1
|
Ruivinho C, Gama-Carvalho M. Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic. Front Genet 2023; 14:1216890. [PMID: 37415603 PMCID: PMC10322155 DOI: 10.3389/fgene.2023.1216890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
The recurring outbreaks caused by emerging RNA viruses have fostered an increased interest in the research of the mechanisms that regulate viral life cycles and the pathological outcomes associated with infections. Although interactions at the protein level are well-studied, interactions mediated by RNA molecules are less explored. RNA viruses can encode small non-coding RNAs molecules (sncRNAs), including viral miRNAs (v-miRNAs), that play important roles in modulating host immune responses and viral replication by targeting viral or host transcripts. Starting from the analysis of public databases compiling the known repertoire of viral ncRNA molecules and the evolution of publications and research interests on this topic in the wake of the COVID-19 pandemic, we provide an updated view on the current knowledge on viral sncRNAs, with a focus on v-miRNAs encoded by RNA viruses, and their mechanisms of action. We also discuss the potential of these molecules as diagnostic and prognostic biomarkers for viral infections and the development of antiviral therapies targeting v-miRNAs. This review emphasizes the importance of continued research efforts to characterize sncRNAs encoded by RNA viruses, identifies the most relevant pitfalls in the study of these molecules, and highlights the paradigm changes that have occurred in the last few years regarding their biogenesis, prevalence and functional relevance in the context of host-pathogen interactions.
Collapse
|
2
|
Bhattacharyya P, Biswas A, Biswas SC. Brain-enriched miR-128: Reduced in exosomes from Parkinson's patient plasma, improves synaptic integrity, and prevents 6-OHDA mediated neuronal apoptosis. Front Cell Neurosci 2023; 16:1037903. [PMID: 36713778 PMCID: PMC9879011 DOI: 10.3389/fncel.2022.1037903] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the death of mid-brain dopaminergic neurons. Unfortunately, no effective cure or diagnostic biomarkers for PD are available yet. To address this, the present study focuses on brain-enriched small non-coding regulatory RNAs called microRNAs (miRNAs) that are released into the circulation packaged inside small extracellular vesicles called exosomes. We collected blood samples from PD patients and isolated exosomes from the plasma. qPCR-based detection revealed a particular neuron-enriched miR-128 to be significantly decreased in the patient-derived exosomes. Interestingly, a concomitant decreased expression of miR-128 was observed in the cellular models of PD. Fluorescent live cell imaging and flow-cytometry revealed that over-expression of miR-128 can prevent 6-OHDA-mediated mitochondrial superoxide production and induction of neuronal death respectively. This neuroprotective effect was found to be induced by miR-128-mediated inhibition of FoxO3a activation, a transcription factor involved in apoptosis. miR-128 over-expression also resulted in down-regulation of pro-apoptotic FoxO3a targets- FasL and PUMA, at both transcript and protein levels. Further downstream, miR-128 over-expression inhibited activation of caspases-8, -9 and -3, preventing both the intrinsic and extrinsic pathways of apoptosis. Additionally, over expression of miR-128 prevented down-regulation of synaptic proteins- Synaptophysin and PSD-95 and attenuated neurite shortening, thereby maintaining overall neuronal integrity. Thus, our study depicts the intracellular role of miR-128 in neuronal apoptosis and neurodegeneration and its implications as a biomarker being detectable in the circulating exosomes of PD patient blood. Thus, characterization of such exosomal brain-enriched miRNAs hold promise for effective detection and diagnosis of PD.
