1
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
3
|
Romero-Aguilar L, Hernández-Morfín KD, Guerra-Sánchez G, Pardo JP. Metabolic Changes and Antioxidant Response in Ustilago maydis Grown in Acetate. J Fungi (Basel) 2023; 9:749. [PMID: 37504737 PMCID: PMC10381545 DOI: 10.3390/jof9070749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Ustilago maydis is an important model to study intermediary and mitochondrial metabolism, among other processes. U. maydis can grow, at very different rates, on glucose, lactate, glycerol, and ethanol as carbon sources. Under nitrogen starvation and glucose as the only carbon source, this fungus synthesizes and accumulates neutral lipids in the form of lipid droplets (LD). In this work, we studied the accumulation of triacylglycerols in cells cultured in a medium containing acetate, a direct precursor of the acetyl-CoA required for the synthesis of fatty acids. The metabolic adaptation of cells to acetate was studied by measuring the activities of key enzymes involved in glycolysis, gluconeogenesis, and the pentose phosphate pathways. Since growth on acetate induces oxidative stress, the activities of some antioxidant enzymes were also assayed. The results show that cells grown in acetate plus nitrate did not increase the amount of LD, but increased the activities of glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, suggesting a higher production of reactive oxygen species in cells growing in acetate. The phosphofructokinase-1 (PFK1) was the enzyme with the lowest specific activity in the glycolytic pathway, suggesting that PFK1 controls the flux of glycolysis. As expected, the activity of the phosphoenolpyruvate carboxykinase, a gluconeogenic enzyme, was present only in the acetate condition. In summary, in the presence of acetate as the only carbon source, U. maydis synthesized fatty acids, which were directed into the production of phospholipids and neutral lipids for biomass generation, but without any excessive accumulation of LD.
Collapse
Affiliation(s)
- Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Katia Daniela Hernández-Morfín
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
4
|
Villagrán Z, Martínez-Reyes M, Gómez-Rodríguez H, Ríos-García U, Montalvo-González E, Ortiz-Basurto RI, Anaya-Esparza LM, Pérez-Moreno J. Huitlacoche ( Ustilago maydis), an Iconic Mexican Fungal Resource: Biocultural Importance, Nutritional Content, Bioactive Compounds, and Potential Biotechnological Applications. Molecules 2023; 28:molecules28114415. [PMID: 37298890 DOI: 10.3390/molecules28114415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Worldwide, the fungus known as huitlacoche (Ustilago maydis (DC.) Corda) is a phytopathogen of maize plants that causes important economic losses in different countries. Conversely, it is an iconic edible fungus of Mexican culture and cuisine, and it has high commercial value in the domestic market, though recently there has been a growing interest in the international market. Huitlacoche is an excellent source of nutritional compounds such as protein, dietary fiber, fatty acids, minerals, and vitamins. It is also an important source of bioactive compounds with health-enhancing properties. Furthermore, scientific evidence shows that extracts or compounds isolated from huitlacoche have antioxidant, antimicrobial, anti-inflammatory, antimutagenic, antiplatelet, and dopaminergic properties. Additionally, the technological uses of huitlacoche include stabilizing and capping agents for inorganic nanoparticle synthesis, removing heavy metals from aqueous media, having biocontrol properties for wine production, and containing biosurfactant compounds and enzymes with potential industrial applications. Furthermore, huitlacoche has been used as a functional ingredient to develop foods with potential health-promoting benefits. The present review focuses on the biocultural importance, nutritional content, and phytochemical profile of huitlacoche and its related biological properties as a strategy to contribute to global food security through food diversification; moreover, the biotechnological uses of huitlacoche are also discussed with the aim of contributing to the use, propagation, and conservation of this valuable but overlooked fungal resource.
