1
|
de Almeida SV, da Silva PRL, Fonseca WT, de Oliveira TR, Zocatelli Ribeiro C, de Moura J, Faria RC. Electrochemical magneto-immunoassay based on Mycobacterium leprae mimotope for serological diagnosis of leprosy. Biosens Bioelectron 2025; 271:117022. [PMID: 39644529 DOI: 10.1016/j.bios.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Leprosy is an infectious disease classified as Neglected Tropical Disease (NTD) by the World Health Organization (WHO). Its diagnosis is challenging, relying on clinical symptoms and invasive procedures. Delays can cause severe physical disability, including hand, foot, and eye impairments. Herein, we describe the development of a magneto-immunoassay based on an electrochemical disposable microfluidic device for the serological diagnosis of leprosy. The assay makes use of magnetic particles (MPs) modified with Mycobacterium leprae mimotope as a probe to capture and separate target-specific antibodies from serum samples. The antibody anti-M. leprae was detected using the anti-human antibody IgG conjugated with horseradish peroxidase enzyme as an electrochemical maker. The magneto-immunoassay was applied in serum samples from healthy subjects and patients diagnosed with leprosy classified as paucibacillary (PB) and multibacillary (MB). The results showed that the method could differentiate between negative and positive patients (AUC = 0.990) with high clinical sensitivity (91.2%) and specificity (100.0%). In addition, the assay showed the capability to differentiate between paucibacillary and multibacillary with sensitivities of 88.9% and 93.7%, respectively, indicating that the device can be used to guide the treatment of positive cases. Thus, magneto-immunoassay based on the use of a disposable microfluidic device demonstrated to be a valuable tool for the early diagnosis of leprosy which can help the public health system to reduce disability cases and even control and eliminate the disease by interrupting the chain of transmission.
Collapse
Affiliation(s)
| | | | - Wilson Tiago Fonseca
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | - Juliana de Moura
- Department of Basic Pathology, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil
| | - Ronaldo Censi Faria
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Lima MIS, Corrêa MBC, Moraes ECDS, Oliveira JDDD, de Souza Santos P, de Souza AG, Goulart IMB, Goulart LR. HSP60 mimetic peptides from Mycobacterium leprae as new antigens for immunodiagnosis of Leprosy. AMB Express 2023; 13:120. [PMID: 37891336 PMCID: PMC10611693 DOI: 10.1186/s13568-023-01625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The early diagnosis of leprosy serves as an important tool to reduce the incidence of this disease in the world. Phage display (PD) technology can be used for mapping new antigens to the development of immunodiagnostic platforms. Our objective was to identify peptides that mimic Mycobacterium leprae proteins as serological markers using phage display technology. The phages were obtained in the biopanning using negative and positive serum from household contacts and leprosy patients, respectively. Then, the peptides were synthesized and validated in silico and in vitro for detection of IgG from patients and contacts. To characterize the native protein of M. leprae, scFv antibodies were selected against the synthetic peptides by PD. The scFv binding protein was obtained by immunocapture and confirmed using mass spectrometry. We selected two phase-fused peptides, MPML12 and MPML14, which mimic the HSP60 protein from M. leprae. The peptides MPML12 and MPML14 obtained 100% and 92.85% positivity in lepromatous patients. MPML12 and MPM14 detect IgG, especially in the multibacillary forms. The MPML12 and MPML14 peptides had positivity of 11.1% and 16.6% in household contacts, respectively. There was no cross-reaction in patient's samples with visceral leishmaniasis, tuberculosis and other mycobacteriosis for both peptides. Given these results and the easy obtainment of mimetic antigens, our peptides are promising markers for application in the diagnosis of leprosy, especially in endemic and hyperendemic regions.
Collapse
Affiliation(s)
- Mayara Ingrid Sousa Lima
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, MA, Brazil.
