1
|
Bai Y, Qiu S, Tang Y, Gao F, Mou F, Zhou D, Sun H. Urea treatment causes significant changes in microbial composition and associated metabolism of corn stover and rice straw. J Appl Microbiol 2025; 136:lxaf045. [PMID: 39987434 DOI: 10.1093/jambio/lxaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE Urea ammoniation is one of the more effective ways for straw feed utilization. Current research on urea ammoniation has focused on chemical reactions in the process of ammoniating straw, neglecting the microbial-driven process. METHODS This study aims to examine the effects of 2% and 4% urea on bacteria and fungi and their metabolites and fermentation quality of corn stover and rice straw under 40% and 60% moisture conditions. RESULTS Urea ammoniation at 4% increased the total nitrogen content of corn stover and rice straw, and reduced the neutral detergent fiber and acid detergent lignin of rice straw. Lactic acid and acetic acid are produced during the urea ammonification process, and 2% urea treatment has the best promoting effect on it. Urea ammoniation at 2% also modified the composition of the Lactobacillales and increased the relative abundance of Enterococcus of corn stover and rice straw under 60% water, leading to changes in the main driving microbiota. Moreover, urea ammoniation can promote the metabolism of bacteria and fungi in degrading lignin, producing various lignin degradation products, such as vanillin, 4-hydroxybenzaldehyde, protocatechuic acid, sinapyl alcohol, benzaldehyde, benzoic acid, etc. CONCLUSION Urea ammoniation is not only a chemical process, but also a microbial-driven process that involves changes in microbial composition and associated metabolism.
Collapse
Affiliation(s)
- Yongsong Bai
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Jilin Provincial Key Laboratory of Grassland Farming, Changchun 130102, China
| | - Shengnan Qiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yunmeng Tang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Feng Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Fangzheng Mou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daowei Zhou
- Jilin Provincial Key Laboratory of Grassland Farming, Changchun 130102, China
| | - Haixia Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
2
|
Zioga E, Holdt SL, Gröndahl F, Bang-Berthelsen CH. Screening approaches and potential of isolated lactic acid bacteria for improving fermentation of Saccharina latissima. BMC Biotechnol 2025; 25:2. [PMID: 39757166 DOI: 10.1186/s12896-024-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND With the growing interest in applying fermentation to seaweed biomasses, there is a need for fast and efficient selection of microbial strains that have the ability to 1) acidify quickly, 2) utilize seaweed constituents and c) exhibit some proteolytic activity. The present study aims to provide a fast methodology to screen large bacterial collections for potential applications in optimized seaweed fermentations, as well as investigate and assess the performance of a selected bacterial collection of the National Food Institute Culture Collection (NFICC) in seaweed fermentation. This approach is directed toward high-throughput (HT) methodologies, employing microwell assays for different phenotypical characteristics of lactic acid bacteria isolated from different sources. The overarching aim is the deeper understanding of the selection criteria when designing starter cultures for seaweed fermentation. RESULTS By employing high-throughput analytical workflows, the screening processing time is minimized, and among the different strains from a well-characterized strain collection, it was possible to distinguish between strong acidifiers and to replicate similar results when the volumes were scaled from 96-well plates to lab-scale fermentations (40 mL) of whole seaweed. Lactiplantibacillus plantarum, Lacticaseibacillus paracasei and, to a lesser extent, Lacticaseibacillus rhamnosus were among the fastest strains to reach the lowest endpoint pH values (< 4.5) in less than 48 h. Although the results regarding proteolytic capacity were not sufficient to prove that the candidates can also provide some flavor generation by the cleavage of proteins, NFICC1746 and NFICC2041 exhibited potential in releasing free alanine, glutamate and asparate as free amino acids. CONCLUSIONS With the described methodology, a large number of terrestrial lactic acid bacteria (LAB) isolates were screened for their performance and possible application for fermentation of brown sewaeeds. With a a fast conversion of sugars to organic acids, three potential new plant-isolated strains from NFICC, specifically Lactiplantibacillus plantarum ssp. argentoratensis (NFICC983), Lacticaseibacillus paracasei (NFICC1746) and Lacticaseibacillus rhamnosus (NFICC2041), were identified as promising candidates for future synthetic consortia aimed at application in bioprocessed seaweed. The combination of such strains will be the future focus to further optimize robust seaweed fermentations.
Collapse
Affiliation(s)
- Evangelia Zioga
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Susan Løvstad Holdt
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Fredrik Gröndahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | | |
Collapse
|
3
|
Wang Y, Sun Y, Huang K, Gao Y, Lin Y, Yuan B, Wang X, Xu G, Nussio LG, Yang F, Ni K. Multi-omics analysis reveals the core microbiome and biomarker for nutrition degradation in alfalfa silage fermentation. mSystems 2024; 9:e0068224. [PMID: 39440963 PMCID: PMC11575373 DOI: 10.1128/msystems.00682-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most extensively cultivated forage crops globally, and its nutritional quality critically influences the productivity of dairy cows. Silage fermentation is recognized as a crucial technique for the preservation of fresh forage, ensuring the retention of its vital nutrients. However, the detailed microbial components and their functions in silage fermentation are not fully understood. This study integrated large-scale microbial culturing with high-throughput sequencing to thoroughly examine the microbial community structure in alfalfa silage and explored the potential pathways of nutritional degradation via metagenomic analysis. The findings revealed an enriched microbial diversity in silage, indicated by the identification of amplicon sequence variants. Significantly, the large-scale culturing approach recovered a considerable number of unique microbes undetectable by high-throughput sequencing. Predominant genera, such as Lactiplantibacillus, Leuconostoc, Lentilactobacillus, Weissella, and Liquorilactobacillus, were identified based on their abundance and prevalence. Additionally, genes associated with Enterobacteriaceae were discovered, which might be involved in pathways leading to the production of ammonia-N and butyric acid. Overall, this study offers a comprehensive insight into the microbial ecology of silage fermentation and provides valuable information for leveraging microbial consortia to enhance fermentation quality. IMPORTANCE Silage fermentation is a microbial-driven anaerobic process that efficiently converts various substrates into nutrients readily absorbable and metabolizable by ruminant animals. This study, integrating culturomics and metagenomics, has successfully identified core microorganisms involved in silage fermentation, including those at low abundance. This discovery is crucial for the targeted cultivation of specific microorganisms to optimize fermentation processes. Furthermore, our research has uncovered signature microorganisms that play pivotal roles in nutrient metabolism, significantly advancing our understanding of the intricate relationships between microbial communities and nutrient degradation during silage fermentation.
Collapse
Affiliation(s)
- Yuan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Frontier Technology Research Institute, China Agricultural University, Shenzhen, China
| | - Yunlei Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - KeXin Huang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yufan Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Baojie Yuan
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Gang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | | | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Frontier Technology Research Institute, China Agricultural University, Shenzhen, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Peng S, Xie L, Cheng Y, Wang Q, Feng L, Li Y, Lei Y, Sun Y. Effect of Lactiplantibacillus and sea buckthorn pomace on the fermentation quality and microbial community of paper mulberry silage. FRONTIERS IN PLANT SCIENCE 2024; 15:1412759. [PMID: 39280944 PMCID: PMC11395498 DOI: 10.3389/fpls.2024.1412759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
Background Paper mulberry is a promising alternative fodder source due to its high protein and the abundance of active components. However, paper mulberry often faces susceptibility to contamination during silage fermentation, and there is a need to improve the quality of silage fermentation of paper mulberry through exotic additives. Sea buckthorn pomace (BP) is a feed additive containing antimicrobial and antioxidant substances that help to enhance silage fermentation. Therefore, the objective of this study was to evaluate the effects of BP and Lactiplantibacillus as additives on silage fermentation and bacterial community of paper mulberry. Results The results showed that BP and Lactiplantibacillus significantly reduced the pH and ammonium nitrogen content of paper mulberry silage (P < 0.05) and significantly increased the content of lactic acid and acetic acid (P < 0.05), resulting in more residual water-soluble carbohydrate and crude protein contents and less fiber content relative to the control. The key microorganisms in paper mulberry silage fermentation are Lactiplantibacillus pentosus and Weissella cibaria. Among these, Lactiplantibacillus favored a rapid increase in Lactiplantibacillus pentosus abundance during the pre-silage fermentation period, whereas BP favored the promotion of Lactiplantibacillus pentosus growth, resulting in higher contents of lactic and acetic acid than those of the control. Conclusions Simultaneously adding Lactiplantibacillus and BP can effectively improve the quality of paper mulberry silage and increase the abundance of beneficial microorganisms in paper mulberry silage.
Collapse
Affiliation(s)
- Shun Peng
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Lingling Xie
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yuyao Cheng
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Qiqi Wang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Li Feng
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Li
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yonghui Lei
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yanfei Sun
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
5
|
Poothong S, Tanasupawat S, Chanpongsang S, Kingkaew E, Nuengjamnong C. Anaerobic flora, Selenomonas ruminis sp. nov., and the bacteriocinogenic Ligilactobacillus salivarius strain MP3 from crossbred-lactating goats. Sci Rep 2024; 14:4838. [PMID: 38418870 PMCID: PMC10901824 DOI: 10.1038/s41598-024-54686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
This study aimed to examine the distribution of anaerobic bacteria in the rumen fluid of Thai crossbred goats and to screen potential probiotic strains capable of producing antimicrobial compounds and inhibiting bacteria that cause milk fat depression. Thirty-four strains of bacteria from the rumen fluid were divided into 13 groups within 12 genera based on 16S rRNA gene sequences. The RF1-5 and RF5-12 were identified as Streptococcus luteliensis and Bacillus licheniformis, respectively, and demonstrated non-ropy exopolysaccharide. Furthermore, mPRGC5T was closely related to Selenomonas caprae JCM 33725 T (97.8% similarity) based on 16S rRNA gene sequences. It exhibited low average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values with related type strains ranging from 84.9 to 86.0%, 21.3 to 21.8%, and 73.8 to 76.1%, respectively. The genotypic and phenotypic characteristics of mPRGC5T strongly support this strain as a new species of the genus Selenomonas for which the name Selenomonas ruminis mPRGC5T was proposed. The type strain is mPRGC5T (= JCM 33724 T = KCTC 25177 T). Ligilactobacillus salivarius MP3 showed antibacterial activity against Cutibacterium acnes subsp. acnes DSM 1897 T and Kocuria rhizophila MIII. The enterolysin A cluster gene was identified in its genome. The auto-aggregation of L. salivarius MP3 was 93.6 ± 0.2%. Additionally, co-aggregation of L. salivarius MP3 with C. acnes DSM 1897 T and K. rhizophila MIII had 92.2 ± 3.4% and 87.3 ± 4.5%, respectively. The adhesion capacity of strain MP3 was 76.11 ± 2.2%. Probiogenomic analysis revealed that L. salivarius MP3 was nonhazardous to animal supplementation and included acid- and bile-tolerant ability. However, strain MP3 contained three antibiotic resistance genes. Thus, the supplementation of L. salivarius MP3 could increase the milk fat content by suppressing C. acnes DSM 1897 T with antibiotic resistance gene horizontal transfer awareness.
Collapse
Affiliation(s)
- Saranporn Poothong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Somchai Chanpongsang
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Engkarat Kingkaew
- Department of Biology, School of Sciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chackrit Nuengjamnong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Wang J, Zhang G, Lai H, Li Z, Shen M, Li C, Kwan P, O'Brien TJ, Wu T, Yang S, Zhang X, Zhang L. Characterizing Gut Microbiota in Older Chinese Adults with Cognitive Impairment: A Cross-Sectional Study. J Alzheimers Dis 2024; 101:761-771. [PMID: 39213074 DOI: 10.3233/jad-240597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Cognitive impairment is a clinical manifestation that occurs in the course of dementia like Alzheimer's disease. The association between cognitive impairment and gut microbiota is unclear. Objective We aimed to identify gut microbiota characteristics and key gut microbiota biomarkers associated with cognitive impairment in a relatively large cohort of older adults in China. Methods A total of 229 adults aged ≥60 years from Shenzhen, China were recruited into this cross-sectional study. Participants were divided into cognitive impairment (CI) and no cognitive impairment (NCI) groups according to the results of the Mini-Mental State Examination. Diversity analysis and network analysis were used to characterize the gut microbiota between the two groups. The linear discriminant analysis effect size method and machine learning approaches were sequentially performed to identify gut microbiota biomarkers. The relationship between biomarkers and lifestyle factors was explored using Transformation-based redundancy analysis (tb-RDA). Results A total of 74 CI participants and 131 NCI participants were included in the analysis. The CI group demonstrated lower α-diversity compared to the NCI group (Shannon: 2.798 versus 3.152, p < 0.001). The density of the gut microbiota interaction network was lower in the CI group (0.074) compared to the NCI group (0.081). Megamonas, Blautia, Pseudomonas, Stenotrophomonas, and Veillonella were key biomarkers for CI. The tb-RDA revealed that increased fruit intake and exercise contribute to a higher abundance of Megamonas, Blautia, and Veillonella. Conclusions We identified a significantly reduced abundance of certain beneficial gut microbiota in older Chinese adults with cognitive impairment.
