1
|
Yao YG, Lu L, Ni RJ, Bi R, Chen C, Chen JQ, Fuchs E, Gorbatyuk M, Lei H, Li H, Liu C, Lv LB, Tsukiyama-Kohara K, Kohara M, Perez-Cruz C, Rainer G, Shan BC, Shen F, Tang AZ, Wang J, Xia W, Xia X, Xu L, Yu D, Zhang F, Zheng P, Zheng YT, Zhou J, Zhou JN. Study of tree shrew biology and models: A booming and prosperous field for biomedical research. Zool Res 2024; 45:877-909. [PMID: 39004865 PMCID: PMC11298672 DOI: 10.24272/j.issn.2095-8137.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The tree shrew ( Tupaia belangeri) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field. Additionally, determining the key questions best answered using tree shrews constitutes another difficulty. Tree shrew models have historically been used to study hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, myopia, and psychosocial stress-induced depression, with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases. Despite these efforts, the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research. This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model. We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies. The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models, meeting the increasing demands of life science and biomedical research.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| | - Li Lu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Rui Bi
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ceshi Chen
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jia-Qi Chen
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute of Primate Research, Göttingen 37077, Germany
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongli Li
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Long-Bao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Gregor Rainer
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Bao-Ci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - An-Zhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530000, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530000, China
| | - Xueshan Xia
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ling Xu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dandan Yu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Feng Zhang
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ping Zheng
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yong-Tang Zheng
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jumin Zhou
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- Institute of Brain Science, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
2
|
Wang Q, Liu Z, Zeng X, Zheng Y, Lan L, Wang X, Lai Z, Hou X, Gao L, Liang L, Tang S, Zhang Z, Leng J, Fan X. Integrated analysis of miRNA-mRNA expression of newly emerging swine H3N2 influenza virus cross-species infection with tree shrews. Virol J 2024; 21:4. [PMID: 38178220 PMCID: PMC10768296 DOI: 10.1186/s12985-023-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cross-species transmission of zoonotic IAVs to humans is potentially widespread and lethal, posing a great threat to human health, and their cross-species transmission mechanism has attracted much attention. miRNAs have been shown to be involved in the regulation of IAVs infection and immunity, however, few studies have focused on the molecular mechanisms underlying miRNAs and mRNAs expression after IAVs cross-species infection. METHODS We used tree shrews, a close relative of primates, as a model and used RNA-Seq and bioinformatics tools to analyze the expression profiles of DEMs and DEGs in the nasal turbinate tissue at different time points after the newly emerged swine influenza A virus SW2783 cross-species infection with tree shrews, and miRNA-mRNA interaction maps were constructed and verified by RT-qPCR, miRNA transfection and luciferase reporter assay. RESULTS 14 DEMs were screened based on functional analysis and interaction map, miR-760-3p, miR-449b-2, miR-30e-3p, and miR-429 were involved in the signal transduction process of replication and proliferation after infection, miR-324-3p, miR-1301-1, miR-103-1, miR-134-5p, miR-29a, miR-31, miR-16b, miR-34a, and miR-125b participate in negative feedback regulation of genes related to the immune function of the body to activate the antiviral immune response, and miR-106b-3p may be related to the cross-species infection potential of SW2783, and the expression level of these miRNAs varies in different days after infection. CONCLUSIONS The miRNA regulatory networks were constructed and 14 DEMs were identified, some of them can affect the replication and proliferation of viruses by regulating signal transduction, while others can play an antiviral role by regulating the immune response. It indicates that abnormal expression of miRNAs plays a crucial role in the regulation of cross-species IAVs infection, which lays a solid foundation for further exploration of the molecular regulatory mechanism of miRNAs in IAVs cross-species infection and anti-influenza virus targets.
