecules with clinical and pharmaceutical applications. The development of simple and highly efficient gene editing tools for genetic modification of Streptomyces is highly desirable. In this study, we developed a screening system for targeted gene knockout using a uracil auxotrophic host (ΔpyrF) resistant to the highly toxic uracil analog of 5-fluoroorotic acid (5-FOA) converted by PyrF, and a non-replicative vector pKC1132-pyrF carrying the complemented pyrF gene coding for orotidine-5'-phosphate decarboxylase. The pyrF gene acts as a positive selection and counterselection marker for recombinants during genetic modifications. Single-crossover homologous integration mutants were selected on minimal medium without uracil by reintroducing pyrF along with pKC1132-pyrF into the genome of the mutant ΔpyrF at the targeted locus. Double-crossover recombinants were generated, from which the pyrF gene, plasmid backbone, and targeted gene were excised through homologous recombination exchange. These recombinants were rapidly screened by the counterselection agent, 5-FOA. We demonstrated the feasibility and advantage of using this pyrF-based screening system through deleting the otcR gene, which encodes the cluster-situated regulator that directly activates oxytetracycline biosynthesis in Streptomyces rimosus M4018. This system provides a new genetic tool for investigating the genetic characteristics of Streptomyces species.
Collapse
Affiliation(s)
- Yiying Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Qingqing Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Hanzhi Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenping Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yang Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Ying Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuxian Li
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shen Pang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxi Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yuan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiwen Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiong Li
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang 051430, China
| | - Xuefeng Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang 051430, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shouliang Yin
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China. ,
| |
Collapse
|
28
|
Khoiri AN, Cheevadhanarak S, Jirakkakul J, Dulsawat S, Prommeenate P, Tachaleat A, Kusonmano K, Wattanachaisaereekul S, Sutheeworapong S. Comparative Metagenomics Reveals Microbial Signatures of Sugarcane Phyllosphere in Organic Management. Front Microbiol 2021; 12:623799. [PMID: 33828538 PMCID: PMC8019924 DOI: 10.3389/fmicb.2021.623799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Converting conventional farms to organic systems to improve ecosystem health is an emerging trend in recent decades, yet little is explored to what extent and how this process drives the taxonomic diversity and functional capacity of above-ground microbes. This study was, therefore, conducted to investigate the effects of agricultural management, i.e., organic, transition, and conventional, on the structure and function of sugarcane phyllosphere microbial community using the shotgun metagenomics approach. Comparative metagenome analysis exhibited that farming practices strongly influenced taxonomic and functional diversities, as well as co-occurrence interactions of phyllosphere microbes. A complex microbial network with the highest connectivity was observed in organic farming, indicating strong resilient capabilities of its microbial community to cope with the dynamic environmental stressors. Organic farming also harbored genus Streptomyces as the potential keystone species and plant growth-promoting bacteria as microbial signatures, including Mesorhizobium loti, Bradyrhizobium sp. SG09, Lactobacillus plantarum, and Bacillus cellulosilyticus. Interestingly, numerous toxic compound-degrading species were specifically enriched in transition farming, which might suggest their essential roles in the transformation of conventional to organic farming. Moreover, conventional practice diminished the abundance of genes related to cell motility and energy metabolism of phyllosphere microbes, which could negatively contribute to lower microbial diversity in this habitat. Altogether, our results demonstrated the response of sugarcane-associated phyllosphere microbiota to specific agricultural managements that played vital roles in sustainable sugarcane production.