Collapse
Affiliation(s)
- Jing Wang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Gong Zhang
- MOE Key Laboratory of Tumour Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Lai
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Zengbin Li
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Mingwang Shen
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Chao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Patrick Kwan
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Yang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| |
Collapse
|
7
|
Shi J, Zhang G, Ke W, Pan Y, Hou M, Chang C, Sa D, Lv M, Liu Y, Lu Q. Effect of endogenous sodium and potassium ions in plants on the quality of alfalfa silage and bacterial community stability during fermentation. FRONTIERS IN PLANT SCIENCE 2023; 14:1295114. [PMID: 38205017 PMCID: PMC10777314 DOI: 10.3389/fpls.2023.1295114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
This study investigated the impact of endogenous sodium and potassium ions in plants on the quality of alfalfa silage, as well as the stability of bacterial communities during fermentation. Silage was produced from the fermented alfalfa, and the chemical composition, fermentation characteristics, and microbiome were analyzed to understand their interplay and impact on silage fermentation quality. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1‰ (CK); (b) 1‰-2‰ (LP); (c) 2‰-3‰ (MP); (d) 3‰-4‰ (HP). The results revealed that the pH of silage was negatively correlated with the lactic acid content. With the increase of lactic acid (LA) content increased (26.3-51.0 g/kg DM), the pH value decreased (4.9-5.3). With the increase of salt stress, the content of Na+ in silage increased (2.2-5.4 g/kg DM). The presence of endogenous Na+ and K+ ions in plants significantly affected the quality of alfalfa silage and the dynamics of bacterial communities during fermentation. Increased salt stress led to changes in microbial composition, with Lactococcus and Pantoea showing a gradual increase in abundance, especially under high salt stress. Low pH inhibited the growth of certain bacterial genera, such as Pantoea and Pediococcus. The abundance of Escherichia-Shigella and Comamonas negatively correlated with crude protein (CP) content, while Enterococcus and Lactococcus exhibited a positive correlation. Furthermore, the accumulation of endogenous Na+ in alfalfa under salt stress suppressed bacterial proliferation, thereby reducing protein degradation during fermentation. The pH of the silage was high, and the LA content was also high. Silages from alfalfa under higher salt stress had higher Na+ content. The alpha diversity of bacterial communities in alfalfa silages showed distinct patterns. Desirable genera like Lactococcus and Lactobacillus predominated in silages produced from alfalfa under salt stress, resulting in better fermentation quality.
Collapse
Affiliation(s)
- Jinhong Shi
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Guijie Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wencan Ke
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yongxiang Pan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Chun Chang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Mingju Lv
- Inner Mongolia Agriculture and Animal Husbandry Extension Center, Hohhot, China
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Shen Y, Zhang J, Gui H, Wang H, Li Y, Zhang J, Cao S, Zhong J, Qian Y, Meng C. Effect of Garlic Straw with Silage Corn Stalks on Hu Sheep Rumen Fermentation and Microbial Community In Vitro. Metabolites 2023; 13:1201. [PMID: 38132883 PMCID: PMC10744859 DOI: 10.3390/metabo13121201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Garlic, an important economic crop, provides nutrient-rich straw. When appropriately balanced with silage corn stalks, it is a high-quality forage resource. However, studies on the impact of garlic straw with silage corn stalks on Hu sheep's digestive metabolism and rumen microbiota are scarce. In this study, different addition ratios of garlic straw and silage corn stalks were utilized for in vitro experiments. We designed six experimental groups (CON, G0, G20, G40, G60, G80, and G100) based on varying ratios of garlic straw to silage corn stalks. Rumen microbiota was analyzed through 16S rRNA sequencing. Nutrient composition analysis indicated that garlic straw's relative feeding value (RFV) closely resembled that of silage corn stalks. After 24 h of fermentation, dry matter digestibility and in vitro gas production significantly increased, reaching peak values at a 60% addition ratio. Furthermore, volatile fatty acids (VFAs) such as acetic, propionic, and butyric acid exhibited elevated contents, with the highest yields observed at 60% inclusion. At the genus level, Prevotella, Rikenellaceae RC9 gut group, and Succiniclasticum were identified as the dominant bacterial groups. The gas production test showed a significant decrease in the G80 group compared to others. Microbial analysis revealed a higher abundance of Prevotella in G80 compared to G20, offering valuable insights for reducing greenhouse gas emissions from ruminant animals. Finally, this study predicted the impact of garlic straw with silage corn stalks' addition on Hu sheep's metabolic pathways and biological functions of the rumen microbiota. This research highlights the potential for effectively utilizing garlic straw as a feed resource for Hu sheep and proposes a rational proportion for combining garlic straw with silage corn stalks.
Collapse
Affiliation(s)
- Yangyang Shen
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Jianli Zhang
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Hongbing Gui
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Huili Wang
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Jun Zhang
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Shaoxian Cao
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Jifeng Zhong
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Yong Qian
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Chunhua Meng
- Institute of Animal Science, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; (Y.S.); (J.Z.); (H.G.); (H.W.); (Y.L.); (J.Z.); (S.C.); (J.Z.)
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
9
|
Abdel-Wahed AM, Khattab IM, Zaher M, Khattab AS, El-Damrawy SZ, El-Keredy A, Soltan YA. Growth performance, nutrient utilization, rumen fermentation, blood biochemistry, and carcass traits of lambs fed Atriplex nummularia L. hay-based diet supplemented with yeast or bacterial direct- fed microbial. Anim Biotechnol 2023; 34:2132-2140. [PMID: 35649420 DOI: 10.1080/10495398.2022.2077739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Direct fed microbial may enhance the utilization of halophyte forages leading to improved animal growth and productivity. This study was conducted to evaluate Atriplex hay-based diet supplemented with yeast (Saccharomyces cerevisiae; SC) or bacteria (Bacillus subtilis and Lactobacillus casei; BAC) on lamb growth performance, digestibility, rumen fermentation, and carcass characteristics. Fifteen Barki lambs (90 ± 7 days of age and 18.6 ± 0.41 kg SE body weight; BW) were randomly assigned to three treatments for 120 days as follows: Control (basal diet without supplementation), SC and BAC diets, the basal diet supplemented with SC or BAC at 2 g/head/day, respectively. All lambs had similar dry matter (DM) intake, while lambs fed SC or BAC dies had higher (P < 0.05) total gain and average daily gain than those fed the control diet. Supplementation of SC or BC increased (P < 0.05) the digestibility of DM, organic matter, and acid detergent fiber, tended to decrease (P < 0.05) the urine N excretion and enhanced the N balance compared to the control. Ruminal pH, acetate, total volatile fatty acids concentrations, and bacterial protein were increased (P < 0.05), while creatinine and urea concentrations were decreased (P < 0.05) by both additives. Compared to other diets, the BAC diet reduced (P < 0.05) triglycerides, total lipids, kidney fat, and eye muscle fat. In conclusion, both additives resulted in similar positive growth performance and feed utilization, while only the BAC additive had a beneficial advantage in reducing the fat content of the carcass.
Collapse
Affiliation(s)
- Adel M Abdel-Wahed
- Animal and Poultry Nutrition Department, Desert Research Center, El-Matareya, Cairo, Egypt
| | - Ibrahim M Khattab
- Department of Animal and Fish Production, Faculty of Desert and Environmental Agriculture, Matrouh University, Matrouh, Egypt
| | - Mabrouk Zaher
- Animal and Poultry Nutrition Department, Desert Research Center, El-Matareya, Cairo, Egypt
| | - Adel S Khattab
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Saad Z El-Damrawy
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Amira El-Keredy
- Genetics Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Yosra A Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Zheng M, Mao P, Tian X, Meng L. Effects of exogenous lactic acid bacteria and maize meal on fermentation quality and microbial community of Orychophragmus violaceus silage. Front Microbiol 2023; 14:1276493. [PMID: 37808300 PMCID: PMC10551169 DOI: 10.3389/fmicb.2023.1276493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Orychophragmus violaceus is a local Brassicaceae in China, while most of it is directly mowed and discarded after the ornamental period. In order to develop forage resources, this study firstly evaluated the potential preservation of O. violaceus silage. O. violaceus was harvested at full-bloom stage, and ensiled without (CK) or with maize meal (Y5), lactic acid bacteria inoculant (Z) and compound additive (Y5Z) for 60 d. Results of chemical and microbiological analysis showed that a large amount of lactic acid was produced and the final pH value was below 4.1 in silages regardless of additive application. CK silage was well preserved as indicated by the low levels of dry matter loss and butyric acid content, and the predominant genus were identified as Enterococcus and Pediococcus. Y5 silage had potential health risks for humans and animals as seen by frequent occurrence of pathogenic bacteria Clostridium and Achromobacter. Z and Y5Z silages were poorly preserved, resulting in great dry matter loss and butyric acid content. Considering the abundant acetic acid production, the dominant Lactobacillus might possess a heterofermentative pathway in Z and Y5Z silages. In conclusion, O. violaceus has the potential to be long stored as silage because of its sufficient water-soluble carbohydrates, while exogenous lactic acid bacteria and maize meal generally provided little positive effect. In future research, efficient homofermentative Lactobacillus strains were suggested to be screened to further enhance the ensiling process of O. violaceus silage.
Collapse
Affiliation(s)
| | | | | | - Lin Meng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
11
|
Mao H, Ji W, Yun Y, Zhang Y, Li Z, Wang C. Influence of probiotic supplementation on the growth performance, plasma variables, and ruminal bacterial community of growth-retarded lamb. Front Microbiol 2023; 14:1216534. [PMID: 37577421 PMCID: PMC10413120 DOI: 10.3389/fmicb.2023.1216534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Growth-retarded lambs would reduce the economic incomes of sheep farming. Nutritional interventions are supposed to promote gastrointestinal health and the compensatory growth of growth-retarded lambs. This study evaluated the effects of probiotic supplementation on the growth performance, plasma characteristics and ruminal bacterial community of growth-retarded lambs. Methods Twenty-four 50-days old male Hu lambs, including 8 healthy lambs (13.2 ± 1.17 kg) and 16 growth-retarded lambs (9.46 ± 0.81 kg), were used in this study. The 8 healthy lambs were fed the basal diet and considered the positive control (GN), and the other 16 growth-retarded lambs were randomly assigned into 2 groups (basal diet without probiotic [negative control, GR] and basal diet supplementation with 1 g/kg concentrate feed probiotic [GRP]), with each group having 4 replicate pens. The feeding trial lasted for 60 days with 7 days for adaptation. Results The results showed that dietary supplementation with probiotic increased (p < 0.05) the average daily gain and dry matter intake of growth-retarded lambs. For growth-retarded lambs, supplementation with probiotic increased (p < 0.05) the activities of superoxide dismutase and glutathione peroxidase, as well as the concentrations of growth hormone and immunoglobulin G. Furthermore, the highest (p < 0.05) concentrations of interleukin-6, interferon-gamma and tumor necrosis factor alpha were observed in the GR group. The concentrations of total volatile fatty acids and acetate in growth-retarded lambs were increased by probiotic supplementation (p < 0.05). The relative abundances of Ruminococcus, Succiniclasticum and Acidaminococcus were lower (p < 0.05) in growth-retarded lambs. However, probiotic supplementation increased (p < 0.05) the relative abundances of these three genera. Discussion These results indicate that dietary supplementation with probiotic are promising strategies for improving the growth performance of growth-retarded lambs by enhancing immunity and altering the ruminal microbiota.