Collapse
Affiliation(s)
- Pallabi Bhattacharyya
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Biswas
- Department of Neurology, Bangur Institute of Neurosciences, Kolkata, India
| | - Subhas C. Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India,*Correspondence: Subhas C. Biswas, ;
| |
Collapse
|
3
|
Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Nitazoxanide and COVID-19: A review. Mol Biol Rep 2022; 49:11169-11176. [PMID: 36094778 PMCID: PMC9465141 DOI: 10.1007/s11033-022-07822-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a current global illness triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) leading to acute viral pneumonia, acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and cytokine storm in severe cases. In the COVID-19 era, different unexpected old drugs are repurposed to find out effective and cheap therapies against SARS-CoV-2. One of these elected drugs is nitazoxanide (NTZ) which is an anti-parasitic drug with potent antiviral activity. It is effectively used in the treatment of protozoa and various types of helminths in addition to various viral infections. Thus, we aimed to elucidate the probable effect of NTZ on SARS-CoV-2 infections. Findings of the present study illustrated that NTZ can reduce SARS-CoV-2-induced inflammatory reactions through activation of interferon (IFN), restoration of innate immunity, inhibition of the release of pro-inflammatory cytokines, suppression of the mammalian target of rapamycin (mTOR), and induction of autophagic cell death. Moreover, it can inhibit the induction of oxidative stress which causes cytokine storm and is associated with ALI, ARDS, and multi-organ damage (MOD). This study concluded that NTZ has important anti-inflammatory and immunological properties that may mitigate SARS-CoV-2 infection-induced inflammatory disorders. Despite broad-spectrum antiviral properties of NTZ, the direct anti-SARS-CoV-2 effect was not evident and documented in recent studies. Then, in silico and in vitro studies in addition to clinical trials and prospective studies are needed to confirm the beneficial impact of NTZ on the pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| |
Collapse
|
4
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
5
|
Battaglia R, Alonzo R, Pennisi C, Caponnetto A, Ferrara C, Stella M, Barbagallo C, Barbagallo D, Ragusa M, Purrello M, Di Pietro C. MicroRNA-Mediated Regulation of the Virus Cycle and Pathogenesis in the SARS-CoV-2 Disease. Int J Mol Sci 2021; 22:ijms222413192. [PMID: 34947989 PMCID: PMC8715670 DOI: 10.3390/ijms222413192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/24/2022] Open
Abstract
In the last few years, microRNA-mediated regulation has been shown to be important in viral infections. In fact, viral microRNAs can alter cell physiology and act on the immune system; moreover, cellular microRNAs can regulate the virus cycle, influencing positively or negatively viral replication. Accordingly, microRNAs can represent diagnostic and prognostic biomarkers of infectious processes and a promising approach for designing targeted therapies. In the past 18 months, the COVID-19 infection from SARS-CoV-2 has engaged many researchers in the search for diagnostic and prognostic markers and the development of therapies. Although some research suggests that the SARS-CoV-2 genome can produce microRNAs and that host microRNAs may be involved in the cellular response to the virus, to date, not enough evidence has been provided. In this paper, using a focused bioinformatic approach exploring the SARS-CoV-2 genome, we propose that SARS-CoV-2 is able to produce microRNAs sharing a strong sequence homology with the human ones and also that human microRNAs may target viral RNA regulating the virus life cycle inside human cells. Interestingly, all viral miRNA sequences and some human miRNA target sites are conserved in more recent SARS-CoV-2 variants of concern (VOCs). Even if experimental evidence will be needed, in silico analysis represents a valuable source of information useful to understand the sophisticated molecular mechanisms of disease and to sustain biomedical applications.
Collapse
|
6
|
Gofe G, Kandasamy R, Birhanu T. Biomodeling for Controlling the Spread of Coronavirus 2019. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2021. [PMCID: PMC8594651 DOI: 10.1007/s40010-021-00751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wuhan has informed an outbreak of a typical lungs infection created by the 2019 novel coronavirus (2019-nCoV) in December 2019. Infections have been consigned to other cities, along with internationally which aggressing to trigger a global epidemic. In the past four years, coronavirus infections have become the most dangerous infections since of the event of some fresh deaths caused by corona infections in Saudi Arabia. Coronavirus infections may be planted in and spread out of Saudi Arabia by inbound and outbound Umrah visitors and non-Umrah visitors. The impact of fundamental reproductive number and zoonotic strength of infectivity on susceptible, exposed and infected peoples rate was assessed using Runge–Kutta–Felhberg strategy with shooting method. In this investigation, the vulnerable people's rate is significantly climbing in the brief interval of period owing to overwhelming and mean inactive period. Our examination shows the transmissibility of coronavirus is more grounded as contrasted and the Asia continent countries respiratory confusion. Middle East Respiratory Syndrome coronavirus is already spread in creature and human pools in Ethiopia. The Severe Acute Respiratory Syndrome coronavirus-2 growth in the Saudi Arabia may have a solemn crash on genetic assortment, interspecies circulation of these infections mostly with the reference to the alteration and recombination expectation of coronaviruses. Researches of the molecular mechanisms and genetics of this infection are provided in the component can act an important part of this project to follow tactics to prevent subsequent coronavirus outbreak.
