1
|
Zeng S, Luo Z, Zhu W, Zhang Z, Zhao R, Zhu S, Qiu Q, Cao N, Fu X, Liu W, Fan S, Fu C. LDHA-lactate axis modulates mitophagy inhibiting CSFV replication. J Virol 2025; 99:e0026825. [PMID: 40265937 PMCID: PMC12090782 DOI: 10.1128/jvi.00268-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Lactate dehydrogenase A (LDHA) plays a crucial role in regulating lactate synthesis in various biological processes. Lactate, a byproduct of glycometabolism, has been recognized as a unique molecule with implications in both metabolism and immunity. Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), is a highly contagious and severe infectious disease that primarily affects pigs. Prior research has shown that CSFV infection disrupts the normal glycolytic process, leading to an accumulation of lactate within the host. Nevertheless, it remains unclear whether there is mutual regulation between the CSFV and LDHA-lactate axis. Here, we have found that CSFV infection increases LDHA expression in vivo and in vitro, which may be attributed to attenuated ISGylation of LDHA. Furthermore, CSFV infection induces L-lactate production via LDHA dependence in vitro. The cellular biology research on LDHA has revealed that LDHA not only localizes to the mitochondria but also inhibits PINK1-Parkin-mediated mitophagy. Through various experimental techniques such as western blot to detect mitophagy marker proteins, laser confocal microscopy to observe the flow of mitophagy, and transmission electron microscopy to assess changes in the number of mitochondria enclosed within autophagosome-like vesicles, it has been discovered that the addition of exogenous lactate can inhibit PINK1-Parkin-mediated mitophagy. Importantly, we have observed that lactate activates the JAK1-STAT1-ISG15 network and suppresses CSFV replication by antagonizing CCCP-induced mitophagy. These results represent the first report on the mechanisms through which the LDHA-lactate axis regulates mitophagy, the JAK-STAT pathway, and CSFV replication. This study provides novel insights into the roles of the LDHA-lactate axis in glycometabolism and viral replication. IMPORTANCE This research unveils how CSFV interacts with cellular metabolism through LDHA. By revealing LDHA's dual role and how lactate influences cellular processes during CSFV infection, this study uncovers new pathways for viral replication. These findings not only deepen our understanding of viral-host interactions but also open doors for innovative antiviral strategies centered around manipulating cellular metabolism.
Collapse
Affiliation(s)
- Sen Zeng
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zipeng Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhanhui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruibo Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuaiqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinliang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
2
|
Li CC, Liu KL, Lii CK, Yan WY, Lo CW, Chen CC, Yang YC, Chen HW. Benzyl isothiocyanate inhibits TNFα-driven lipolysis via suppression of the ERK/PKA/HSL signaling pathway in 3T3-L1 adipocytes. Nutr Res 2024; 121:95-107. [PMID: 38056034 DOI: 10.1016/j.nutres.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Tumor necrosis factor α (TNFα), an inflammatory cytokine, induces lipolysis and increases circulating concentrations of free fatty acids. In addition, TNFα is the first adipokine produced by adipose tissue in obesity, contributing to obesity-associated metabolic disease. Given that benzyl isothiocyanate (BITC) is a well-known anti-inflammatory agent, we hypothesized that BITC can ameliorate TNFα-induced lipolysis and investigated the working mechanisms involved. We first challenged 3T3-L1 adipocytes with TNFα to induce lipolysis, which was confirmed by increased glycerol release, decreased protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and perilipin 1 (PLIN1), and increased phosphorylation of ERK, protein kinase A (PKA), and hormone-sensitive lipase (HSL). However, inhibition of ERK or PKA significantly attenuated the lipolytic activity of TNFα. Meanwhile, pretreatment with BITC significantly ameliorated the lipolytic activity of TNFα; the TNFα-induced phosphorylation of ERK, PKA, and HSL; the TNFα-induced ubiquitination of PPARγ; the TNFα-induced decrease in PPARγ nuclear protein binding to PPAR response element; and the TNFα-induced decrease in PLIN1 protein expression. Our results indicate that BITC ameliorates TNFα-induced lipolysis by inhibiting the ERK/PKA/HSL signaling pathway, preventing PPARγ proteasomal degradation, and maintaining PLIN1 protein expression.