Collapse
Affiliation(s)
- Huiling Mao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Wenwen Ji
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Yan Yun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Yanfang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Zhefeng Li
- Hangzhou Kingtechina Feed Co., Ltd, Hangzhou, China
| | - Chong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Feng Q, Zhang J, Ling W, Degen AA, Zhou Y, Ge C, Yang F, Zhou J. Ensiling hybrid Pennisetum with lactic acid bacteria or organic acids improved the fermentation quality and bacterial community. Front Microbiol 2023; 14:1216722. [PMID: 37455750 PMCID: PMC10340086 DOI: 10.3389/fmicb.2023.1216722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
The aim of this study was to compare the effect of different additives on nutritional quality, fermentation variables and microbial diversity of hybrid Pennisetum silages. A control (CK - no additives) and seven treatments were tested, namely, Lactiplantibacillus plantarum (LP), Lentilactobacillus buchneri (LB), propionic acid (PA), calcium propionate (CAP), LP + LB; LP + PA and LP + CAP. In comparison with CK, all treatments increased the contents of crude protein and lactic acid, decreased the content of butyric acid, and altered the bacterial communities of the silage. Except for the CAP and LP + CAP treatments, the additives decreased pH and the ammonia nitrogen:total nitrogen (NH3-N:TN) ratio. The results of principal component analysis revealed that the PA, LP + PA and LP + LB treatments ranked as the top three silages. The PA and LP + PA treatments exhibited higher water-soluble carbohydrate content, but lower pH, and NH3-N:TN ratio than the other treatments. With the PA and LP + PA treatments, the relative abundances of Lactobacillus and Enterobacter decreased, and of Proteobacteria and Delftia increased, while the carbohydrate metabolism of the microorganisms improved. The LP and LB treatments reduced the Shannon and Simpson diversities. In the beta diversity, PA and LP + PA separated from the other treatments, indicating that there were differences in the composition of bacterial species. The relative abundance of Lactobacillus increased in the LP and LB treatments and of Leucanostoc and Weissella increased in the CAP and LP + CAP treatments. In summary, the addition of L. plantarum, L. buchneri, propionic acid, calcium propionate, and their combinations improved fermentation quality, inhibited harmful bacteria and conserved the nutrients of hybrid Pennisetum.
Collapse
Affiliation(s)
- Qixian Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenqing Ling
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yi Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyan Ge
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fulin Yang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhou
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
The Effect of Lactiplantibacillus plantarum ZZU203, Cellulase-Producing Bacillus methylotrophicus, and Their Combinations on Alfalfa Silage Quality and Bacterial Community. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
This study assessed the effects of Lactiplantibacillus plantarum (ZZU203), cellulase-producing Bacillus methylotrophicus (CB), or their combination (ZZU203_CB) on the fermentation parameters of alfalfa after 10 and 60 days of ensiling. Additionally, the bacterial community compositions were analyzed using absolute quantification 16S-seq (AQS). The results showed that CB silage displayed a higher lactic acid (LA) concentration at 10 d, a higher abundance of Lactobacillus, and lower abundance of Pediococcus, Enterococcus, and Weissella than those in the control (CK) silage. Compared with CK silage, the ZZU203 silage increased LA concentration, fructose and rhamnose concentrations, and the abundance of Lactobacillus, and decreased pH value, ammoniacal nitrogen, acetic acid, neutral detergent fiber and acid detergent fiber concentrations, and the abundance of Pediococcus, Enterococcus, Weissella, Hafnia, and Garciella after 60 days of ensiling. In addition, ZZU203 and ZZU203_CB silage had a similar silage quality and bacterial community, while the inoculation of ZZU203_CB significantly promoted LA accumulation and the numbers of Lactobacillus at 10 d compared with ZZU203 silage. Therefore, ZZU203 or a combination of ZZU203 and CB can be used as potential silage additives to improve the silage quality of alfalfa.
Collapse
|
14
|
Bao X, Guo G, Huo W, Li Q, Xu Q, Chen L. Ensiling pretreatment fortified with laccase and microbial inoculants enhances biomass preservation and bioethanol production of alfalfa stems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159442. [PMID: 36252666 DOI: 10.1016/j.scitotenv.2022.159442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the potential of ensiling pretreatment fortified with laccase and a lactic acid bacteria (LAB) inoculant on improving the utilization of alfalfa stems for bioethanol production. The alfalfa stems were ensiled with no additives (Con), 0.04 % laccase (LA), a LAB inoculant containing Pediococcus pentosaceus at 1 × 106 fresh weight (FW) and Pediococcus acidilactici at 3 × 105 cfu/g FW (PP), and a combination of LA and PP (LAP) for 120 days. By reshaping the bacterial community structure of alfalfa stem silages toward a higher abundance of Lactobacillus, the addition of laccase and LAB inoculant either alone or in combination facilitated lactic acid fermentation to reduce fermentation losses, as evidenced by low concentrations of ammonia nitrogen (53.7 to 68.9 g/kg total nitrogen) and ethanol (2.63 to 3.55 g/kg dry matter). All additive treatments increased lignocellulose degradation and soluble sugars concentrations of alfalfa stem silages. Due to delignification and polyphenol removal, glucan and xylan conversion (70.3 % vs. 35.7 % and 51.6 % vs. 27.9 %, respectively) and ethanol conversion efficiency (53.9 % vs. 26.4 %) of alfalfa stems were greatly increased by ensiling fortified with LA versus Con, and these variables (79.8 % for glucan, 58.7 % for xylan, and 60.1 % for ethanol conversion efficiency) were further enhanced with a synergistic effect of LA and PP fortification. The spearman correlation analysis revealed that bioethanol fermentation of silage biomass was closely related to ensiling parameters and total phenols. In conclusion, ensiling pretreatment with LA and PP combination offered a feasible way to efficient utilization of alfalfa stems for bioethanol production.
Collapse
Affiliation(s)
- Xueyan Bao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Qingfang Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Lei Chen
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China.
| |
Collapse
|
15
|
Zhao M, Wang Z, Du S, Sun L, Bao J, Hao J, Ge G. Lactobacillus plantarum and propionic acid improve the fermentation quality of high-moisture amaranth silage by altering the microbial community composition. Front Microbiol 2022; 13:1066641. [PMID: 36620031 PMCID: PMC9811146 DOI: 10.3389/fmicb.2022.1066641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The objective of this study was to determine the effect of Lactobacillus plantarum (L. plantarum) and propionic acid (PA) on the microbial community and fermentation performance of high-moisture amaranth silage. Methods Amaranth silages were rown without addition (AhGCK) as a control and with L. plantarum JYLP-002 (AhGLP) or propionic acid (AhGPA) and then were opened after 60 days of ensiling to determine the microbial community and fermentation quality. Results Crude protein (CP) content, lactic acid (LA) content, and lactic acid bacteria (LAB) counts were significantly higher in AhGLP and AhGPA compared with those in AhGCK (p < 0.05). In contrast, pH, acetic acid (AA) content, and yeast and aerobic bacteria counts were significantly lower in AhGLP and AhGPA compared with those in AhGCK (p < 0.05). In addition, propionic acid (PA) levels were markedly higher in AhGPA (p < 0.05). In terms of microbial communities, the silage in the additive groups showed an increased relative abundance of Lactiplantibacillus plantarum and Lentilactobacillus buchneri and a reduced relative abundance of Enterobacter cloacae and Clostridium tyrobutyricum. The abundance of Xanthomonas oryzae was significantly increased in AhGPA, but completely inhibited in the silage supplemented with L. plantarum. Spearman's correlation analysis revealed that Lentilactobacillus buchneri and Levilactobacillus brevis were positively associated with LA and negatively associated with pH. Conversely, Clostridium tyrobutyricum and Enterobacter cloacae were negatively associated with LA, but positively associated with pH and AA content. AA content was inversely correlated with Lentilactobacillus buchneri. Functional prediction analysis showed that LAB dominated the three groups of silage and the silages containing additives had improved carbohydrate and amino acid metabolism compared with the control silage; in particular, the AhGLP group had more heterotypic fermentation processes and a richer metabolic pathway. Furthermore, the epiphytic Lactiplantibacillus plantarum and Lentilactobacillus buchneri could inhibit the reproductive activity of undesirable microorganisms to a certain extent, thus slowing the spoilage process of the silage. Conclusion In conclusion, L. plantarum can improve fermentation characteristics by modulating the microbial community attached to high-moisture amaranth silage and will prove useful for preserving high-moisture silage.
Collapse
Affiliation(s)
- Muqier Zhao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jian Bao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Junfeng Hao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources of Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China,*Correspondence: Gentu Ge,
| |
Collapse
|
16
|
Guo X, Xu D, Li F, Bai J, Su R. Current approaches on the roles of lactic acid bacteria in crop silage. Microb Biotechnol 2022; 16:67-87. [PMID: 36468295 PMCID: PMC9803335 DOI: 10.1111/1751-7915.14184] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) play pivotal roles in the preservation and fermentation of forage crops in spontaneous or inoculated silages. Highlights of silage LAB over the past decades include the discovery of the roles of LAB in silage bacterial communities and metabolism and the exploration of functional properties. The present article reviews published literature on the effects of LAB on the succession, structure, and functions of silage microbial communities involved in fermentation. Furthermore, the utility of functional LAB in silage preparation including feruloyl esterase-producing LAB, antimicrobial LAB, lactic acid bacteria with high antioxidant potential, pesticide-degrading LAB, lactic acid bacteria producing 1,2-propanediol, and low-temperature-tolerant LAB have been described. Compared with conventional LAB, functional LAB produce different effects; specifically, they positively affect animal performance, health, and product quality, among others. In addition, the metabolic profiles of ensiled forages show that plentiful probiotic metabolites with but not limited to antimicrobial, antioxidant, aromatic, and anti-inflammatory properties are observed in silage. Collectively, the current knowledge on the roles of LAB in crop silage indicates there are great opportunities to develop silage not only as a fermented feed but also as a vehicle of delivery of probiotic substances for animal health and welfare in the future.
Collapse
Affiliation(s)
- Xusheng Guo
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Dongmei Xu
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Fuhou Li
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Jie Bai
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Rina Su
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| |
Collapse
|
17
|
Fang J, Weng Y, Li B, Liu H, Liu L, Tian Z, Du S. Graphene oxide decreases the abundance of nitrogen cycling microbes and slows nitrogen transformation in soils. CHEMOSPHERE 2022; 309:136642. [PMID: 36202372 DOI: 10.1016/j.chemosphere.2022.136642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) has been widely used in many applications due to its excellent properties. Given the extensive production and use of this nanomaterial, its release into the environment is inevitable. However, little is known about the effects of GO on microbial nitrogen transformation and the related processes after GO enters the soil environment. The present study showed that GO significantly reduced soil microbial biomass and caused a decline in microbial diversity after the soils were subjected to various GO concentrations (10, 100, and 1000 mg kg-1) for 4 months. Among them, the abundances of nitrogen transformation related bacteria such as Firmicutes, Nitrospirota, Proteobacteria, Planctomycetota, and Cyanobacteria were significantly decreased with GO incubation. Among the enzymes that are related to nitrogen transformation, nitrate reductase was the most sensitive even at low concentrations of GO, followed by ammonia monooxygenase and urease, which were reduced by 13-31%, 5-26%, and 9-19% respectively, than those of the control. We found that high concentrations of GO significantly increased the retention of soil urea by 32-59%, and the contents of ammonium and nitrate were 22-28% and 55-69% lower compared to those of the control, respectively. Moreover, the response of most of the indicators in the above process to multilayer GO was more significant than that to single layer GO. Overall, this study provides new insights into the comprehensive understanding of GO's impacts on the soil nitrogen cycle.