Collapse
Affiliation(s)
- Genanew Gofe
- Applied Mathematics, College of Natural Sciences, Salale University, P.O.Box: 245, Fitche, Ethiopia
| | - R. Kandasamy
- Applied Mathematics, College of Natural Sciences, Salale University, P.O.Box: 245, Fitche, Ethiopia
| | - Taddesse Birhanu
- Infectious Diseases, College of Agriculture and Natural Resources, Salale University, P.O.Box: 245, Fitche, Ethiopia
| |
Collapse
|
7
|
Mazzanti L, Alferkh L, Frezza E, Pasquali S. Biasing RNA Coarse-Grained Folding Simulations with Small-Angle X-ray Scattering Data. J Chem Theory Comput 2021; 17:6509-6521. [PMID: 34506136 DOI: 10.1021/acs.jctc.1c00441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA molecules can easily adopt alternative structures in response to different environmental conditions. As a result, a molecule's energy landscape is rough and can exhibit a multitude of deep basins. In the absence of a high-resolution structure, small-angle X-ray scattering data (SAXS) can narrow down the conformational space available to the molecule and be used in conjunction with physical modeling to obtain high-resolution putative structures to be further tested by experiments. Because of the low resolution of these data, it is natural to implement the integration of SAXS data into simulations using a coarse-grained representation of the molecule, allowing for much wider searches and faster evaluation of SAXS theoretical intensity curves than with atomistic models. We present here the theoretical framework and the implementation of a simulation approach based on our coarse-grained model HiRE-RNA combined with SAXS evaluations "on-the-fly" leading the simulation toward conformations agreeing with the scattering data, starting from partially folded structures as the ones that can easily be obtained from secondary structure prediction-based tools. We show on three benchmark systems how our approach can successfully achieve high-resolution structures with remarkable similarity with the native structure recovering not only the overall shape, as imposed by SAXS data, but also the details of initially missing base pairs.
Collapse
Affiliation(s)
- Liuba Mazzanti
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75006 Paris, France
| | - Lina Alferkh
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75006 Paris, France
| | - Elisa Frezza
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75006 Paris, France
| | - Samuela Pasquali
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75006 Paris, France
| |
Collapse
|
8
|
Pesce M, Agostoni P, Bøtker HE, Brundel B, Davidson SM, Caterina RD, Ferdinandy P, Girao H, Gyöngyösi M, Hulot JS, Lecour S, Perrino C, Schulz R, Sluijter JP, Steffens S, Tancevski I, Gollmann-Tepeköylü C, Tschöpe C, Linthout SV, Madonna R. COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2021; 117:2148-2160. [PMID: 34117887 DOI: 10.1093/cvr/cvab201] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The pandemic of coronavirus disease (COVID)-19 is a global threat, causing high mortality, especially in the elderly. The main symptoms and the primary cause of death are related to interstitial pneumonia. Viral entry also into myocardial cells mainly via the angiotensin converting enzyme type 2 (ACE2) receptor and excessive production of pro-inflammatory cytokines, however, also make the heart susceptible to injury. In addition to the immediate damage caused by the acute inflammatory response, the heart may also suffer from long-term consequences of COVID-19, potentially causing a post-pandemic increase in cardiac complications. Although the main cause of cardiac damage in COVID-19 remains coagulopathy with micro- (and to a lesser extent macro-) vascular occlusion, open questions remain about other possible modalities of cardiac dysfunction, such as direct infection of myocardial cells, effects of cytokines storm, and mechanisms related to enhanced coagulopathy. In this opinion paper, we focus on these lesser appreciated possibilities and propose experimental approaches that could provide a more comprehensive understanding of the cellular and molecular bases of cardiac injury in COVID-19 patients. We first discuss approaches to characterize cardiac damage caused by possible direct viral infection of cardiac cells, followed by formulating hypotheses on how to reproduce and investigate the hyperinflammatory and pro-thrombotic conditions observed in the heart of COVID-19 patients using experimental in vitro systems. Finally, we elaborate on strategies to discover novel pathology biomarkers using omics platforms.