Collapse
Affiliation(s)
- Qihui Wang
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zihe Liu
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Xia Zeng
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yu Zheng
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Li Lan
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Xinhang Wang
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Zhenping Lai
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoqiong Hou
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
| | - Lingxi Gao
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Liang Liang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Shen Tang
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zengfeng Zhang
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jing Leng
- Department of Immunology, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Key Laboratory of Characteristic Experimental Animal Models of Guangxi, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
3
|
Wang Q, Zeng X, Tang S, Lan L, Wang X, Lai Z, Liu Z, Hou X, Gao L, Yun C, Zhang Z, Leng J, Fan X. Pathogenicity and anti-infection immunity of animal H3N2 and H6N6 subtype influenza virus cross-species infection with tree shrews. Virus Res 2023; 324:199027. [PMID: 36543317 DOI: 10.1016/j.virusres.2022.199027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Animal influenza viruses can spread across species and pose a fatal threat to human health due to the high pathogenicity and mortality. Animal models are crucial for studying cross-species infection and the pathogenesis of influenza viruses. Tupaia belangeri (tree shrew) has been emerging as an animal model for multiple human virus infections recently because of the close genetic relationship and phylogeny with humans. So far, tree shrew has been reported to be susceptible to human influenza virus subtype H1N1, avian influenza viruses subtype H9N2, subtype H5N1, and subtype H7N9. However, the pathogenicity, infection, and immunity of swine and land avian influenza viruses with low pathogenicity and the potential to jump to humans remain largely unexplored in the tree shrew model. Previously, our team has successfully isolated the newly emerging swine influenza virus subtype H3N2 (A/Swine/GX/NS2783/2010, SW2783) and avian influenza virus subtype H6N6 (A/CK/ZZ/346/2014, ZZ346). In this study, we observed the pathogenicity, immune characteristics, and cross-species infection potential ability of SW2783 and ZZ346 strains in tree shrew model with 50% tissue culture infective dose (TCID50), hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), real-time quantitative PCR (qRT-PCR) and other experimental methods. Both animal-borne influenza viruses had a strong ability on tissue infection in the turbinate and the trachea of tree shrews in vitro, in which SW2783 showed stronger replication ability than in ZZ346. SW2783 and ZZ346 both showed pathogenic ability with infected tree shrews model in vivo without prior adaptive culture, which mainly happened in the upper respiratory tract. However, the infection ability was weak, the clinical symptoms were mild, and the histopathological changes in the respiratory tract were relatively light. Furthermore, innate immune responses and adaptive immunity were observed in the tree shrew model after the infection of SW2783 and ZZ346 strains. We observed that the unadapted SW2783 and ZZ346 virus could transmit among tree shrews by direct contact. We also observed that SW2783 virus could transmit from tree shrews to guinea pigs. These results indicated that both animal-borne influenza viruses could induce similar pathogenicity and immune response to those caused by human-common influenza viruses. Tree shrews may be an excellent animal model for studying the interaction between the influenza virus and the host and the cross-species infection mechanism of the animal influenza virus.