Collapse
Affiliation(s)
- Jin Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yineng Weng
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Beier Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
18
|
Bao X, Feng H, Guo G, Huo W, Li Q, Xu Q, Liu Q, Wang C, Chen L. Effects of laccase and lactic acid bacteria on the fermentation quality, nutrient composition, enzymatic hydrolysis, and bacterial community of alfalfa silage. Front Microbiol 2022; 13:1035942. [PMID: 36274744 PMCID: PMC9582240 DOI: 10.3389/fmicb.2022.1035942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Ensiling has long been as a mainstream technology of preserving forage for ruminant production. This study investigated the effects of bioaugmented ensiling with laccase and Pediococcus pentosaceus on the fermentation quality, nutritive value, enzymatic hydrolysis, and bacterial community of alfalfa. The application of laccase and Pediococcus pentosaceus combination was more potent in modulating the fermentation quality of silage than laccase and Pediococcus pentosaceus alone, as indicated by higher lactic acid contents and lactic acid to acetic acid ratios, and lower pH, dry matter losses, and ammonia nitrogen contents. Moreover, treatments with additive enhanced protein preservation and structural carbohydrate degradation, while increasing true protein and water-soluble carbohydrate contents. By promoting lignin degradation, treatments containing laccase further facilitated the release of sugars from cellulose compared with treatment with Pediococcus pentosaceus alone. The additive treatments reduced the bacterial diversity and optimized the bacterial community composition of silage, with an increase in the relative abundance of desirable Lactobacillus and a decrease in the relative abundance of undesirable Enterobacter and Klebsiella. PICRUSt functional prediction based on Kyoto Encyclopedia of Genes and Genomes (KEGG) databases revealed that PL and LPL treatments increased the metabolism of membrane transport, carbohydrate, and terpenoids and polyketides related to fermentation activities. It can be concluded that bioaugmented ensiling with laccase and Pediococcus pentosaceus combination can be an effective and practical strategy to improve silage fermentation and nutrient preservation of alfalfa silage.
Collapse
Affiliation(s)
- Xueyan Bao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haoran Feng
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qingfang Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Cong Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lei Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
- *Correspondence: Lei Chen,
| |
Collapse
|
19
|
Xu J, Zhang K, Lin Y, Li M, Wang X, Yu Q, Sun H, Cheng Q, Xie Y, Wang C, Li P, Chen C, Yang F, Zheng Y. Effect of cellulase and lactic acid bacteria on the fermentation quality, carbohydrate conversion, and microbial community of ensiling oat with different moisture contents. Front Microbiol 2022; 13:1013258. [PMID: 36274697 PMCID: PMC9581316 DOI: 10.3389/fmicb.2022.1013258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Oat (Avena sativa L.) is one of the most widely cultivated crops used as forage. The aim of this study was to evaluate the effects of cellulase and Lactobacillus plantarum interactions with different moisture contents on oat ensiling. Oats with three moisture contents were treated with nothing (C), cellulase (CE), lactic acid bacteria (LP), or CE+LP and ensiled for 30 and 60 days. Compared with the control, LP and CE treatments increased crude protein and lactic acid concentrations and reduced the pH and ammonia nitrogen/total nitrogen (NH3-N/TN) ratios of silages. The addition of CE improved lignocellulosic degradation, compared with approximately 67% (LD) and 81% moisture content (HD) ensiling, CE (CE, CE+LP) ensiling in the approximately 75% moisture content (MD) group retained higher water-soluble carbohydrate, glucose, sucrose and fructose concents. The LP and CE inoculations significantly reduced the microbial community diversity, and lower values for the observed species, ACE, Chao1, and Shannon indices compared with CK-treated samples. Additives inhibited the growth of unfavorable bacteria (such as Clostridium) and increased the abundances of lactic acid bacteria (LAB); the maximum increases in the Lactiplantibacillus abundance were obtained in the LP- and CE+LP-treated samples, improving the microbial community structure in silage. In summary, adding LP and CE effectively improved the oat fermentation quality, and better performances in ensiling oat and lignocellulose degradation were obtained with LP and CE combinations, especially for the MD group of silages that were ensiled for 60 days. The addition of CE and LP at the appropriate moisture content might be helpful for producing high-quality oat silage, and also provide a simple and feasible method to enhance the effects of bacteria and enzymes.
Collapse
Affiliation(s)
- Jinyi Xu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Keyi Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yufan Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Mengxin Li
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Yu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Hong Sun
- College of Animal Science, Guizhou University, Guiyang, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chunmei Wang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Fuyu Yang
- College of Animal Science, Guizhou University, Guiyang, China
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guiyang, China
- *Correspondence: Yulong Zheng,
| |
Collapse
|
20
|
Effect of Storage Period on the Fermentation Profile and Bacterial Community of Silage Prepared with Alfalfa, Whole-Plant Corn and Their Mixture. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the impact of storage time on the bacterial community and fermentation profile of silage prepared with alfalfa, whole-plant corn, and their mixture. Fresh alfalfa and whole-plant corn were chopped and combined in fresh weight ratios of 1:0 (alfalfa, control), 0.8:0.2 (M1), 0.6:0.4 (M2), and 0:1 (corn). Three silos of each treatment were analyzed after 30, 60, and 90 d of storage. With storage time, pH, acetic acid, propionic acid, butyric acid, and ammonia nitrogen levels increased in alfalfa silage (p < 0.01), whereas lactic acid level decreased (p < 0.01). Compared to alfalfa silage, M1, M2, and corn silages were better fermented and more stable during storage. The dominant bacteria in M1, M2, and corn silages shifted significantly from L. plantarum, L. buchneri, and L. brevis to L. acetotolerans and L. buchneri during 30 to 60–90 d of storage, and storage time decreased the bacterial diversity of these silages. In conclusion, storage time significantly decreased the fermentation quality of alfalfa silage and remarkably optimized the bacterial community structure of well-fermented M1, M2, and corn silages. Alfalfa should be ensiled with at least 20% whole-plant corn to improve silage fermentation quality and storage stability.
Collapse
|
21
|
Zheng Y, Li M, Xu J, Sun H, Cheng Q, Xie Y, Wang C, Chen C, Li P. Effects of different cutting methods and additives on the fermentation quality and microbial community of Saccharum arundinaceum silage. Front Microbiol 2022; 13:999881. [PMID: 36212833 PMCID: PMC9539546 DOI: 10.3389/fmicb.2022.999881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
To develop a new high-yielding and polysaccharide-containing forage resource for livestock, the effects of different cutting methods and additives on Saccharum arundinaceum silage were evaluated. The wilted S. arundinaceum were chopped and knead-wired. The silages from each cutting method were treated with Lactobacillus plantarum (LP), cellulase (CE) and the combination of LP and CE (LP + CE) for 3, 7, 15, 30, and 60 days. Compared with the CK treatment, CE treatment exhibited better effects in the degradation of neutral detergent fiber (NDF), LP exhibited a better performance in preserving the content of dry matter (DM), and adding LP + CE significantly enhanced (P < 0.05) the contents of lactic acid (LA), crude protein (CP) and DM and significantly reduced (P < 0.05) the pH and NDF content during ensiling. In addition, both additives exerted a remarkable effect on the silage bacterial community (P < 0.05), with a dramatic increase in the Lactobacillus abundance and a decrease in the abundance of Enterobacter. Lactic acid bacteria (LAB) became the most dominant bacteria that affected the fermentation quality of LP and LP + CE silages. Meanwhile, chopped silages showed better fermentation quality and nutrient preservation and a higher abundance of LAB. Our research indicated that the chopped S. arundinaceum ensiling with LP + CE could exert a positive effect on LA fermentation and preservation of nutrient substances by shifting the bacterial community. In conclusion, S. arundinaceum can serve as a new silage resource for feed utilization by the ensiling method of LP + CE-chopped.
Collapse
Affiliation(s)
- Yulong Zheng
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Mengxin Li
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jinyi Xu
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Hong Sun
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Qiming Cheng
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Yixiao Xie
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Chunmei Wang
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Chao Chen
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Ping Li
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- *Correspondence: Ping Li,
| |
Collapse
|
22
|
Wu C, Sun W, Huang Y, Dai S, Peng C, Zheng Y, Chen C, Hao J. Effects of different additives on the bacterial community and fermentation mode of whole-plant paper mulberry silage. Front Microbiol 2022; 13:904193. [PMID: 36160218 PMCID: PMC9493322 DOI: 10.3389/fmicb.2022.904193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate the effects of inoculation with two lactic acid bacteria (LAB) strains (Lacticaseibacillus rhamnosus and Lentilactobacillus buchneri) and the addition of four corn flour proportions (0, 3, 6, and 9%) in different treatments, on the composition and function of the bacterial community in whole-plant paper mulberry silage. The different treatments promoted Lactiplantibacillus, Lentilactobacillus, and Lacticaseibacillus growth, but the microbial species responsible for fermentation differed among the treatments. High species diversity and various Gram-negative bacteria, such as Flavitalea sp., Pantoea agglomerans, Acinetobacter pittii, Turicibacter sanguinis, and Ralstonia pickettii, were found in the uninoculated LAB treatments. A beneficial bacterium, Lactobacillus johnsonii, was discovered for the first time in whole-plant paper mulberry silage. LAB inoculation simplifies the microbial community structure, and beneficial Lactobacillus as a key species aggregates in the inoculated treatment group. However, L. rhamnosus inoculation alone may have limited bacteriostatic activity against in whole-plant paper mulberry silage. Compared with silage lacking corn flour, amino sugar and nucleotide sugar metabolism, galactose metabolism, the phosphotransferase system and the pentose phosphate pathway metabolic activity were increased in corn flour-containing silage. Whole-plant paper mulberry can be used as a high-quality silage to provide high-quality feed resources for sustainable ruminant livestock production. Moreover, additive use is necessary for preparing paper mulberry silage.
Collapse
|
23
|
Andrada E, Mechoud MA, Abeijón-Mukdsi MC, Chagra Dib EP, Cerviño S, Perez Chaia A, Medina RB. Ferulic Acid Esterase Producing Lactobacillus johnsonii from Goat Feces as Corn Silage Inoculants. Microorganisms 2022; 10:1732. [PMID: 36144334 PMCID: PMC9500823 DOI: 10.3390/microorganisms10091732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Ferulic acid esterase (FAE+)-producing lactobacilli are being studied as silage inoculants due to their potential of increasing forage fiber digestibility. In this work, three FAE+ Lactobacillus (L.) johnsonii strains were isolated from caprine feces and characterized according to their potential probiotic characteristics and as silage inoculants. Limosilactobacillus fermentum CRL1446, a human probiotic isolated from goat cheese, was also included in the experiments as a potential silage inoculant. FAE activity quantification, probiotic characterization, and growth in maize aqueous extract indicated that L. johnsonii ETC187 might have a better inoculant and probiotic aptitude. Nevertheless, results in whole-corn mini silos indicated that, although acid detergent fiber (ADF) was significantly reduced by this strain (3% compared with the uninoculated (UN) group), L. johnsonii ETC150 and CRL1446 not only induced similar ADF reduction but also reduced dry matter (DM) loss (by 7.3% and 6.5%, respectively) compared with the UN group. Additionally, CRL1446 increased in vitro DM degradability by 10%. All treatments reduced gas losses when compared with the UN group. The potential probiotic features of these strains, as well as their beneficial impact on corn fermentation shown in this study, encourage further studies as enhancers in animal production.
Collapse
Affiliation(s)
- Estefania Andrada
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán T4000ACS, Argentina
| | - Mónica Adriana Mechoud
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - María Claudia Abeijón-Mukdsi
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - Elsa Patricia Chagra Dib
- Estación Experimental Agropecuaria Salta, Instituto Nacional de Tecnología Agropecuaria, Cerrillos, Salta A4403XAA, Argentina
| | - Santiago Cerviño
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán T4000ACS, Argentina
- Zona Valles Calchaquíes, Subsecretaría de Agricultura Familiar, Campesina e Indígena, Ministerio de Agricultura, Ganadería y Pesca, San Miguel de Tucumán, Tucumán T4000GBD, Argentina
| | - Adriana Perez Chaia
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
| | - Roxana Beatriz Medina
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán T4000ILC, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán T4000ACS, Argentina
| |
Collapse
|
24
|
Cheng Q, Li M, Fan X, Chen Y, Sun H, Xie Y, Zheng Y, Chen C, Li P. Effects of epiphytic and exogenous lactic acid bacteria on fermentation quality and microbial community compositions of paper mulberry silage. Front Microbiol 2022; 13:973500. [PMID: 36090070 PMCID: PMC9453674 DOI: 10.3389/fmicb.2022.973500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to isolate, characterize, and identify lactic acid bacteria (LAB) strains from various sources and evaluate their effects on the nutritional quality, fermentation characteristics, and microbial compositions of paper mulberry (PM) after 60 days of ensiling. Forty-nine LAB strains were isolated from Phalaris arundinacea silage, pickle, and fresh PM leaves; three of these strains (Lactiplantibacillus plantarum, YC1; Levilactobacillus brevis, PC3; and Lactiplantibacillus plantarum, BP17) and one commercial inoculant Gaofuji (GFJ) were subsequently used. Compared with other treatments, PC3 and BP17 increased (P < 0.05) the LAB count and crude protein content and decreased (P < 0.05) the molds and coliform bacteria counts, pH, and ammonia-N content of PM silages. BP17 and PC3 increased the relative Lactiplantibacillus abundance and decreased that of Lelliottia and Cladosporium, improving PM silage quality. Therefore, PC3 and BP17 can improve the fermentation quality of PM silage and could be used as silage starter cultures.