Collapse
Affiliation(s)
- Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, 406, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Wei-Ying Yan
- Department of Nutrition, China Medical University, Taichung, 406, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, 406, Taiwan
| | - Chih-Chieh Chen
- Department of Sports Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
3
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Song Q, Zhao X, Cao C, Duan M, Shao C, Jiang S, Zhou B, Zhou Y, Dong W, Yang Y, Wang X, Song H. Research advances on interferon (IFN) response during BVDV infection. Res Vet Sci 2022; 149:151-158. [DOI: 10.1016/j.rvsc.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
|
5
|
Current Status of Genetically Modified Pigs That Are Resistant to Virus Infection. Viruses 2022; 14:v14020417. [PMID: 35216010 PMCID: PMC8874825 DOI: 10.3390/v14020417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023] Open
Abstract
Pigs play an important role in agriculture and biomedicine. The globally developing swine industry must address the challenges presented by swine-origin viruses, including ASFV (African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV (porcine epidemic diarrhea virus), PRV (pseudorabies virus), CSFV (classical swine fever virus), TGEV (transmissible gastroenteritis virus), et al. Despite sustained efforts by many government authorities, these viruses are still widespread. Currently, gene-editing technology has been successfully used to generate antiviral pigs, which offers the possibility for increasing animal disease tolerance and improving animal economic traits in the future. Here, we summarized the current advance in knowledge regarding the host factors in virus infection and the current status of genetically modified pigs that are resistant to virus infection in the world. There has not been any report on PEDV-resistant pigs, ASFV-resistant pigs, and PRV-resistant pigs owing to the poor understanding of the key host factors in virus infection. Furthermore, we summarized the remaining problems in producing virus-resistant pigs, and proposed several potential methods to solve them. Using genome-wide CRISPR/Cas9 library screening to explore the key host receptors in virus infection may be a feasible method. At the same time, exploring the key amino acids of host factors in virus infection with library screening based on ABEs and CBEs (Bes) may provide creative insight into producing antiviral pigs in the future.
Collapse
|
6
|
Zhu Y, Ju H, Lu H, Tang W, Lu J, Wang Q. The function role of ubiquitin proteasome pathway in the ER stress-induced AECII apoptosis during hyperoxia exposure. BMC Pulm Med 2021; 21:379. [PMID: 34809635 PMCID: PMC8607682 DOI: 10.1186/s12890-021-01751-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a major cause of mortality and morbidity in premature infants, characterized by alveolar dysplasia and pulmonary microvascular remodeling. In the present study, we have investigated the functional roles of ubiquitin proteasome pathway (UPP) in BPD, and its relationship with endoplasmic reticulum stress (ERS) mediated type II alveolar epithelial cell (AECII) apoptosis. Methods A hyperoxia-induced BPD rat model was constructed and the pathologic changes of lung tissues were evaluated by hematoxylin–eosin staining. Cell apoptosis and protein expression were determined by TUNEL assay and Western blotting, respectively. Further reagent kit with specific fluorescent substrate was utilized to measure the activity of 20 s proteasome. Meanwhile, AECII were cultured in vitro and exposed to hyperoxia. AECII apoptosis were measured by flow cytometry. In contrast, MG132 treatment was induced to explore UPP during hyperoxia exposure on AECII apoptosis and ERS sensors expression. Results A significant increase in apoptosis and total ubiquitinated proteins expression were observed in BPD rats and AECII culture, and the change of UPP was associated with ERS. In order to confirm the role of UPP in AECII apoptosis of BPD, AECII cells were treated by MG132 with the concentration of 10 μmol/L under hyperoxia exposure. We found that the proteins expression of glucose-regulated protein 78 (GRP-78), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP), as well as AECII apoptosis were increased following MG132 treatment. Furthermore, the relatively up-regulated in the levels of total ubiquitinated proteins expression and 20 s proteasome activity were correlated with increased ERS sensors expression. Conclusions Our findings indicate that UPP may participate in the ERS-induced AECII apoptosis under hyperoxia condition. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01751-9.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Huimin Ju