Collapse
Affiliation(s)
- Qihui Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xia Zeng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Shen Tang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Li Lan
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xinhang Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Zhenping Lai
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Zihe Liu
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xiaoqiong Hou
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Lingxi Gao
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chenxia Yun
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zengfeng Zhang
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| | - Jing Leng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Xiaohui Fan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
4
|
Qian XY, Nie LX, Zhao H, Dai Z, Ma SC, Liu JM, Kuang YH. Discovery and molecular elucidation of the anti-influenza material basis of Banlangen granules based on biological activities and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115683. [PMID: 36057409 DOI: 10.1016/j.jep.2022.115683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has a wide range of applications, including human healthcare-associated treatments and bioactive compound discovery. However, complex chemical systems present a significant challenge for chemical-material-based research and quality control. For instance, Banlangen (BLG) granules is a well-acknowledged TCM preparation widely used in clinical treatment of virus infection. However, its chemical basis of anti-influenza efficacy remains unclear. AIM OF THE STUDY In the present study, a systematic discovery strategy for identifying anti-influenza molecules based on biological activities and chemical analysis was established to contribute to the molecular elucidation of the anti-influenza material basis of Banlangen granules. MATERIALS AND METHODS Hemagglutinase inhibition (HAI) and neuraminidase inhibition (NAI) assays were used to compare the anti-influenza activities of different fractions of BLG granules against H1N1, H5N1 and H7N9 viruses. A comparative qualitative analysis of the chemical constituents in BLG granules and their fractions was performed using ultra-high-performance liquid chromatography coupled with quadrupole orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS), in which a multiple mass spectrometry database platform and three compound identification strategies were used. The association between anti-influenza activities and chemical constituent characteristics was analyzed using multiple stoichiometries and data comparison strategies. RESULTS The results showed that the chromatography fractions F3 and F4 of the BLG granules had the highest anti-influenza activity. A total of 88 compounds were identified in the BLG granules, including 31 alkaloids, 16 organic acids, 10 nucleosides, 8 phenylpropanoids, 6 sulfur-containing compounds, 5 amino acids, 4 aromatic compounds, 3 aldehydes and ketones, 2 flavonoids, 1 alcohol, 1 carbohydrate, and 1 aliphatic compound. Out of these, 31 characteristic compounds were identified in fractions F3-F4 as candidate compounds with anti-influenza activity. Additionally, 6-methoxyquinoline and 4-guanidinobutanal were identified in BLG granules and its raw material (Isatidis Radix) for the first time. CONCLUSION In this study, we proposed a systematic discovery strategy to thoroughly investigate the anti-influenza activity, chemical identification, and constituents-activity relationship of BLG granules. These data not only provided a deeper understanding of the molecular mechanism of the activity of BLG granules, but also presented a basis for the discovery of potential novel drug candidates and quality evaluation and control of BLG granules.
Collapse
Affiliation(s)
- Xiu-Yu Qian
- Chinese Pharmaceutical Association, International Cooperation Department, Beijing, PR China.
| | - Li-Xing Nie
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, PR China.
| | - Hui Zhao
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, PR China.
| | - Zhong Dai
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, PR China.
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, PR China.
| | - Jin-Mei Liu
- Guangzhou Baiyunshan Hutchison Whampoa Chinese Medicine Co., Ltd., Guangzhou, PR China.
| | - Yan-Hui Kuang
- Guangzhou Baiyunshan Hutchison Whampoa Chinese Medicine Co., Ltd., Guangzhou, PR China.
| |
Collapse
|
5
|
Chen JQ, Zhang Q, Yu D, Bi R, Ma Y, Li Y, Lv LB, Yao YG. Optimization of Milk Substitutes for the Artificial Rearing of Chinese Tree Shrews (Tupaia belangeri chinensis). Animals (Basel) 2022; 12:ani12131655. [PMID: 35804554 PMCID: PMC9265009 DOI: 10.3390/ani12131655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The Chinese tree shrew, a squirrel-like mammal, has been widely used as a laboratory animal in biological research. However, the low survival rate of the pups has seriously hindered the establishment of inbred lines of this species and further limited its wider use. We found a milk substitute appropriate for artificial rearing of Chinese tree shrew pups independent of any obvious adverse effects on their survival, health, and reproductive performance compared to those of the maternally reared pups. The successful optimization of a milk substitute for the artificial rearing of Chinese tree shrew pups may increase the availability of this experimental animal. Abstract The Chinese tree shrew (Tupaia belangeri chinensis) has the potential to replace the use of non-human primates in biomedical research. To increase the availability of this species, we have undertaken the ambitious task of establishing inbred lines of the Chinese tree shrew; however, we have been hindered by a low survival rate of inbred pups. Here, we report our artificial rearing (AR) of Chinese tree shrew pups using four different milk substitutes: the formula described by Tsang and Collins (milk TC) and three commercially available milk substitutes intended for possums (milk A and milk C) and for guinea pigs (milk B). We compared the effects of these milk substitutes and maternal milk on the daily milk consumption, growth performance, and survival of the pups. We also assessed the life span and reproductive performance of the F1 individuals given the best milk substitute as compared to the maternally reared (MR) pups. Milk B was found to be appropriate for AR. Pups fed with milk B had a high survival rate at the weaning age compared to those fed with the other milk substitutes. The AR pups fed with milk B had a life span similar to that of MR pups. AR females fed with milk B had an earlier age of the first reproduction, a larger number of litters, and a higher rate of survival of the offspring at the weaning age compared with the MR females. The successful optimization of a milk substitute for AR of Chinese tree shrew pups will undoubtedly facilitate the wide usage of this experimental animal.