Collapse
Affiliation(s)
- Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang, China
- Sichuan Academy of Grassland Sciences, Chengdu, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Maoya Li
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Xueying Fan
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Yulian Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Hong Sun
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, China
- Sichuan Academy of Grassland Sciences, Chengdu, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Ping Li,
| |
Collapse
|
25
|
Mansilla FI, Ficoseco CA, Miranda MH, Puglisi E, Nader-Macías MEF, Vignolo GM, Fontana CA. Administration of probiotic lactic acid bacteria to modulate fecal microbiome in feedlot cattle. Sci Rep 2022; 12:12957. [PMID: 35902668 PMCID: PMC9334624 DOI: 10.1038/s41598-022-16786-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Modulation of animal gut microbiota is a prominent function of probiotics to improve the health and performance of livestock. In this study, a large-scale survey to evaluate the effect of lactic acid bacteria probiotics on shaping the fecal bacterial community structure of feedlot cattle during three experimental periods of the fattening cycle (163 days) was performed. A commercial feedlot located in northwestern Argentina was enrolled with cattle fed mixed rations (forage and increasing grain diet) and a convenience-experimental design was conducted. A pen (n = 21 animals) was assigned to each experimental group that received probiotics during three different periods. Groups of n = 7 animals were sampled at 40, 104 and 163 days and these samples were then pooled to one, thus giving a total of 34 samples that were subjected to high-throughput sequencing. The microbial diversity of fecal samples was significantly affected (p < 0.05) by the administration period compared with probiotic group supplementation. Even though, the three experimental periods of probiotic administration induced changes in the relative abundance of the most representative bacterial communities, the fecal microbiome of samples was dominated by the Firmicutes (72-98%) and Actinobacteria (0.8-27%) phyla, while a lower abundance of Bacteroidetes (0.08-4.2%) was present. Probiotics were able to modulate the fecal microbiota with a convergence of Clostridiaceae, Lachnospiraceae, Ruminococcaceae and Bifidobacteriaceae associated with health and growth benefits as core microbiome members. Metabolic functional prediction comparing three experimental administration periods (40, 104 and 163 days) showed an enrichment of metabolic pathways related to complex plant-derived polysaccharide digestion as well as amino acids and derivatives during the first 40 days of probiotic supplementation. Genomic-based knowledge on the benefits of autochthonous probiotics on cattle gastrointestinal tract (GIT) microbiota composition and functions will contribute to their selection as antibiotic alternatives for commercial feedlot.
Collapse
Affiliation(s)
| | | | | | - Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Cremona-Piacenza, Italy
| | | | | | - Cecilia Alejandra Fontana
- Instituto Nacional de Tecnología Agropecuaria INTA EEA-Famaillá, Tucumán, Argentina.
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Cremona-Piacenza, Italy.
| |
Collapse
|
26
|
Xie Y, Sun H, Zhang C, Cheng Q, Zheng Y, Wang C, Xiao B, Li P, Chen C. Ambient ultraviolet radiation: A new factor affecting anaerobic fermentation of oat and subsequent methane emissions. BIORESOURCE TECHNOLOGY 2022; 355:127243. [PMID: 35489577 DOI: 10.1016/j.biortech.2022.127243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
To investigate the effect of ambient ultraviolet (UV) radiation on the Qinghai-Tibetan Plateau on anaerobic fermentation and subsequent methane emissions, oats grown under different ambient UV conditions (UV1, 100% ambient UV radiation; UV2, 50% ambient UV radiation) were fermented with molasses and Lactobacillus plantarum (LP) inoculant treatments. The UV2 treatment increased (P < 0.05) epiphytic bacterial counts and reduced (P < 0.05) the water-soluble carbohydrate contents of oat. Both the UV2 treatment and the LP inoculant substantially increased the abundance of Lactobacillus and inhibited detrimental microorganisms (enterobacteria and yeasts) during anaerobic fermentation, resulting in the absence of butyric acid. The UV2 treatment increased (P < 0.05) the acid detergent fiber contents after anaerobic fermentation and indirectly increased (P < 0.05) methane emissions by 8.52-14.69% during in vitro ruminal digestion. This study demonstrated that low ambient UV radiation during cultivation facilitated anaerobic fermentation and consequently enhanced subsequent methane emissions from the rumen.
Collapse
Affiliation(s)
- Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Changbing Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611431, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chunmei Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bingxue Xiao
- Sichuan Academy of Grassland Sciences, Chengdu 611431, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Sichuan Academy of Grassland Sciences, Chengdu 611431, China.
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
27
|
Chen X, Ma Y, Khan MZ, Xiao J, Alugongo GM, Li S, Wang Y, Cao Z. A Combination of Lactic Acid Bacteria and Molasses Improves Fermentation Quality, Chemical Composition, Physicochemical Structure, in vitro Degradability and Rumen Microbiota Colonization of Rice Straw. Front Vet Sci 2022; 9:900764. [PMID: 35754539 PMCID: PMC9213808 DOI: 10.3389/fvets.2022.900764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aims This study aims to evaluate the effect of lactic acid bacteria (LAB) and LAB-molasses (LAB + M) combination on the fermentation quality, chemical composition, physicochemical properties, in vitro degradability of rice straw and the characteristics of rumen microbial colonization on rice straw surface. Methods and Results There were three pretreatments, including control (not treated, Con), treated with LAB, or LAB + M. The results showed that both LAB and LAB + M treatments altered the physical and chemical structures of rice straw and were revealed by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) spectroscopy, respectively. Moreover, both LAB and LAB + M pretreated rice straw increased the crude protein (CP) content, dry matter (DM) recovery, and in vitro digestibility and decreased the pH value, neutral detergent fiber (NDF), and acid detergent fiber (ADF) contents. The LAB + M pretreated rice straw increased the gas production (GP72) and rumen microbial colonization on the rice straw surface. Conclusions It is observed that LAB + M treatment could increase digestibility and the rumen microbial colonization on the rice straw surface. Therefore, LAB + M treatment can provide an alternative strategy to improve the quality of rice straw. Significance and impact of the study: This study provides an optimal pretreatment to improve the rice straw digestibility and rumen microbial colonization.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Spatiotemporal bio-shielding of bacteria through consolidated geometrical structuring. NPJ Biofilms Microbiomes 2022; 8:37. [PMID: 35534500 PMCID: PMC9085766 DOI: 10.1038/s41522-022-00302-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
The probiotic bacterium Lactobacillus plantarum is often reckoned as a ‘generalist’ for its ability to adapt and survive in diverse ecological niches. The genomic signatures of L. plantarum have shown its intricate evolutionary ancestry and dynamic lifestyles. Here, we report on a unique geometrical arrangement of the multicellular population of L. plantarum cells. Prominently, a phenomenon of the cone-shaped colony formation and V-shaped cell chaining are discovered in response to the acidic-pH environment. Moreover, subsequent cold stress response triggers an unusual cellular arrangement of consolidated bundles, which appeared to be independently governed by a small heat shock protein (HSP 1). We further report that the V-shaped L. plantarum chaining demonstrates potent antagonistic activity against Candida albicans, a pathogenic yeast, both in vitro and in a Caenorhabditis elegans co-infection model. Finally, we deduce that the multifaceted traits manifested by this probiotic bacterium is an outcome of its dynamic flexibility and cellular heterogeneity.
Collapse
|
29
|
Xiong Y, Xu J, Guo L, Chen F, Jiang D, Lin Y, Guo C, Li X, Chen Y, Ni K, Yang F. Exploring the Effects of Different Bacteria Additives on Fermentation Quality, Microbial Community and In Vitro Gas Production of Forage Oat Silage. Animals (Basel) 2022; 12:ani12091122. [PMID: 35565552 PMCID: PMC9100174 DOI: 10.3390/ani12091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Forage oat is an important feed resource in the world. Few studies on the application of different bacterial additives in forage oat silage have been found, which limits the utilization and promotion of oat silage in animal husbandry. In this study, we compared the fermentation quality and in vitro gas production of oat silage treated with four additives (Lactiplantibacillusplantarum F1,LP; Lacticaseibacillusrhamnosus XJJ01, LR; Lacticaseibacillusparacasei XJJ02, LC; and Propionibacterium acidipropionici 1.1161, PP). The results show that compared to the CK group (without additives), the LR group had a higher dry matter content, while the LP group showed an improvement in fermentation quality. At the same time, the bacterial community in the LR group was also different from that in other groups. The treatments of PP and LC had no significant effects on fermentation quality, but the in vitro gas production was significantly reduced in the treated oat silage. These results could help us to optimize the utilization of forage oat silage in balanced ruminant diets. Abstract Bacterial inoculants are considered as a good choice for successful ensiling, playing a key role in improving the silage quality. However, the potential of different bacteria, especially the propionic acid bacteria, in forage oat ensiling is yet to be explored. Therefore, the purpose of this study was to investigate the regulation effects of different bacterial additives on the fermentation quality of forage oat silage. Four additives (Lactiplantibacillus plantarum F1, LP; Lacticaseibacillus 0rhamnosus XJJ01, LR; Lacticaseibacillus paracasei XJJ02, LC; and Propionibacterium acidipropionici 1.1161, PP; without additives, CK) were inoculated in forage oat silage, and the fermentation quality and organic compounds were determined after 60 days of ensiling. Notably, LR showed higher dry matter preservation compared to other additives and CK. In addition, LP and LR showed strong lactic acid synthesis capacity, resulting in lower pH compared to other additives and CK. The treatments of PP and LC increased the bacterial diversity in silage, while the bacterial community in the LR group was different from that in other groups. In addition, the PP- and LC-treated oat silage showed significantly lower total in vitro gas production and a lower methane content. These results suggest that LP is more favorable for producing high-quality oat silage than LR, LC, or PP. Both the PP- and LC- treated oat silage may reduce rumen greenhouse gas emissions.
Collapse
Affiliation(s)
- Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Jingjing Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Linna Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Fei Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Dedai Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Yanli Lin
- Beijing Sure Academy of Biosciences, Beijing 100193, China;
| | - Chunze Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Yunrong Chen
- Donghan Animal Husbandry and Veterinary Station of Fuqing City, Fujian 350300, China;
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
- Correspondence: ; Tel.: +86-010-62733052
| |
Collapse
|
30
|
Na N, Qili M, Wu N, Sun L, Xu H, Zhao Y, Wei X, Xue Y, Tao Y. Bacterial Community and Fermentation Quality of Ensiling Alfalfa With Commercial Lactic Acid Bacterial Additives. Front Microbiol 2022; 13:836899. [PMID: 35531295 PMCID: PMC9073077 DOI: 10.3389/fmicb.2022.836899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the effects of six common commercial lactic acid bacteria (LAB) additives [A1, Lactobacillus plantarum, L. buchneri, and Enterococcus faecalis; A2, L. plantarum and L. casei; A3, L. plantarum and L. buchneri; A4, L. plantarum, L. buchneri, L. casei, and Pediococcus acidilactici; A5, L. plantarum (producing feruloyl esterase); and A6, L. buchneri, P. acidilactici, β-glucanase, and xylanase] on the bacterial community and fermentation quality of alfalfa silage. Alfalfa was harvested at the squaring stage, wilted in the field for 24 h, and ensiled without any additives (Control) or with A1, A2, A3, A4, A5, or A6. Microbial counts, bacterial community, fermentation parameters, and nutritional composition were determined after ensiling for 90 days. The total abundance of LAB genera on alfalfa pre-ensiling was 0.38% in bacterial community. The abundances of Lactobacillus, Enterococcus, and Pediococcus in the Control silage were 42.18, 40.18, and 8.09% of abundance, respectively. The abundances of Lactobacillus in A1-, A2-, A3-, A4-, and A5-treatments were 89.32, 92.93, 92.87, 81.12, and 80.44%, respectively. The abundances of Pediococcus and Lactobacillus in A6-treatment were 70.14 and 24.86%, respectively. Compared with Control silage, LAB-treated silage had lower pH and less ammonia nitrogen and water-soluble carbohydrates concentrations (p < 0.05). Further, the A5- and A6-treatments contained lower neutral detergent fiber, acid detergent fiber, and hemicellulose than other treatments (p < 0.05). Overall, LAB genera were presented as minor taxa in alfalfa pre-ensiling and as dominant taxa in alfalfa silage. Adding LAB additives improved the fermentation quality and altered the bacterial community of alfalfa silage. The main bacterial genera in Control silage were Lactobacillus, Enterococcus, and Pediococcus. Lactobacillus dominated the bacterial communities of A1-, A2-, A3-, A4-, and A5-treatments, while Pediococcus and Lactobacillus were dominant bacterial genera in A6-treatment. Inoculating A5 and A6 degraded the fiber in alfalfa silage. It is necessary to ensile alfalfa with LAB inoculants.