Collapse
Affiliation(s)
- Ahmad Nuruddin Khoiri
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Kanthida Kusonmano
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
29
|
Regulatory Control of Rishirilide(s) Biosynthesis in Streptomyces bottropensis. Microorganisms 2021; 9:microorganisms9020374. [PMID: 33673359 PMCID: PMC7917814 DOI: 10.3390/microorganisms9020374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Streptomycetes are well-known producers of numerous bioactive secondary metabolites widely used in medicine, agriculture, and veterinary. Usually, their genomes encode 20-30 clusters for the biosynthesis of natural products. Generally, the onset and production of these compounds are tightly coordinated at multiple regulatory levels, including cluster-situated transcriptional factors. Rishirilides are biologically active type II polyketides produced by Streptomyces bottropensis. The complex regulation of rishirilides biosynthesis includes the interplay of four regulatory proteins encoded by the rsl-gene cluster: three SARP family regulators (RslR1-R3) and one MarR-type transcriptional factor (RslR4). In this work, employing gene deletion and overexpression experiments we revealed RslR1-R3 to be positive regulators of the biosynthetic pathway. Additionally, transcriptional analysis indicated that rslR2 is regulated by RslR1 and RslR3. Furthermore, RslR3 directly activates the transcription of rslR2, which stems from binding of RslR3 to the rslR2 promoter. Genetic and biochemical analyses demonstrated that RslR4 represses the transcription of the MFS transporter rslT4 and of its own gene. Moreover, DNA-binding affinity of RslR4 is strictly controlled by specific interaction with rishirilides and some of their biosynthetic precursors. Altogether, our findings revealed the intricate regulatory network of teamworking cluster-situated regulators governing the biosynthesis of rishirilides and strain self-immunity.
Collapse
|
30
|
Barbuto Ferraiuolo S, Cammarota M, Schiraldi C, Restaino OF. Streptomycetes as platform for biotechnological production processes of drugs. Appl Microbiol Biotechnol 2021; 105:551-568. [PMID: 33394149 PMCID: PMC7780072 DOI: 10.1007/s00253-020-11064-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Streptomyces is one of the most versatile genera for biotechnological applications, widely employed as platform in the production of drugs. Although streptomycetes have a complex life cycle and metabolism that would need multidisciplinary approaches, review papers have generally reported only studies on single aspects like the isolation of new strains and metabolites, morphology investigations, and genetic or metabolic studies. Besides, even if streptomycetes are extensively used in industry, very few review papers have focused their attention on the technical aspects of biotechnological processes of drug production and bioconversion and on the key parameters that have to be set up. This mini-review extensively illustrates the most innovative developments and progresses in biotechnological production and bioconversion processes of antibiotics, immunosuppressant, anticancer, steroidal drugs, and anthelmintic agents by streptomycetes, focusing on the process development aspects, describing the different approaches and technologies used in order to improve the production yields. The influence of nutrients and oxygen on streptomycetes metabolism, new fed-batch fermentation strategies, innovative precursor supplementation approaches, and specific bioreactor design as well as biotechnological strategies coupled with metabolic engineering and genetic tools for strain improvement is described. The use of whole, free, and immobilized cells on unusual supports was also reported for bioconversion processes of drugs. The most outstanding thirty investigations published in the last 8 years are here reported while future trends and perspectives of biotechnological research in the field have been illustrated. KEY POINTS: • Updated Streptomyces biotechnological processes for drug production are reported. • Innovative approaches for Streptomyces-based biotransformation of drugs are reviewed. • News about fermentation and genome systems to enhance secondary metabolite production.