Collapse
Affiliation(s)
- Jia-Qi Chen
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
| | - Qingyu Zhang
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
| | - Dandan Yu
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Rui Bi
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yuhua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
| | - Yijiang Li
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Correspondence: (L.-B.L.); (Y.-G.Y.)
| | - Yong-Gang Yao
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; (J.-Q.C.); (Q.Z.); (D.Y.); (R.B.); (Y.M.); (Y.L.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Correspondence: (L.-B.L.); (Y.-G.Y.)
| |
Collapse
|
6
|
Zheng X, Xu L, Ye M, Gu T, Yao YL, Lv LB, Yu D, Yao YG. Characterizing the role of Tupaia DNA damage inducible transcript 3 (DDIT3) gene in viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104307. [PMID: 34748795 DOI: 10.1016/j.dci.2021.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
DNA damage inducible transcript 3 (DDIT3, also known as CHOP) belongs to the CCAAT/enhancer-binding protein (C/EBP) family and plays an essential role in endoplasmic reticulum stress. Here, we characterized the potential role of the Chinese tree shrew (Tupaia belangeri chinensis) DDIT3 (tDDIT3) in viral infections. The tDDIT3 protein is highly conserved and has a species-specific insertion of the SQSS repeat upstream of the C-terminal basic-leucine zipper (bZIP) domain. Phylogenetic analysis of DDIT3 protein sequences of tree shrew and related mammals indicated a closer genetic affinity between tree shrew and primates than between tree shrew and rodents. Three positively selected sites (PSSs: Glu83, Pro93, and Ser172) were identified in tDDIT3 based on the branch-site model. Expression analysis of tDDIT3 showed a constitutively expressed level in different tissues and a significantly increased level in tree shrew cells upon herpes simplex virus type 1 (HSV-1) and Newcastle disease virus (NDV) infections. Overexpression of tDDIT3 significantly increased the production of HSV-1 and vesicular stomatitis virus (VSV) in tree shrew primary renal cells (TSPRCs), whereas tDDIT3 knockout in tree shrew stable cell line (TSR6 cells) had an inhibitory effect on virus production. The enhanced effect on viral infection by tDDIT3 was not associated with the three PSSs. Mechanistically, tDDIT3 overexpression inhibited type I IFN signaling. tDDIT3 interacted with tMAVS through CARD and PRR domains, but not with other immune-related factors such as tMDA5, tSTING and tTBK1. Collectively, our results revealed tDDIT3 as a negative regulator for virus infection.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|
7
|
Gu T, Yu D, Xu L, Yao YL, Yao YG. Tupaia GBP1 Interacts with STING to Initiate Autophagy and Restrict Herpes Simplex Virus Type 1 Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2673-2680. [PMID: 34732469 DOI: 10.4049/jimmunol.2100325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Stimulator of IFN genes (STING) is a key molecule that binds to cyclic dinucleotides produced by the cyclic GMP-AMP synthase to activate IFN expression and autophagy in the fight against microbial infection. The regulation of STING in the activation of IFN expression has been extensively reported, whereas the regulation of STING in the initiation of autophagy is still insufficiently determined. IFN-inducible guanylate-binding proteins (GBPs) are central to the cell-autonomous immunity in defending a host against viral, bacterial, and protozoan infections. In this study using the Chinese tree shrew (Tupaia belangeri chinensis), which is genetically close to primates, we found that Tupaia GBP1 (tGBP1) combines with Tupaia STING (tSTING), promotes autophagy, and moderately inhibits HSV type 1 (HSV-1) infection. The antiviral effects of tGBP1 are IFN independent. Mechanistically, tGBP1 interacted with tSTING, Tupaia sequestosome 1, and Tupaia microtubule associated protein 1 L chain 3, forming a complex which promotes autophagy in response to HSV-1 infection. This function of tGBP1 against HSV-1 infection was lost in tSTING knockout cells. Overexpression of either tSTING or its mutant tSTING-ΔCTT that can only activate autophagy rescued the anti-HSV-1 activity of tGBP1 in tSTING knockout cells. Our study not only elucidated the underlying mechanism of tGBP1 antiviral activity against HSV-1 infection, but also uncovered the regulation of tSTING in the initiation of autophagy in response to HSV-1 infection.