Collapse
Affiliation(s)
- Na Na
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
| | - Moge Qili
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
| | - Nier Wu
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
| | - Lin Sun
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
| | - Haiwen Xu
- College of Foreign Languages, Inner Mongolia University of Finance and Economics, Hohhot, China
| | - Yi Zhao
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
| | - Xiaobin Wei
- Inner Mongolia Youran Animal Husbandry Co., Ltd., Hohhot, China
| | - Yanlin Xue
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
| | - Ya Tao
- Inner Mongolia Youran Animal Husbandry Co., Ltd., Hohhot, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
31
|
Ji Y, Dong X, Liu Z, Wang W, Yan H, Liu X. Effects of Bovine Pichia kudriavzevii T7, Candida glabrata B14, and Lactobacillus plantarum Y9 on Milk Production, Quality and Digestive Tract Microbiome in Dairy Cows. Microorganisms 2022; 10:842. [PMID: 35630288 PMCID: PMC9146454 DOI: 10.3390/microorganisms10050842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Microbial administration has been used successfully to improve host health. However, the positive effects of endogenous microbials are still underexplored. This study investigated the effects of bovine Lactic acid bacteria and yeast on the milk production, quality and digestive tract microbiome of dairy cows. Lactobacillus plantarum Y9, Pichia kudriavzevii T7 and Candida glabrata B14 isolated from high-yielding dairy cows were selected to feed low-yielding Holstein cows. Pichia kudriavzevii T7 could significantly increase milk yield, meanwhile, Pichia kudriavzevii T7 and Candida glabrata B14 could obviously reduce the number of somatic cell counts (SCC). However, slight differences were found in milk fat, protein, lactose and SNF (solids not fat) percentage. High throughput sequencing showed that the dominant bacteria were Prevotella and Ruminococcaceae in rumen and feces, respectively, and the dominant fungi were Penicillium, Aspergillus and Trichoderma in both samples, before and after feeding the microbial addition. Nonetheless, microbial addition changed the abundance and structure of the microbiome in the digestive tract. Our data showed bovine yeast and LAB were beneficial for improving performance and regulating the microbial structure of dairy cows. This study was expected to enrich the knowledge of the digestive tract microbiome in dairy cows and provide a feasible strategy for the further utilization of bovine microorganisms.
Collapse
Affiliation(s)
| | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Y.J.); (X.D.); (Z.L.); (W.W.)
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Y.J.); (X.D.); (Z.L.); (W.W.)
| |
Collapse
|
32
|
Effects of Lactobacillus plantarum on Fermentation Quality and Anti-Nutritional Factors of Paper Mulberry Silage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are few studies on the application of lactic acid bacteria in the reduction of anti-nutrient factors in paper mulberry silage. This study aimed to investigate the effects of different lactic acid bacteria on the fermentation quality and the amount of anti-nutritional factors in paper mulberry silage. Two strains of Lactobacillus plantarum (GX, isolated from paper mulberry silage; GZ, provided by Sichuan Gaofuji Biotechnology Co. Ltd.) were added as silage additives. On days 7, 15, 30 and 60 of the ensiling process, the fermentation quality, and the amount of anti-nutritional factors were measured. Compared with the control group, inoculation with Lactobacillus plantarum could rapidly reduce pH values, leading to lower NH3-N/TN. Besides, it also significantly increased the lactic acid content (p < 0.05). The two strains of L. plantarum significantly reduced the content of hydrolysed tannin, condensed tannin, total tannin, oxalic acid, phytic acid and saponin (p < 0.05). Overall, this study found that the addition of lactic acid bacteria could significantly improve the fermentation quality of paper mulberry and reduce the amount of anti-nutrient factors (p < 0.05).
Collapse
|
33
|
Huang K, Chen H, Liu Y, Hong Q, Yang B, Wang J. Lactic acid bacteria strains selected from fermented total mixed rations improve ensiling and in vitro rumen fermentation characteristics of corn stover silage. Anim Biosci 2022; 35:1379-1389. [PMID: 34991191 PMCID: PMC9449406 DOI: 10.5713/ab.21.0461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 11/27/2022] Open
Abstract
Objective This study identified the major lactic acid bacteria (LAB) strains from different fermented total mixed rations (FTMRs) via metataxonomic analysis and evaluated the ability of their standard strain as ensiling inoculants for corn stover silage. Methods The bacterial composition of eight FTMRs were analyzed by 16S rDNA sequencing. Corn stover was ensiled without LAB inoculation (control) or with 1×106 cfu/g LAB standard strain (Lactobacillus vaginalis, Lactobacillus reuteri, Lactobacillus helveticus, or Lactobacillus paralimentarius) selected from the FTMRs or 10 g/t commercial silage inoculant (CSI) around 25°C for 56 days. For each inoculation, a portion of the silage was sampled to analyze ensiling characteristics at time intervals of 0, 1, 3, 7, 14, 28, and 56 days, gas production (GP), microbial crude protein and volatile fatty acids as the measurements of rumen fermentation characteristics were evaluated in vitro with the silages of 56 days after 72 h incubation. Results Lactobacillus covered >85% relative abundance of all FTMRs, in which L. pontis, L. vaginalis, L. reuteri, L. helveticus, and L. paralimentarius showed >4% in specific FTMRs. CSI, L. helveticus, and L. paralimentarius accelerated the decline of silage pH. Silage inoculated with L. paralimentarius and CSI produced more lactic acid the early 14 days. Silage inoculated with L. paralimentarius produced less acetic acid and butyric acid. For the in vitro rumen fermentation, silage inoculated with CSI produced more potential GP, isobutyric acid, and isovaleric acid; silage inoculated with L. helveticus produced more potential GP and isovaleric acid, silage inoculated with L. paralimentarius or L. reuteri produced more potential GP only. Conclusion The standard strain L. paralimentarius (DSM 13238) is a promising ensiling inoculant for corn stover silage. The findings provide clues on strategies to select LAB to improve the quality of silage.
Collapse
Affiliation(s)
- Kailang Huang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongwei Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yalu Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qihua Hong
- The Experimental Teaching Center, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
34
|
Kholif AE, Gouda GA, Patra AK. The sustainable mitigation of in vitro ruminal biogas emissions by ensiling date palm leaves and rice straw with lactic acid bacteria and Pleurotus ostreatus for cleaner livestock production. J Appl Microbiol 2021; 132:2925-2939. [PMID: 34967069 DOI: 10.1111/jam.15432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
AIMS The sustainable utilization of date palm leaves (DPL) and rice straw (RS) as feed materials for ruminant was evaluated using an in vitro wireless gas production technique. METHODS AND RESULTS Date palm leaves and RS were individually ensiled with lactic acid bacteria (LAB) for 45 d or used as substrates for the cultivation of Pleurotus ostreatus (PO) mushroom for 35 d. A total mixed ration was formulated as a control ration. In the other rations, berseem hay replaced DPL (ensiled without additives or ensiled with lactic acid bacteria or PO) at 25, 50, 75 and 100%. Ensiling with LAB did not affect the chemical composition of DPL or RS, while PO treatment reduced their fiber fractions contents. Ensiling without additives lowered (P<0.05) the asymptotic production of total gas, methane (CH4 ) and carbon dioxide (CO2 ), and the rate of CH4 and CO2 while increasing (P<0.05) the lag time of CH4 and CO2 production. Ensiling of materials with LAB and treatment with PO decreased (P<0.05) the asymptotic production of total gas, CH4 and CO2 production and decreased the rate of CH4 and CO2 production. Ensiling without additives decreased (P<0.05) total bacterial count, and increased (P<0.05) fermentation pH and total volatile fatty acids (VFA), while LAB ensiled DPL increased (P<0.05) total VFA and propionate concentrations and decreased total protozoal count. The PO treated DPL decreased (P<0.05) bacterial count, protozoal count and fermentation pH and increased total VFA production. CONCLUSIONS Replacing berseem hay with LAB or PO treated DPL at 25% increased gas production; however, increased CH4 and CO2 production, while the other replacement levels decreased total gas, CH4 and CO2 production. The treatment with LAB is more recommended than the PO treatment.
Collapse
Affiliation(s)
- Ahmed E Kholif
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - Gouda A Gouda
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - Amlan K Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K.B. Sarani, Kolkata, India
| |
Collapse
|
35
|
Fan X, Zhao S, Yang F, Wang Y, Wang Y. Effects of Lactic Acid Bacterial Inoculants on Fermentation Quality, Bacterial Community, and Mycotoxins of Alfalfa Silage under Vacuum or Nonvacuum Treatment. Microorganisms 2021; 9:microorganisms9122614. [PMID: 34946214 PMCID: PMC8703462 DOI: 10.3390/microorganisms9122614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
To investigate the effects of lactic acid bacterial (LAB) inoculants and vacuuming on the fermentation quality and bacterial community, alfalfas were ensiled with or without a commercial LAB YX or Lactobacillus plantarum strain ZZUA493 for 10, 30, 60, and 90 days while undergoing either vacuum (V) or nonvacuum (NV) treatment. At 90 days, analysis of the microbial community by high-throughput sequencing was performed, and contents of aflatoxin B1 and deoxynivalenol (DON) mycotoxins in alfalfa silage were determined. In all inoculated alfalfa silage, irrespective of V or NV treatment, lactic acid (LA) content increased, pH (p < 0.05), and ammonia nitrogen (p < 0.05) content decreased, and no butyric acid was detected. Lactobacillus or Pediococcus became the dominant genus, and the abundance of Garciella decreased in alfalfa silage with the addition of either inoculant. The LAB inoculants YX and ZZUA493 helped reduce the mycotoxin content in alfalfa silage. The abundance of Garciella in the control and DON content in all alfalfa silage groups were higher (p < 0.05) in NV than V. In summary, LAB inoculants and vacuuming had a positive influence on alfalfa silage quality, and LAB inoculants were effective in reducing mycotoxins in silage alfalfa.
Collapse
Affiliation(s)
- Xiaomiao Fan
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China; (X.F.); (S.Z.); (F.Y.); (Y.W.)
- Henan Key Laboratory of Ion Beam Bio-Engineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450000, China
| | - Shanshan Zhao
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China; (X.F.); (S.Z.); (F.Y.); (Y.W.)
- Henan Key Laboratory of Ion Beam Bio-Engineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450000, China
| | - Fengyuan Yang
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China; (X.F.); (S.Z.); (F.Y.); (Y.W.)
- Henan Key Laboratory of Ion Beam Bio-Engineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yuan Wang
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China; (X.F.); (S.Z.); (F.Y.); (Y.W.)
- Henan Key Laboratory of Ion Beam Bio-Engineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yanping Wang
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China; (X.F.); (S.Z.); (F.Y.); (Y.W.)