- Postgraduate Program on Health and Environment and Postgraduate Program on Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| | | | | | | | - Paula de Souza Santos
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Aline Gomes de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Isabela Maria Bernardes Goulart
- National Reference Center in Sanitary Dermatology and Leprosy, School of Medicine, Clinics' Hospital, Federal University of Uberlandia, Uberlandia, MG, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Matsubara T. Peptide mimotopes to emulate carbohydrates. Chem Soc Rev 2022; 51:8160-8173. [PMID: 36128765 DOI: 10.1039/d2cs00470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycoconjugates on animal cell surfaces are involved in numerous biological functions and diseases, especially the adhesion/metastasis of cancer cells, infection, and the onset of glycan-related diseases. In addition to glycoantigen detection, the regulation of glycan (carbohydrate)-protein interactions is needed to develop therapeutic strategies for glycan-related diseases. Preparation of a diverse range of glycan derivatives requires a massive effort, but the preparation and identification of alternative glycan-mimetic peptide mimotopes may provide a solution to this issue. Peptide mimotopes are recognized by glycan-binding proteins, such as lectins, enzymes, and antibodies, alternative to glycan ligands. Phage-display technology is the first choice in the selection of "glycan (carbohydrate)-mimetic peptide mimotopes" from a large repertoire of library sequences. This tutorial review describes the advantages of peptide mimotopes in comparison to glycan ligands, as well as their structural and functional mimicry. The detailed library design is followed by a description of the strategy used to improve affinity, and finally, an outline of the vaccine application of glycan-mimetic peptides is provided.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
5
|
Lima FR, de Paula NA, Simões MMR, Manso GMDC, Albertino GS, Felisbino GC, Antunes VMG, Perecin FAMC, Westin AT, Lugão HB, Frade MAC. Bacilloscopy and polymerase chain reaction of slit-skin smears and anti-phenolic glycolipid-I serology for Hansen's disease diagnosis. Front Med (Lausanne) 2022; 9:972244. [PMID: 36035405 PMCID: PMC9399463 DOI: 10.3389/fmed.2022.972244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
The bacilloscopy of the slit-skin smear (SSS) is the exclusive laboratory test associated with dermato-neurological evaluation for Hansen's disease (HD) diagnosis; however, it is negative in the majority of PB or primary neural forms. Thus, a PCR technique involving different sequences and target genes has been performed with an aim to increase the sensitivity and specificity of M. leprae identification, especially in patients with low bacillary loads. Additionally, serological assays based on antibody response reflect infection levels and indicate that this could be a simpler, less invasive technique for estimating M. leprae exposure. Serological tests and PCR have been shown to be more sensitive and accurate than the SSS. Our study aimed to measure accuracy and performance among the SSS and PCR of dermal scrapings stored on filter paper and APGL-I serology for diagnosis in HD. A cross-sectional study analyzing the medical records (n = 345) of an HD outpatient-dermatology clinic from 2014 to 2021 was conducted. Accuracy performance parameters, correlation, and concordance were used to assess the value among the SSS, PCR, and APGL-I exams in HD. The SSS presented 24.5% sensitivity, 100% specificity, 37.4% accuracy, and the lowest negative predictive value (21.5%). The PCR assay had 41, 100, and 51% sensitivity, specificity, and accuracy, respectively. PCR and APGL-I serology increased the detection of HD cases by 16 and 20.6%, respectively. PCR was positive in 51.3% of patients when the SSS was negative. The SSS obtained moderate concordance with PCR [k-value: 0.43 (CI: 0.33-0.55)] and APGL-I [k-value: 0.41 (CI: 0.31-0.53)]. A moderate positive correlation was found between the APGL-I index and the bacillary index (r = 0.53; P < 0.0001). Thus, the use of the SSS is a low sensitivity and accuracy method due to its low performance in HD detection. The use of PCR and serological tests allows for a more sensitive and accurate diagnosis of patients.
Collapse
Affiliation(s)
- Filipe Rocha Lima
- Healing and Hansen’s Disease Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Natália Aparecida de Paula
- Healing and Hansen’s Disease Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Mateus Mendonça Ramos Simões
- Healing and Hansen’s Disease Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Gabriel Martins da Costa Manso
- Healing and Hansen’s Disease Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Gustavo Sartori Albertino
- Healing and Hansen’s Disease Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Giovani Cesar Felisbino
- Healing and Hansen’s Disease Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanderson Mayron Granemann Antunes
- Healing and Hansen’s Disease Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fernanda André Martins Cruz Perecin
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Andrezza Telles Westin
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Helena Barbosa Lugão
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco Andrey Cipriani Frade
- Healing and Hansen’s Disease Laboratory, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Dermatology Division, Department of Internal Medicine, National Referral Center for Sanitary Dermatology and Hansen’s Disease, Clinical Hospital of the Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|