Collapse
Affiliation(s)
- Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | | | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Uzziel Ríos-García
- Edafología, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico
| | - Rosa Isela Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico
| | | | - Jesús Pérez-Moreno
- Edafología, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| |
Collapse
|
5
|
Heucken N, Tang K, Hüsemann L, Heßler N, Müntjes K, Feldbrügge M, Göhre V, Zurbriggen MD. Engineering and Implementation of Synthetic Molecular Tools in the Basidiomycete Fungus Ustilago maydis. J Fungi (Basel) 2023; 9:jof9040480. [PMID: 37108934 PMCID: PMC10140897 DOI: 10.3390/jof9040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The basidiomycete Ustilago maydis is a well-characterized model organism for studying pathogen-host interactions and of great interest for a broad spectrum of biotechnological applications. To facilitate research and enable applications, in this study, three luminescence-based and one enzymatic quantitative reporter were implemented and characterized. Several dual-reporter constructs were generated for ratiometric normalization that can be used as a fast-screening platform for reporter gene expression, applicable to in vitro and in vivo detection. Furthermore, synthetic bidirectional promoters that enable bicisitronic expression for gene expression studies and engineering strategies were constructed and implemented. These noninvasive, quantitative reporters and expression tools will significantly widen the application range of biotechnology in U. maydis and enable the in planta detection of fungal infection.
Collapse
Affiliation(s)
- Nicole Heucken
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kun Tang
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Hüsemann
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Natascha Heßler
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kira Müntjes
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Feldbrügge
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Vera Göhre
- Institute of Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Becker J, Liebal UW, Phan AN, Ullmann L, Blank LM. Renewable carbon sources to biochemicals and -fuels: contributions of the smut fungi Ustilaginaceae. Curr Opin Biotechnol 2023; 79:102849. [PMID: 36446145 DOI: 10.1016/j.copbio.2022.102849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
The global demand for food, fuels, and chemicals increases annually. Using renewable C-sources (i.e. biomass, CO2, and organic waste) is a prerequisite for a future free of fossil carbon. The smut fungi Ustilaginaceae naturally produce a versatile spectrum of valuable products, such as organic acids, polyols, and glycolipids, applicable in the food, energy, chemistry, and pharmaceutical sector. Combined with the use of alternative (co-)substrates (e.g. acetate, butanediol, formate, and glycerol), these microorganisms offer excellent potential for industrial biotechnology, thereby overcoming central challenges humankind faces, including CO2 release and land use. Here, we provide insight into fundamental production capacities, present genetic modifications that improve the biotechnical application, and review recent high-performance engineering of Ustilaginaceae toward relevant platform chemicals.
Collapse
Affiliation(s)
- Johanna Becker
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ulf W Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - An Nt Phan
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lena Ullmann
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Abstract
Covering: 2015 to 2022Fungal terpenoids are of large structural diversity and often exhibit interesting biological activities. Recent work has focused on two main aspects: (1) the discovery and understanding of unknown biosynthetic genes and pathways, and (2) the usage of already known biosynthetic genes in the construction of high yielding production strains. Both aspects will be covered in this review article that aims to summarise the most important work of the past few years.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
8
|
Wu HC, His HY, Hsiao G, Yen CH, Leu JY, Wu CC, Chang SH, Huang SJ, Lee TH. Chemical Constituents and Bioactive Principles from the Mexican Truffle and Fermented Products of the Derived Fungus Ustilago maydis MZ496986. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1122-1131. [PMID: 36597352 DOI: 10.1021/acs.jafc.2c08149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To look in-depth into the traditional Mexican truffle, this study investigated the phytochemical and pharmacological properties of field-collected corn galls and the fermentate of its pathogen Ustilago maydis MZ496986. Here, we established the chemical profiles of both materials via the gradient HPLC-UV method and successfully identified six previously unreported chemical entities, ustilagols A-F (1-6), and 17 known components. Compounds 3, 5, and 9 exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells (IC50 = 6.7 ± 0.5, 5.8 ± 0.9, and 3.9 ± 0.1 μM) without cytotoxic effects. DIMBOA (9) also attenuates lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW 264.7 macrophages (IC50 = 58.1 ± 7.2 μM). Ustilagol G (7) showed potent antiplatelet aggregation in U46619-stimulated human platelets (IC50 = 16.5 ± 5.3 μM). These findings highlighted the potential of corn galls and U. maydis MZ496986 fermentate as functional foods for improving inflammation-related discomforts and vascular obstruction.