- Henan Key Laboratory of Ion Beam Bio-Engineering, School of Agricultural Science, Zhengzhou University, Zhengzhou 450000, China
- State Key Laboratory of Cotton Biology, School of Agricultural Science, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: ; Tel.: +86-0371-67761726
| |
Collapse
|
36
|
Citric Acid Influences the Dynamics of the Fermentation Quality, Protease Activity and Microbial Community of Mulberry Leaf Silage. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mulberry (Morus alba) leaves has performed well as a high-quality protein supplement for livestock and enriches the edible resources of livestock. However, the harvest of mulberry leaves is seasonal and occurs mainly during the rainy season in southeast China; therefore, humid and sultry weather causes serious losses of mulberry leaf biomass, which pose a challenge for the preservation of mulberry leaves. In this study, we used the silage fermentation method to preserve mulberry leaves and investigated the effects of citric acid on the silage quality of mulberry leaves. Mulberry leaves were ensiled with or without 1% citric acid and 2% citric acid. The chemical composition, protein fraction and microbial community of mulberry leaf silages were analyzed. The results showed that the silage treated with citric acid had a higher dry matter recovery and lactic acid content and a lower acetic acid content, non-protein nitrogen content and ammonia-N content; citric acid also inhibited the activities of carboxypeptidase and aminopeptidase. Moreover, citric acid increased Lactobacillus abundance in silages and decreased the abundance of undesired microorganisms, such as Enterobacter. In summary, the addition of citric acid improved the fermentation quality of mulberry leaf silages, with 2% citric acid being more effective than 1% citric acid.
Collapse
|
37
|
Application and Future Prospective of Lactic Acid Bacteria as Natural Additives for Silage Production—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ensiling is one of the essential processes to preserve fodder with high nutrients and microbiological quality. The forages before ensiling have a limited number of bacteria associated with the controlled fermentation process. Undesirable microbes can grow in silages when there is not efficient fermentation. Such kinds of microbes might cause pathogenic or toxic compounds that affect animal and human health. Therefore, it is necessary to inoculate potent starter cultures. Lactic acid bacteria’s (LABs) have been considered the most prominent microbial additives used to improve the quality of silage. Currently, LABs have been used in modern and sustainable agriculture systems due to their biological potential. Recently, many scientists have increased their focus on developing nutrient-rich animal feed from forages with LAB. This current review focuses on issues related to forage preservation in the form of silages, how undesirable microbes affect the fermentation process, the critical role of LAB in silage production, and the selection of potent LABs to effectively control unwanted microbial growth and promote those which favor animal growth.
Collapse
|
38
|
Pitiwittayakul N, Bureenok S, Schonewille JT. Selective Thermotolerant Lactic Acid Bacteria Isolated From Fermented Juice of Epiphytic Lactic Acid Bacteria and Their Effects on Fermentation Quality of Stylo Silages. Front Microbiol 2021; 12:673946. [PMID: 34381426 PMCID: PMC8350162 DOI: 10.3389/fmicb.2021.673946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to isolate and identify lactic acid bacteria (LAB) from fermented juice of tropical crops such as Napier grass, Ruzi grass, Purple guinea grass, Stylo legume, and Leucaena and their application to improve the quality of tropical crop silage. Fifteen strains of LAB were isolated. The LAB strains were Gram-positive and catalase-negative bacteria and could be divided into three groups, i.e., Pediococcus pentosaceus, Lactiplantibacillus (para)plantarum, and Limosilactobacillus fermentum according to the biochemical API 50CH test. Based on the analysis of 16S rRNA sequence, the strains isolated in the group L. (para)plantarum were distinguished. Two isolates (N3 and G4) were identified as Lactiplantibacillus plantarum. Three isolates (St1, St2, and St3) were identified as L. paraplantarum. In addition, the identification of other isolates was confirmed in the group P. pentosaceus (R1, R4, R5, R8, R11, and L1) and the group L. fermentum (N4, G6, G7, and N4). All selected strains were able to grow at 50°C. All LAB strains showed antimicrobial activity against Escherichia coli ATCC 25922, Shigella sonnei ATCC 25931, Pseudomonas aeruginosa ATCC 27853, and Bacillus cereus ATCC 11778. Four selected LAB strains (St1, St3, N4, and R4) were tested for their capacity to successfully ensile Stylo legume (Stylosanthes guianensis CIAT184). Stylo silages treated with LAB were well preserved, the NH3–N and butyric acid contents were lower, and the lactic acid content was higher than those in the control (p < 0.05). The acetic acid content was the highest in R4-treated silage among the treatments (p < 0.05). The crude protein (CP) content of St1-silage was significantly (p < 0.05) higher than the others. The inoculation of thermotolerant LAB selected from fermented juice of epiphytic lactic acid bacteria (FJLB) was found to be highly instrumental to obtain well-preserved silage from the Stylo legume.
Collapse
Affiliation(s)
- Nittaya Pitiwittayakul
- Department of Agricultural Technology and Environment, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Smerjai Bureenok
- Department of Agricultural Technology and Environment, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Jan Thomas Schonewille
- Department of Agricultural Technology and Environment, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand.,Department of Public Health Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
39
|
Koç F, Özkan Ünal E, Okuyucu B, Esen S, Işık R. Effect of Different Kefir Source on Fermentation, Aerobic Stability, and Microbial Community of Alfalfa Silage. Animals (Basel) 2021; 11:ani11072096. [PMID: 34359222 PMCID: PMC8300173 DOI: 10.3390/ani11072096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Minimizing silage additives cost while increasing silage quality is important for a sustainable livestock enterprise, especially in undeveloped and developing countries. In this study, therefore, commercially available kefir yeast (CK) and homemade kefir culture (HK), as a low-cost additive, was applied at untreated a common control (CON) and three different application doses (5.0, 5.7, and 6.0 log cfu g−1) on wilted alfalfa and evaluated with the fermentation characteristics and aerobic stability. The addition of HK with an application dose greater than 5.0 log cfu g−1 prevents mold formation and inhibits yeast counts in silages. Indeed, both CK and HK improve the silage quality and aerobic stability of alfalfa even with low water-soluble carbohydrate content. Abstract The present study has been one of the first attempts to thoroughly examine the effects of different kefir sources on fermentation characteristics, aerobic stability, and microbial communities of alfalfa silages. The effects of commercial kefir (CK) and homemade kefir culture (HK) applied with untreated a common control (CON) and three different application doses (5.0, 5.7, and 6.0 log cfu g−1) on wilted alfalfa and stored at an ambient temperature of 25–30 °C are studied. After 45 days of ensiling, fermentation characteristics and aerobic stability of silages were measured, and bacterial diversity was investigated by 16S ribosomal RNA gene sequencing using the GenomeLab™ GeXP platform. Both CK and HK accelerate more lactic acid production and reduced ammonia nitrogen concentration. Factor analysis of kefir sources suggests that the addition of kefir improves the aerobic stability of silages, even the initial water-soluble carbohydrate (WSC) content is inadequate via its antimicrobial effect on yeast and mold formation. Enterococcus faecium, Pediococcus pentosaceous and Lactobacillus brevis were dominant bacterial species among the treated groups at silo opening, while Lactobacillus plantarum and Lactobacillus brevis became dominant bacterial species after 7 days of aerobic exposure. In conclusion, the application of kefir on alfalfa silages improves fermentation quality and aerobic stability even with low WSC content.
Collapse
Affiliation(s)
- Fisun Koç
- Department of Animal Science, Tekirdag Namık Kemal University, Tekirdag 59030, Turkey; (F.K.); (E.Ö.Ü.); (B.O.)
| | - Emel Özkan Ünal
- Department of Animal Science, Tekirdag Namık Kemal University, Tekirdag 59030, Turkey; (F.K.); (E.Ö.Ü.); (B.O.)
| | - Berrin Okuyucu
- Department of Animal Science, Tekirdag Namık Kemal University, Tekirdag 59030, Turkey; (F.K.); (E.Ö.Ü.); (B.O.)
| | - Selim Esen
- Balikesir Directorate of Provincial Agriculture and Forestry, Republic of Turkey Ministry of Agriculture and Forestry, Balikesir 10470, Turkey
- Correspondence:
| | - Raziye Işık
- Department of Agricultural Biotechnology, Tekirdag Namık Kemal University, Tekirdag 59030, Turkey;
| |
Collapse
|
40
|
Guo L, Lu Y, Li P, Chen L, Gou W, Zhang C. Effects of Delayed Harvest and Additives on Fermentation Quality and Bacterial Community of Corn Stalk Silage. Front Microbiol 2021; 12:687481. [PMID: 34305847 PMCID: PMC8294468 DOI: 10.3389/fmicb.2021.687481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate the effects of delayed harvest and additives on the fermentation quality and bacterial community of corn stalk silage in South China. The corn stalks after ear harvest at the 0 day (D0), 7 days (D7), and 15 days (D15) were used to produce small-bale silages. The silages at each harvest time were treated without (control, CK) or with Lactobacillus plantarum (LP) and sodium benzoate (BF). The results showed that delayed harvest increased pH and acetic acid content and reduced lactic acid content in corn stalk silage (p < 0.05). Compared with CK, the additives decreased the contents of butyric acid and ammonia nitrogen (NH3-N; p < 0.05). The silage treated with LP increased the content of lactic acid and decreased pH (p < 0.05); the silage treated with BF decreased counts of coliform bacteria and yeasts and increased residual water soluble carbohydrates (WSC) content (p < 0.05). Single Molecule, Real-Time sequencing (SMRT) revealed that the abundance of L. plantarum increased, while the abundance of Lactobacillus brevis and Lactobacillus ginsenosidimutans decreased with the delayed harvest. Additives influenced the bacterial community structure of corn stalk silage, revealed by enhanced bacterial diversity on D0 and reduced on D7 (p < 0.05). Our research indicated that delayed harvest could exert a positive effect on acetic acid production, and additives could inhibit the butyric acid fermentation and protein degradation of corn stalk silage by shifting bacterial community composition.
Collapse
Affiliation(s)
- Linna Guo
- College of Animal Science, Guizhou University, Guiyang, China
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yongxiang Lu
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, China
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Liangyin Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Wenlong Gou
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | | |
Collapse
|
41
|
Sun HZ, Peng KL, Xue MY, Liu JX. Metagenomics analysis revealed the distinctive ruminal microbiome and resistive profiles in dairy buffaloes. Anim Microbiome 2021; 3:44. [PMID: 34210366 PMCID: PMC8247143 DOI: 10.1186/s42523-021-00103-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Antimicrobial resistance poses super challenges in both human health and livestock production. Rumen microbiota is a large reservoir of antibiotic resistance genes (ARGs), which show significant varations in different host species and lifestyles. To compare the microbiome and resistome between dairy cows and dairy buffaloes, the microbial composition, functions and harbored ARGs of rumen microbiota were explored between 16 dairy cows (3.93 ± 1.34 years old) and 15 dairy buffaloes (4.80 ± 3.49 years old) using metagenomics. RESULTS Dairy buffaloes showed significantly different bacterial species (LDA > 3.5 & P < 0.01), enriched KEGG pathways and CAZymes encoded genes (FDR < 0.01 & Fold Change > 2) in the rumen compared with dairy cows. Distinct resistive profiles were identified between dairy cows and dairy buffaloes. Among the total 505 ARGs discovered in the resistome of dairy cows and dairy buffaloes, 18 ARGs conferring resistance to 16 antibiotic classes were uniquely detected in dairy buffaloes. Gene tcmA (resistance to tetracenomycin C) presented high prevalence and age effect in dairy buffaloes, and was also highly positively correlated with 93 co-expressed ARGs in the rumen (R = 0.98 & P = 5E-11). In addition, 44 bacterial species under Lactobacillus genus were found to be associated with tcmA (R > 0.95 & P < 0.001). L. amylovorus and L. acidophilus showed greatest potential of harboring tcmA based on co-occurrence analysis and tcmA-containing contigs taxonomic alignment. CONCLUSIONS The current study revealed distinctive microbiome and unique ARGs in dairy buffaloes compared to dairy cattle. Our results provide novel understanding on the microbiome and resistome of dairy buffaloes, the unique ARGs and associated bacteria will help develop strategies to prevent the transmission of ARGs.