Collapse
Affiliation(s)
- Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,College of Life Science, Yan'an University, Yan'an, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; and.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; and.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China; .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; and.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Kayesh MEH, Sanada T, Kohara M, Tsukiyama-Kohara K. Tree Shrew as an Emerging Small Animal Model for Human Viral Infection: A Recent Overview. Viruses 2021; 13:v13081641. [PMID: 34452505 PMCID: PMC8402676 DOI: 10.3390/v13081641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Viral infection is a global public health threat causing millions of deaths. A suitable small animal model is essential for viral pathogenesis and host response studies that could be used in antiviral and vaccine development. The tree shrew (Tupaia belangeri or Tupaia belangeri chinenesis), a squirrel-like non-primate small mammal in the Tupaiidae family, has been reported to be susceptible to important human viral pathogens, including hepatitis viruses (e.g., HBV, HCV), respiratory viruses (influenza viruses, SARS-CoV-2, human adenovirus B), arboviruses (Zika virus and dengue virus), and other viruses (e.g., herpes simplex virus, etc.). The pathogenesis of these viruses is not fully understood due to the lack of an economically feasible suitable small animal model mimicking natural infection of human diseases. The tree shrew model significantly contributes towards a better understanding of the infection and pathogenesis of these important human pathogens, highlighting its potential to be used as a viable viral infection model of human viruses. Therefore, in this review, we summarize updates regarding human viral infection in the tree shrew model, which highlights the potential of the tree shrew to be utilized for human viral infection and pathogenesis studies.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.S.); (M.K.)
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.S.); (M.K.)
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
9
|
Yao YL, Yu D, Xu L, Gu T, Li Y, Zheng X, Bi R, Yao YG. Tupaia OASL1 Promotes Cellular Antiviral Immune Responses by Recruiting MDA5 to MAVS. THE JOURNAL OF IMMUNOLOGY 2020; 205:3419-3428. [DOI: 10.4049/jimmunol.2000740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
|
10
|
Xu L, Yu DD, Ma YH, Yao YL, Luo RH, Feng XL, Cai HR, Han JB, Wang XH, Li MH, Ke CW, Zheng YT, Yao YG. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zool Res 2020; 41:517-526. [PMID: 32701249 PMCID: PMC7475013 DOI: 10.24272/j.issn.2095-8137.2020.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/ HCoV-19 pathogen is essential for controlling the outbreak and for testing valid prophylactics or therapeutics based on animal model studies. Here, different aged Chinese tree shrews (adult group, 1 year old; old group, 5-6 years old), which are close relatives to primates, were infected with SARS-CoV-2. X-ray, viral shedding, laboratory, and histological analyses were performed on different days post-inoculation (dpi). Results showed that Chinese tree shrews could be infected by SARS-CoV-2. Lung infiltrates were visible in X-ray radiographs in most infected animals. Viral RNA was consistently detected in lung tissues from infected animals at 3, 5, and 7 dpi, along with alterations in related parameters from routine blood tests and serum biochemistry, including increased levels of aspartate aminotransferase (AST) and blood urea nitrogen (BUN). Histological analysis of lung tissues from animals at 3 dpi (adult group) and 7 dpi (old group) showed thickened alveolar septa and interstitial hemorrhage. Several differences were found between the two different aged groups in regard to viral shedding peak. Our results indicate that Chinese tree shrews have the potential to be used as animal models for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academic of Sciences, Kunming, Yunnan 650107, China