Collapse
Affiliation(s)
- Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, R.O.C
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, R.O.C
| | - Hsiao-Yang His
- Institute of Fisheries Science, National Taiwan University, Taipei 106, R.O.C
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei 110, R.O.C
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, R.O.C
| | - Jyh-Yih Leu
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, R.O.C
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, R.O.C
| | - Szu-Hsing Chang
- Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu-jen Catholic University, New Taipei 242, R.O.C
| | - Shu-Jung Huang
- Institute of Fisheries Science, National Taiwan University, Taipei 106, R.O.C
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106, R.O.C
| |
Collapse
|
9
|
Romero-Aguilar L, Vázquez-Meza H, Guerra-Sánchez G, Luqueño-Bocardo OI, Pardo JP. The Mitochondrial Alternative Oxidase in Ustilago maydis Is Not Involved in Response to Oxidative Stress Induced by Paraquat. J Fungi (Basel) 2022; 8:1221. [PMID: 36422042 PMCID: PMC9693204 DOI: 10.3390/jof8111221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
It has been shown that the alternative oxidase in mitochondria of fungi and plants has important functions in the response against stress conditions, although their role in some organisms is still unknown. This is the case of Ustilago maydis. There is no evidence of the participation of the U. maydis Aox1 in stressful conditions such as desiccation, high or low temperature, and low pH, among others. Therefore, in this work, we studied the role of the U. maydis Aox1 in cells exposed to oxidative stress induced by methyl viologen (paraquat). To gain insights into the role of this enzyme, we took advantage of four strains: the FB2 wild-type, a strain without the alternative oxidase (FB2aox1Δ), other with the Aox1 fused to the Gfp under the control of the original promoter (FB2aox1-Gfp), and one expressing constitutively de Aox1-Gfp (FB2Potef:aox1-Gfp). Cells were incubated for various times in the presence of 1 mM paraquat and growth, replicative capacities, mitochondrial respiratory activity, Aox1 capacity, and the activities of several antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase) were assayed. The results show that (1) the response of U. maydis against oxidative stress was the same in the presence or absence of the Aox1; (2) the activities of the antioxidant enzymes remained constant despite the oxidative stress; and (3) there was a decrease in the GSH/GSSG ratio in U. maydis cells incubated with paraquat.
Collapse
Affiliation(s)
- Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Guadalupe Guerra-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Plan de Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Oscar Ivan Luqueño-Bocardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
10
|
Wu J, Yang X, Duan Y, Wang P, Qi J, Gao JM, Liu C. Biosynthesis of Sesquiterpenes in Basidiomycetes: A Review. J Fungi (Basel) 2022; 8:913. [PMID: 36135638 PMCID: PMC9501842 DOI: 10.3390/jof8090913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Sesquiterpenes are common small-molecule natural products with a wide range of promising applications and are biosynthesized by sesquiterpene synthase (STS). Basidiomycetes are valuable and important biological resources. To date, hundreds of related sesquiterpenoids have been discovered in basidiomycetes, and the biosynthetic pathways of some of these compounds have been elucidated. This review summarizes 122 STSs and 2 fusion enzymes STSs identified from 26 species of basidiomycetes over the past 20 years. The biological functions of enzymes and compound structures are described, and related research is discussed.
Collapse
Affiliation(s)
- Jiajun Wu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaoran Yang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingce Duan
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Dietsch M, Behle A, Westhoff P, Axmann IM. Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene. Metab Eng Commun 2021; 13:e00178. [PMID: 34466381 PMCID: PMC8382996 DOI: 10.1016/j.mec.2021.e00178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/05/2022] Open
Abstract
Cyanobacteria are extremely adaptable, fast-growing, solar-powered cell factories that, like plants, are able to convert carbon dioxide into sugar and oxygen and thereby produce a large number of important compounds. Due to their unique phototrophy-associated physiological properties, i.e. naturally occurring isoprenoid metabolic pathway, they represent a highly promising platform for terpenoid biosynthesis. Here, we implemented a carefully devised engineering strategy to boost the biosynthesis of commercially attractive plant sequiterpenes, in particular valencene. Sesquiterpenes are a diverse group of bioactive metabolites, mainly produced in higher plants, but with often low concentrations and expensive downstream extraction. In this work we successfully demonstrate a multi-component engineering approach towards the photosynthetic production of valencene in the cyanobacterium Synechocystis sp. PCC 6803. First, we improved the flux towards valencene by markerless genomic deletions of shc and sqs. Secondly, we downregulated the formation of carotenoids, which are essential for viability of the cell, using CRISPRi on crtE. Finally, we intended to increase the spatial proximity of the two enzymes, ispA and CnVS, involved in valencene formation by creating an operon construct, as well as a fusion protein. Combining the most successful strategies resulted in a valencene production of 19 mg/g DCW in Synechocystis. In this work, we have devised a useful platform for future engineering steps.