Collapse
Affiliation(s)
- Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ke-Lan Peng
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ming-Yuan Xue
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
42
|
Guo L, Wang X, Lin Y, Yang X, Ni K, Yang F. Microorganisms that are critical for the fermentation quality of paper mulberry silage. Food Energy Secur 2021. [DOI: 10.1002/fes3.304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Linna Guo
- College of Grassland Science and Technology China Agricultural University Beijing China
| | - Xuekai Wang
- College of Grassland Science and Technology China Agricultural University Beijing China
| | - Yanli Lin
- Beijing Sure Academy of Biosciences Beijing China
| | - Xueping Yang
- College of Grassland Science and Technology China Agricultural University Beijing China
| | - Kuikui Ni
- College of Grassland Science and Technology China Agricultural University Beijing China
| | - Fuyu Yang
- College of Grassland Science and Technology China Agricultural University Beijing China
| |
Collapse
|
43
|
Manipulation of Rice Straw Silage Fermentation with Different Types of Lactic Acid Bacteria Inoculant Affects Rumen Microbial Fermentation Characteristics and Methane Production. Vet Sci 2021; 8:vetsci8060100. [PMID: 34199943 PMCID: PMC8226620 DOI: 10.3390/vetsci8060100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Bacterial inoculants are known to improve the quality of silage. The objectives of the present study were to evaluate the effects of different types of lactic acid bacteria (LAB; L. plantarum, L. salivarius, L. reuteri, L. brevi, and S. bovis) inoculation (106 cfu/ DM) on rice straw silage quality and to determine these effects on ruminal fermentation characteristics, digestibility and microbial populations in an in vitro condition. Inoculated rice straw was ensiled for 15 and 30 days. For the in vitro study, rumen fluid was obtained from three rumen-fistulated bulls fed on mixed forage and concentrate at 60:40 ratio twice daily. Inoculation with LAB improved (p < 0.05) the rice straw silage quality as indicated by higher dry matter and crude protein contents, decreased pH and butyric acid, and increased propionic acid and LAB numbers, especially after 30 days of ensiling. Results from the in vitro study revealed that starting with the addition of LAB to rice straw silage improved in vitro fermentation characteristics such as increased total volatile fatty acids and dry matter digestibility (p < 0.05). LAB treatments also decreased methane production and methane/total gas ratio after 15 and 30 days of ensiling. From the rumen microbial population perspective, cellulolytic, and fungal zoospores were enhanced, while protozoa and methanogens were decreased by the LAB treatments. Based on these results, it could be concluded that inoculating rice straw silage with LAB (especially for L. plantarum and S. bovis) improved silage quality, rumen fermentation parameters and microbial populations in vitro.
Collapse
|
44
|
Dynamics of Fermentation Parameters and Bacterial Community in High-Moisture Alfalfa Silage with or without Lactic Acid Bacteria. Microorganisms 2021; 9:microorganisms9061225. [PMID: 34200084 PMCID: PMC8226466 DOI: 10.3390/microorganisms9061225] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to gain deeper insights into the dynamics of fermentation parameters and the bacterial community during the ensiling of high-moisture alfalfa. A commercial lactic acid bacteria (YX) inoculant was used as an additive. After 15 and 30 days of ensiling, the control silage (CK) exhibited a high pH and a high concentration of ammoniacal nitrogen (NH3-N); Enterobacter and Hafnia-Obesumbacterium were the dominant genera. At 60 d, the pH value and the concentration of NH3-N in CK silage increased compared with 15 and 30 d, propionic acid and butyric acid (BA) were detected, and Garciella had the highest abundance in the bacterial community. Compared with CK silage, inoculation of YX significantly promoted lactic acid and acetic acid accumulation and reduced pH and BA formation, did not significantly reduce the concentration of NH3-N except at 60 d, and significantly promoted the abundance of Lactobacillus and decreased the abundance of Garciella and Anaerosporobacter, but did not significantly inhibit the growth of Enterobacter and Hafnia-Obesumbacterium. In conclusion, high-moisture alfalfa naturally ensiled is prone to rot. Adding YX can delay the process of silage spoilage by inhibiting the growth of undesirable microorganisms to a certain extent.
Collapse
|
45
|
Cherdthong A, Suntara C, Khota W, Wanapat M. Feed utilization and rumen fermentation characteristics of Thai-indigenous beef cattle fed ensiled rice straw with Lactobacillus casei TH14, molasses, and cellulase enzymes. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Impacts of Low Temperature and Ensiling Period on the Bacterial Community of Oat Silage by SMRT. Microorganisms 2021; 9:microorganisms9020274. [PMID: 33525587 PMCID: PMC7910925 DOI: 10.3390/microorganisms9020274] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to investigate how storage temperatures influence the bacterial community of oat silage during the ensiling process via PacBio single molecule, real-time sequencing technology (SMRT). Forage oat was ensiled at four different temperatures (5 °C, 10 °C, 15 °C, and 25 °C) and ensiling days (7, 14, 30, and 60 days). With the rise in storage temperature, the lactic acid content showed an increased trend. Acetic acid production was observed highest in silage fermented at 5 °C compared with other treatments, and Enterococcus mundtii was also the dominant bacterial species. Lactiplantibacillus pentosus and Loigolactobacillus rennini were exclusively detected in silages at 10 °C, 15 °C, and 25 °C, and dominated the fermentation after 60 days of ensiling at 10 °C and 25 °C, respectively. In addition, L. pentosus, L. rennini, and E. mundtii may be related to changes in the fermentation products due to the differences in ensiling temperature. In conclusion, results of this study improve our understanding of the complicated microbial composition underlying silage fermentation at low temperatures, which might contribute to target-based regulation methods for enhancing silage quality and developing new inoculants.
Collapse
|
47
|
Filik AG, Filik G. Nutritive value of ensiled Amaranthus powellii Wild. treated with salt and barley. Trop Anim Health Prod 2021; 53:52. [PMID: 33387089 DOI: 10.1007/s11250-020-02470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022]
Abstract
Silages or ensiled plant parts are important to feed materials for ruminal fermentation and contributed to the feeding of ruminant animals in large share. The current study was conducted to determine the nutritive value of ensiled Amaranthus powellii Wild. (AP) treated with salt and barley. Experimental silages were (1) no supplemented AP forage (control), (2) 1% salt-added AP, (3) 1% salt + 5% barley-added AP, (4) 5% barley-added AP, (5) 1% salt + 7.5% barley-added AP, and (6) 7.5% barley-added AP silages. Silages were analyzed to determine their nutritional contents, physical properties, and microbiota. The DM (g/kg), OM, CP, ADF, NDF, ADL, and ash contents (g/100 g DM) of AP silage were determined as 331.20, 29.84, 12.62, 37.22, 57.72, 42.23, and 3.28, respectively. DM and OM contents were increased by both salt and barley additions while CP and ADF values decreased by these additions (P < 0.01). DDM and RFV values were improved by both salt and barley additions with alone and together usage, reaching the highest levels by 7.5% barley addition (P < 0.01). While salt itself did not affect RFQ, 5%, 7.5% barley, and 1% salt with 5% barley additions decreased this value (P < 0.01), most likely, due to the nutritional content of added barley. The physical properties of AP silage were not affected by any treatment (P > 0.05), except a* and Fleig score (P < 0.01, P < 0.05). Salt caused loss natural red coloring in AP silage compared with control silage, while the other additions saved the natural coloring (P < 0.01). Expectedly, all treatments increased lactic acid bacteria count compared with control (P < 0.01). To conclude, AP had the potential to be a good silage with respective to its nutritional contents, feed value, and physical properties with appropriate microbiological status. Salt and barley both can be used to improve the nutritional status of AP silages. Further studies are needed to determine its in vitro digestibility and preference by animals in vivo.
Collapse
Affiliation(s)
- Ayşe Gül Filik
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kırşehir Ahi Evran, 40100, Kırşehir, Turkey.
| | - Gökhan Filik
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kırşehir Ahi Evran, 40100, Kırşehir, Turkey
| |
Collapse
|
48
|
Effects of the Application of Lactobacillus plantarum Inoculant and Potassium Sorbate on the Fermentation Quality, In Vitro Digestibility and Aerobic Stability of Total Mixed Ration Silage Based on Alfalfa Silage. Animals (Basel) 2020; 10:ani10122229. [PMID: 33261055 PMCID: PMC7760543 DOI: 10.3390/ani10122229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Ensiling total mixed ration allows preservation and saves labor for small farms. This study evaluated the substitution relationship between lactic acid bacteria (Lactobacillus plantarum) and silage components, and verified the practicality of preservative (potassium sorbate) in total mixed ration silage. The results showed that potassium sorbate greatly improved the preservation efficiency of total mixed ration silages. The alfalfa silage could directly produce an acidic environment for fresh total mixed ration before ensiling and showed comparable function to inoculant in the improvement of fermentation quality. Therefore, the application of the inoculant is not necessary when the total mixed ration contains a certain percentage of silage. These findings could provide guidance for farmers to avoid the blind use of inoculants and the spoilage of total mixed ration silage, which could directly improve economic efficiency. Abstract This study aimed to evaluate the effect of the application of an inoculant and a preservative on the fermentation quality, in vitro digestibility, and aerobic stability of alfalfa silage-based fermented total mixed ration (TMR). The TMR was ensiled with (1) no additives (control), (2) Lactobacillus plantarum (LP), or (3) potassium sorbate (PS). The V-scores of all silages were higher than 80 points during the 30 days of ensiling. The addition of LP and PS had no effects on the in vitro parameters, such as in vitro digestibility and in vitro gas production (p > 0.05). LP-treated silage showed similar fermentation quality and comparable aerobic stability to the control (110 h). The LP only decreased the ammonia nitrogen (NH3-N) content (p < 0.05) during ensiling. The PS significantly increased the pH of TMR silages (p < 0.05). Meanwhile, the addition of PS improved the aerobic stability (>162 h) of TMR silage, indicated by the higher water-soluble carbohydrate content and lower NH3-N content in comparison with those in the control after aerobic exposure (p < 0.05). The improvement in fermentation quality is extremely small in terms of applying LP in TMR silage based on a large percentage of other silage ingredients. The PS is effective in conserving unpacked TMR silage and showed the potential to reduce the risk of ruminal acidosis in livestock.
Collapse
|
49
|
Low-Carbohydrate Tolerant LAB Strains Identified from Rumen Fluid: Investigation of Probiotic Activity and Legume Silage Fermentation. Microorganisms 2020; 8:microorganisms8071044. [PMID: 32674395 PMCID: PMC7409070 DOI: 10.3390/microorganisms8071044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to isolate and characterize lactic acid bacteria (LAB) with low carbohydrate tolerance from rumen fluid and to elucidate their probiotic properties and the quality of fermentation of Medicago sativa L. and Trifolium incarnatum L. silage in vitro. We isolated 39 LAB strains and screened for growth in MRS broth and a low-carbohydrate supplemented medium; among them, two strains, Lactiplantibacillus plantarum (Lactobacillus plantarum) RJ1 and Pediococcus pentosaceus S22, were able to grow faster in the low-carbohydrate medium. Both strains have promising probiotic characteristics including antagonistic activity against P. aeruginosa, E. coli, S. aureus, and E. faecalis; the ability to survive in simulated gastric-intestinal fluid; tolerance to bile salts; and proteolytic activity. Furthermore, an in vitro silage fermentation study revealed that alfalfa and crimson clover silage inoculated with RJ1 and S22 showed significantly decreased pH and an increased LAB population at the end of fermentation. Also, the highest lactic acid production was noted (p < 0.05) in LAB-inoculated silage vs. non-inoculated legume silage at high moisture. Overall, the data suggest that RJ1 and S22 could be effective strains for fermentation of legume silage.
Collapse
|
50
|
Zhao S, Wang Y, Yang F, Wang Y, Zhang H. Screening a
Lactobacillus plantarum
strain for good adaption in alfalfa ensiling and demonstrating its improvement of alfalfa silage quality. J Appl Microbiol 2020; 129:233-242. [DOI: 10.1111/jam.14604] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/29/2022]
Affiliation(s)
- S.S. Zhao
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - Y.P. Wang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - F.Y. Yang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - Y. Wang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
| | - H. Zhang
- Henan Key Laboratory of Ion Beam Bio‐engineering School of Agricultural Science Zhengzhou University Zhengzhou P. R. China
- College of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou P. R. China
| |
Collapse
|