| | - Dan-Dan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academic of Sciences, Kunming, Yunnan 650107, China
| | - Yu-Hua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academic of Sciences, Kunming, Yunnan 650107, China
| | - Xiao-Li Feng
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academic of Sciences, Kunming, Yunnan 650107, China
| | - Hou-Rong Cai
- Department of Respiratory and Critical Care Medicine, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jian-Bao Han
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academic of Sciences, Kunming, Yunnan 650107, China
| | - Xue-Hui Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ming-Hua Li
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academic of Sciences, Kunming, Yunnan 650107, China
| | - Chang-Wen Ke
- Medical Key Laboratory for Repository and Application of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academic of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. E-mail:
| |
Collapse
|
11
|
Establishment and transcriptomic features of an immortalized hepatic cell line of the Chinese tree shrew. Appl Microbiol Biotechnol 2020; 104:8813-8823. [PMID: 32880691 DOI: 10.1007/s00253-020-10855-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Chinese tree shrew (Tupaia belangeri chinesis) is a rising experimental animal and has been used for studying a variety of human diseases, such as metabolic and viral infectious diseases. METHODS In this study, we established an immortalized tree shrew hepatic cell line, ITH6.1, by introducing the simian virus 40 large T antigen gene into primary tree shrew hepatocytes (PTHs). RESULTS The ITH6.1 cell line had a stable cell morphology and proliferation activity. This cell line could be infected by enterovirus 71 (EV71), but not hepatitis C virus (HCV), although the known HCV entry factors, including CD81, SR-BI, CLDN1 and OCLN, were all expressed in the PTHs and ITH6.1 of different passages. Comparison of the transcriptomic features of the PTHs and different passages of the ITH6.1 cells revealed the dynamic gene expression profiles during the transformation. We found that the DNA replication- and cell cycle-related genes were upregulated, whereas the metabolic pathway-related genes were downregulated in early passages of immortalized hepatocytes compared to the PTHs. Furthermore, expression of hepatocytes function-related genes were repressed in ITH6.1 compared to that of PTHs. CONCLUSION We believe these cellular expression alterations might cause the resistance of the ITH6.1 cell to HCV infection. This tree shrew liver cell line may be a good resource for the field. KEY POINTS • A tree shrew hepatic cell line (ITH6.1) was established. • ITH6.1 cells could be infected by EV71, but not HCV. • ITH6.1 had an altered expression profiling compared to the primary hepatocytes.
Collapse
|
12
|
Xu L, Yu D, Peng L, Wu Y, Fan Y, Gu T, Yao YL, Zhong J, Chen X, Yao YG. An Alternative Splicing of Tupaia STING Modulated Anti-RNA Virus Responses by Targeting MDA5-LGP2 and IRF3. THE JOURNAL OF IMMUNOLOGY 2020; 204:3191-3204. [DOI: 10.4049/jimmunol.1901320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/15/2020] [Indexed: 01/01/2023]
|
13
|
Ma X, Fang Z, Li F, Hu K. Determination of performance-parameter design and impact factors of sampling efficiency for bioaerosol cyclones. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1797529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Xuezheng Ma
- Department of Aerobiology, Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhiqiang Fang
- Department of Aerobiology, Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Fanshuang Li
- Department of Aerobiology, Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Kongxin Hu
- Department of Aerobiology, Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|