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Hongyan Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Wei Tang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Junying Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Qiuxia Wang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| |
Collapse
|
7
|
Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021; 9:microorganisms9040761. [PMID: 33917361 PMCID: PMC8067343 DOI: 10.3390/microorganisms9040761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas. Thus, in addition to implementing enhanced biosecurity measures and exploring more effective CSF vaccines, other strategies are also needed for effectively controlling CSF. Currently, more and more research about anti-CSFV strategies was carried out by scientists, because of the great prospects and value of anti-CSFV strategies in the prevention and control of CSF. Additionally, studies on anti-CSFV strategies could be used as a reference for other viruses in the Flaviviridae family, such as hepatitis C virus, dengue virus, and Zika virus. In this review, we aim to summarize the research on anti-CSFV strategies. In detail, host proteins affecting CSFV replication, drug candidates with anti-CSFV effects, and RNA interference (RNAi) targeting CSFV viral genes were mentioned and the possible mechanisms related to anti-CSFV effects were also summarized.
Collapse
Affiliation(s)
- Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yingxin Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| |
Collapse
|
8
|
Fan J, Zhang M, Liu C, Zhu M, Zhang Z, Wu K, Li Z, Li W, Fan S, Ju C, Yi L, Ding H, Zhao M, Chen J. The Network of Interactions Between Classical Swine Fever Virus Nonstructural Protein p7 and Host Proteins. Front Microbiol 2020; 11:597893. [PMID: 33329485 PMCID: PMC7733924 DOI: 10.3389/fmicb.2020.597893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023] Open
Abstract
Classical swine fever (CSF) is a highly contagious viral disease causing severe economic losses to the swine industry. As viroporins of viruses modulate the cellular ion balance and then take over the cellular machinery, blocking the activity of viroporin or developing viroporin-defective attenuated vaccines offers new approaches to treat or prevent viral infection. Non-structural protein p7 of CSF virus (CSFV) is a viroporin, which was highly involved in CSFV virulence. Deciphering the interaction between p7 and host proteins will aid our understanding of the mechanism of p7-cellular protein interaction affecting CSFV replication. In the present study, seven host cellular proteins including microtubule-associated protein RP/EB family member 1 (MAPRE1), voltage-dependent anion channel 1 (VDAC1), proteasome maturation protein (POMP), protein inhibitor of activated STAT 1 (PIAS1), gametogenetin binding protein 2 (GGNBP2), COP9 signalosome subunit 2 (COPS2), and contactin 1 (CNTN1) were identified as the potential interactive cellular proteins of CSFV p7 by using yeast two-hybrid (Y2H) screening. Plus, the interaction of CSFV p7 with MAPRE1 and VDAC1 was further evaluated by co-immunoprecipitation and GST-pulldown assay. Besides, the p7-cellular protein interaction network was constructed based on these seven host cellular proteins and the STRING database. Enrichment analysis of GO and KEGG indicated that many host proteins in the p7-cellular protein interaction network were mainly related to the ubiquitin-proteasome system, cGMP-PKG signaling pathway, calcium signaling pathway, and JAK-STAT pathway. Overall, this study identified potential interactive cellular proteins of CSFV p7, constructed the p7-cellular protein interaction network, and predicted the potential pathways involved in the interaction between CSFV p7 and host cells.
Collapse
Affiliation(s)
- Jindai Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengru Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chenchen Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengjiao Zhu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zilin Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Keke Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zhaoyao Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenhui Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chunmei Ju
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Hongxing Ding
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|