Collapse
Affiliation(s)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, University of Milan, Milan, Italy
| | - Hans-Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Bianca Brundel
- Department of Physiology, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | | | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Henrique Girao
- Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine, Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Jean-Sebastien Hulot
- Université de Paris, PARCC, INSERM, Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Sandrine Lecour
- Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost Pg Sluijter
- Laboratory for Experimental Cardiology, Department of Cardiology, Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, German Centre for Cardiovascular Research (DZHK), Ludwig-Maximilians-University (LMU) Munich, Partner Site Munich Heart Alliance, Munich, Germany
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carsten Tschöpe
- Department of Cardiology, Charité, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sophie van Linthout
- Department of Cardiology, Charité, Campus Virchow Klinikum, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätmedizin Berlin, Berlin, Germany
| | - Rosalinda Madonna
- Cardiology Chair, University of Pisa, Pisa University Hospital, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| |
Collapse
|
9
|
Halim FS, Parmin NA, Hashim U, Gopinath SCB, Dahalan FA, Zakaria II, Ang WC, Jaapar NF. MicroRNA of N-region from SARS-CoV-2: Potential sensing components for biosensor development. Biotechnol Appl Biochem 2021; 69:1696-1711. [PMID: 34378814 PMCID: PMC8427135 DOI: 10.1002/bab.2239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022]
Abstract
An oligonucleotide DNA probe has been developed for the application in the DNA electrochemical biosensor for the early diagnosis of coronavirus disease (COVID-19). Here, the virus microRNA from the N-gene of severe acute respiratory syndrome-2 (SARS-CoV-2) was used for the first time as a specific target for detecting the virus and became a framework for developing the complementary DNA probe. The sequence analysis of the virus microRNA was carried out using bioinformatics tools including basic local alignment search tools, multiple sequence alignment from CLUSTLW, microRNA database (miRbase), microRNA target database, and gene analysis. Cross-validation of distinct strains of coronavirus and human microRNA sequences was completed to validate the percentage of identical and consent regions. The percent identity parameter from the bioinformatics tools revealed the virus microRNAs' sequence has a 100% match with the genome of SARS-CoV-2 compared with other coronavirus strains, hence improving the selectivity of the complementary DNA probe. The 30 mer with 53.0% GC content of complementary DNA probe 5' GCC TGA GTT GAG TCA GCA CTG CTC ATG GAT 3' was designed and could be used as a bioreceptor for the biosensor development in the clinical and environmental diagnosis of COVID-19.
Collapse
Affiliation(s)
- Fatin Syakirah Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Farrah Aini Dahalan
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute (MGI), National Institute of Biotechnology (NIBM), Kajang, Selangor, Malaysia
| | - Wei Chern Ang
- Clinical Research Centre, Ministry of Health Malaysia, Hospital Tuanku Fauziah Perlis, Kangar, Perlis, 01000, Malaysia
| | - Nurfareezah Fareezah Jaapar
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
10
|
Siniscalchi C, Di Palo A, Russo A, Potenza N. Human MicroRNAs Interacting With SARS-CoV-2 RNA Sequences: Computational Analysis and Experimental Target Validation. Front Genet 2021; 12:678994. [PMID: 34163530 PMCID: PMC8215607 DOI: 10.3389/fgene.2021.678994] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel RNA virus affecting humans, causing a form of acute pulmonary respiratory disorder named COVID-19, declared a pandemic by the World Health Organization. MicroRNAs (miRNA) play an emerging and important role in the interplay between viruses and host cells. Although the impact of host miRNAs on SARS-CoV-2 infection has been predicted, experimental data are still missing. This study started by a bioinformatics prediction of cellular miRNAs potentially targeting viral RNAs; then, a number of criteria also based on experimental evidence and virus biology were applied, giving rise to eight promising binding miRNAs. Their interaction with viral sequences was experimentally validated by transfecting luciferase-based reporter plasmids carrying viral target sequences or their inverted sequences into the lung A549 cell line. Transfection of the reporter plasmids resulted in a reduction of luciferase activity for five out of the eight potential binding sites, suggesting responsiveness to endogenously expressed miRNAs. Co-transfection of the reporter plasmids along with miRNA mimics led to a further and strong reduction of luciferase activity, validating the interaction between miR-219a-2-3p, miR-30c-5p, miR-378d, miR-29a-3p, miR-15b-5p, and viral sequences. miR-15b was also able to repress plasmid-driven Spike expression. Intriguingly, the viral target sequences are fully conserved in more recent variants such as United Kingdom variant B.1.1.7 and South Africa 501Y.V2. Overall, this study provides a first experimental evidence of the interaction between specific cellular miRNAs and SARS-CoV-2 sequences, thus contributing to understanding the molecular mechanisms underlying virus infection and pathogenesis to envisage innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Chiara Siniscalchi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Armando Di Palo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