Collapse
Affiliation(s)
- Simona Barbuto Ferraiuolo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
31
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
32
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
33
|
Teshima A, Hadae N, Tsuda N, Arakawa K. Functional Analysis of P450 Monooxygenase SrrO in the Biosynthesis of Butenolide-Type Signaling Molecules in Streptomyces rochei. Biomolecules 2020; 10:biom10091237. [PMID: 32854353 PMCID: PMC7564063 DOI: 10.3390/biom10091237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics lankacidin and lankamycin, and their biosynthesis is tightly controlled by butenolide-type signaling molecules SRB1 and SRB2. SRBs are synthesized by SRB synthase SrrX, and induce lankacidin and lankamycin production at 40 nM concentration. We here investigated the role of a P450 monooxygenase gene srrO (orf84), which is located adjacent to srrX (orf85), in SRB biosynthesis. An srrO mutant KA54 accumulated lankacidin and lankamycin at a normal level when compared with the parent strain. To elucidate the chemical structures of the signaling molecules accumulated in KA54 (termed as KA54-SRBs), this mutant was cultured (30 L) and the active components were purified. Two active components (KA54-SRB1 and KA54-SRB2) were detected in ESI-MS and chiral HPLC analysis. The molecular formulae for KA54-SRB1 and KA54-SRB2 are C15H26O4 and C16H28O4, whose values are one oxygen smaller and two hydrogen larger when compared with those for SRB1 and SRB2, respectively. Based on extensive NMR analysis, the signaling molecules in KA54 were determined to be 6'-deoxo-SRB1 and 6'-deoxo-SRB2. Gel shift analysis indicated that a ligand affinity of 6'-deoxo-SRB1 to the specific receptor SrrA was 100-fold less than that of SRB1. We performed bioconversion of the synthetic 6'-deoxo-SRB1 in the Streptomyces lividans recombinant carrying SrrO-expression plasmid. Substrate 6'-deoxo-SRB1 was converted through 6'-deoxo-6'-hydroxy-SRB1 to SRB1 in a time-dependent manner. Thus, these results clearly indicated that SrrO catalyzes the C-6' oxidation at a final step in SRB biosynthesis.
Collapse
Affiliation(s)
- Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Nozomi Hadae
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Naoto Tsuda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Correspondence: ; Tel./Fax: +81-82-424-7767
| |
Collapse
|
34
|
Zhang J, Liang Q, Xu Z, Cui M, Zhang Q, Abreu S, David M, Lejeune C, Chaminade P, Virolle MJ, Xu D. The Inhibition of Antibiotic Production in Streptomyces coelicolor Over-Expressing the TetR Regulator SCO3201 IS Correlated With Changes in the Lipidome of the Strain. Front Microbiol 2020; 11:1399. [PMID: 32655536 PMCID: PMC7324645 DOI: 10.3389/fmicb.2020.01399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
In condition of over-expression, SCO3201, a regulator of the TetR family was previously shown to strongly inhibit antibiotic production and morphological differentiation in Streptomyces coelicolor M145. In order to elucidate the molecular processes underlying this interesting, but poorly understood phenomenon, a comparative analysis of the lipidomes and transcriptomes of the strain over-expressing sco3201 and of the control strain containing the empty plasmid, was carried out. This study revealed that the strain over-expressing sco3201 had a higher triacylglycerol content and a lower phospholipids content than the control strain. This was correlated with up- and down- regulation of some genes involved in fatty acids biosynthesis (fab) and degradation (fad) respectively, indicating a direct or indirect control of the expression of these genes by SCO3201. In some instances, indirect control might involve TetR regulators, whose encoding genes present in close vicinity of genes involved in lipid metabolism, were shown to be differentially expressed in the two strains. Direct interaction of purified His6-SCO3201 with the promoter regions of four of such TetR regulators encoding genes (sco0116, sco0430, sco4167, and sco6792) was demonstrated. Furthermore, fasR (sco2386), encoding the activator of the main fatty acid biosynthetic operon, sco2386-sco2390, has been shown to be an illegitimate positive regulatory target of SCO3201. Altogether our data demonstrated that the sco3201 over-expressing strain accumulates TAG and suggested that degradation of fatty acids was reduced in this strain. This is expected to result into a reduced acetyl-CoA availability that would impair antibiotic biosynthesis either directly or indirectly.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qiting Liang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Zhongheng Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Miao Cui
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qizhong Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Sonia Abreu
- Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, Châtenay-Malabry, France
| | - Michelle David
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Clara Lejeune
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Chaminade
- Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, Châtenay-Malabry, France
| | - Marie-Joelle Virolle
- Group “Energetic Metabolism of Streptomyces”, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, INRA, University Paris-Saclay, Gif-sur-Yvette, France
| | - Delin Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Department of Ecology, School of Life Sciences and Technology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan University, Guangzhou, China
| |
Collapse
|