Collapse
Affiliation(s)
- Maximilian Dietsch
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Behle
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; 65:365-379. [PMID: 33860800 DOI: 10.1042/ebc20200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.
Collapse
|
13
|
Alberti F, Kaleem S, Weaver JA. Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research. Biol Open 2020; 9:bio056010. [PMID: 33268478 PMCID: PMC7725599 DOI: 10.1242/bio.056010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Basidiomycota are a large and diverse phylum of fungi. They can make bioactive metabolites that are used or have inspired the synthesis of antibiotics and agrochemicals. Terpenoids are the most abundant class of natural products encountered in this taxon. Other natural product classes have been described, including polyketides, peptides, and indole alkaloids. The discovery and study of natural products made by basidiomycete fungi has so far been hampered by several factors, which include their slow growth and complex genome architecture. Recent developments of tools for genome and metabolome studies are allowing researchers to more easily tackle the secondary metabolome of basidiomycete fungi. Inexpensive long-read whole-genome sequencing enables the assembly of high-quality genomes, improving the scaffold upon which natural product gene clusters can be predicted. CRISPR/Cas9-based engineering of basidiomycete fungi has been described and will have an important role in linking natural products to their genetic determinants. Platforms for the heterologous expression of basidiomycete genes and gene clusters have been developed, enabling natural product biosynthesis studies. Molecular network analyses and publicly available natural product databases facilitate data dereplication and natural product characterisation. These technological advances combined are prompting a revived interest in natural product discovery from basidiomycete fungi.This article has an associated Future Leader to Watch interview with the first author of the paper.
Collapse
Affiliation(s)
- Fabrizio Alberti
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Saraa Kaleem
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jack A Weaver
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
14
|
Lee J, Shi YM, Grün P, Gube M, Feldbrügge M, Bode H, Hennicke F. Identification of Feldin, an Antifungal Polyyne from the Beefsteak Fungus Fistulina hepatica. Biomolecules 2020; 10:biom10111502. [PMID: 33142735 PMCID: PMC7692509 DOI: 10.3390/biom10111502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Fruiting body-forming members of the Basidiomycota maintain their ecological fitness against various antagonists like ascomycetous mycoparasites. To achieve that, they produce myriads of bioactive compounds, some of which are now being used as agrochemicals or pharmaceutical lead structures. Here, we screened ethyl acetate crude extracts from cultures of thirty-five mushroom species for antifungal bioactivity, for their effect on the ascomycete Saccharomyces cerevisiae and the basidiomycete Ustilago maydis. One extract that inhibited the growth of S. cerevisiae much stronger than that of U. maydis was further analyzed. For bioactive compound identification, we performed bioactivity-guided HPLC/MS fractionation. Fractions showing inhibition against S. cerevisiae but reduced activity against U. maydis were further analyzed. NMR-based structure elucidation from one such fraction revealed the polyyne we named feldin, which displays prominent antifungal bioactivity. Future studies with additional mushroom-derived eukaryotic toxic compounds or antifungals will show whether U. maydis could be used as a suitable host to shortcut an otherwise laborious production of such mushroom compounds, as could recently be shown for heterologous sesquiterpene production in U. maydis.
Collapse
Affiliation(s)
- Jungho Lee
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany; (J.L.); (M.F.)
| | - Yi-Ming Shi
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; (Y.-M.S.); (P.G.); (H.B.)
| | - Peter Grün
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; (Y.-M.S.); (P.G.); (H.B.)
| | - Matthias Gube
- Soil Science of Temperate Ecosystems, Georg-August University Göttingen, 37077 Göttingen, Germany;
| | - Michael Feldbrügge
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Bioeconomy Science Centre, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany; (J.L.); (M.F.)
| | - Helge Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; (Y.-M.S.); (P.G.); (H.B.)
- Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt, Germany
| | - Florian Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum (RUB), Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence:
| |
Collapse
|