11
|
Bagasra O, Shamabadi NS, Pandey P, Desoky A, McLean E. Differential expression of miRNAs in a human developing neuronal cell line chronically infected with Zika virus. Libyan J Med 2021; 16:1909902. [PMID: 33849406 PMCID: PMC8049460 DOI: 10.1080/19932820.2021.1909902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) is a serious public health concern that may lead to neurological disorders in affected individuals. The virus can be transmitted from an infected mother to her fetus, via mosquitoes, or sexually. ZIKV infections are associated with increased risk for Guillain-Barré syndrome (GBS) and congenital microcephaly in newborns infected prenatally. Dysregulations of intracellular microRNAs (miRNAs) in infected neurons have been linked to different neurological diseases. To determine the potential role of miRNAs in ZIKV infection we developed a chronically infected neuroblastoma cell line and carried out differential expression analyses of miRNAs with reference to an uninfected neuroblastoma cell line. A total of 3192miRNAs were evaluated and 389 were found to be upregulated < 2-fold and 1291 were downregulated < 2-fold. In particular, we determined that hsa-mir-431-5p, hsa-mir-3687, hsa-mir-4655-5p, hsa-mir-6071, hsa-mir-762, hsa-mir-5787, and hsa-mir-6825-3p were significantly downregulated, ranging from -5711 to -660-fold whereas, has-mir-4315, hsa-mir-5681b, hsa-mir-6511a-3p, hsa-mir-1264, hsa-mir-4418, hsa-mir-4497, hsa-mir-4485-3p, hsa-mir-4715-3p, hsa-mir-4433-3p, hsa-mir-4708-3p, hsa-mir-1973 and hsa-mir-564 were upregulated, ranging from 20-0.8-fold. We carried out target gene alignment of these miRNAs with the ZIKV genome to predict the function of the differentially expressed miRNAs and their potential impact on ZIKV pathogenesis. These miRNAs might prove useful as novel diagnostic or therapeutic markers and targets for further research on ZIKV infection and neuronal injury resulting from ZIKV infectivity in developing fetal brain neurons.
Collapse
Affiliation(s)
- Omar Bagasra
- Omar Bagasra, South Carolina Center for Biotechnology, Claflin University, Orangeburg, SC, USA
| | | | - Pratima Pandey
- Omar Bagasra, South Carolina Center for Biotechnology, Claflin University, Orangeburg, SC, USA
| | - Abdelrahman Desoky
- Department of Mathematics and Computer Science, Claflin University, Orangeburg, SC, USA
| | - Ewen McLean
- Department of Aquatic Research, Aqua Cognoscenti LLC, West Columbia, SC, USA
| |
Collapse
|
12
|
Ahsan MA, Liu Y, Feng C, Hofestädt R, Chen M. OverCOVID: an integrative web portal for SARS-CoV-2 bioinformatics resources. J Integr Bioinform 2021; 18:9-17. [PMID: 33735949 PMCID: PMC8035963 DOI: 10.1515/jib-2020-0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Outbreaks of COVID-19 caused by the novel coronavirus SARS-CoV-2 is still a threat to global human health. In order to understand the biology of SARS-CoV-2 and developing drug against COVID-19, a vast amount of genomic, proteomic, interatomic, and clinical data is being generated, and the bioinformatics researchers produced databases, webservers and tools to gather those publicly available data and provide an opportunity of analyzing such data. However, these bioinformatics resources are scattered and researchers need to find them from different resources discretely. To facilitate researchers in finding the resources in one frame, we have developed an integrated web portal called OverCOVID (http://bis.zju.edu.cn/overcovid/). The publicly available webservers, databases and tools associated with SARS-CoV-2 have been incorporated in the resource page. In addition, a network view of the resources is provided to display the scope of the research. Other information like SARS-CoV-2 strains is visualized and various layers of interaction resources is listed in distinct pages of the web portal. As an integrative web portal, the OverCOVID will help the scientist to search the resources and accelerate the clinical research of SARS-CoV-2.
Collapse
Affiliation(s)
- Md Asif Ahsan
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongjing Liu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ralf Hofestädt
- Bielefeld University, Faculty of Technology, Bioinformatics and Medical Informatics Department, Bielefeld, Germany
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|