1
|
Lu Z, Zhang J, Li J, Feng L, Wang Y, Zhu J. Biofilm formation of Pseudomonas fluorescens induced by a novel diguanylate cyclase modulated c-di-GMP promotes spoilage of large yellow croaker (Larimichthys crocea). Food Res Int 2025; 208:116231. [PMID: 40263799 DOI: 10.1016/j.foodres.2025.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Pseudomonas as major agents cause the microbial spoilage in aerobically stored seafoods due to the strong biofilm forming ability, resulting in significant economic losses. C-di-GMP regulates the transition to biofilm states in numerous bacteria, however, its function in biofilm and spoilage of Pseudomonas fluorescens has still been scarce. Here, in a fish spoiler P. fluorescens PF07 strain, 26 proteins of diguanylate cyclase (DGC) containing a GGDEF domain were characterized, and both intracellular c-di-GMP and biofilm formation consistently decreased in the constructed 12 deletion mutants of DGC domain. Compared to wild type (WT) strain, both swimming and swarming in these mutants remarkably enhanced, while the secretion of siderophore, protease activity, and the production of total volatile basic nitrogen (TVB-N) were decreased in several mutants, indicating the different modulating effects among these DGC mutants. Furthermore, correlation analysis of these six phenotypes, PF07_04309 exhibited the most significant alteration, which was identified a novel functional DGC enzyme. Moreover, the GGAAA mutation of PF07_04309 induced the down-regulation of Psl and Alg operons and increased flagellar related gene, resulting in forming the sparser and thinner biofilms. Two mutants of 04309 induced by low c-di-GMP significantly declined the accumulation of TVB-N, thiobarbituric acid, extracellular protease activity and spoilage flavor compounds, especially methylamine and carbon disulfide, in the fillets of large yellow croaker stored at 4 °C. Thus, our results indicated that a novel DGC 04309 modulated the polysaccharide secretion, flagellar, and iron carrier by synthesis of c-di-GMP, positively regulating the spoilage potential of P. fluorescens, which expanded the original insights of DGC and c-di-GMP function on microbial food spoilage.
Collapse
Affiliation(s)
- Zhong Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jun Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jiashi Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Lifang Feng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Zhou Y, Chang J, Zhang M, Li X, Luo X, Li W, Tian Z, Zhang N, Ni B, Zhang Y, Lu R. GefB, a GGDEF domain-containing protein, affects motility and biofilm formation of Vibrio parahaemolyticus and is regulated by quorum sensing regulators. Gene 2025; 933:148968. [PMID: 39332602 DOI: 10.1016/j.gene.2024.148968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) stands as the predominant etiological agent responsible for gastroenteritis associated with the consumption of seafood. Cyclic di-guanosine monophosphate (c-di-GMP), a secondary messenger in bacteria, controls multiple bacterial behaviors including pathogenesis, the development of biofilms, and motility. The protein GefB (VPA1478), characterized by the presence of a GGDEF domain, inhibits the swarming motility of V. parahaemolyticus. In this study, we showed that deletion of gefB remarkably reduced cellular c-di-GMP level and biofilm formation by V. parahaemolyticus, but significantly enhanced the swimming and swarming motility. In addition, GefB inhibited the polar and lateral flagellar genes but activated genes associated with exopolysaccharide production of V. parahaemolyticus. The data also demonstrated that vpa1477 and gefB are co-transcribed as a single transcriptional unit, designated as vpa1477-gefB. Transcription of vpa1477-gefB was under the collective regulation of the master quorum sensing (QS) regulators AphA and OpaR, which function at low (LCD) and high cell density (HCD), respectively. AphA positively regulated vpa1477-gefB transcription at LCD, whereas OpaR negatively regulated its transcription at HCD. The findings significantly enhance our comprehension of the metabolism and regulatory mechanisms of c-di-GMP in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yining Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Jingyang Chang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Wanpeng Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Health Commission of Qinghai Province, Xining 810008, Qinghai, China
| | - Zhukang Tian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Health Commission of Qinghai Province, Xining 810008, Qinghai, China
| | - Nan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China
| | - Bin Ni
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China.
| |
Collapse
|
3
|
Zhang Y, Jiao F, Zeng D, Yu X, Zhou Y, Xue J, Yang W, Guo J. Synergistic Effects of Pyrrosia lingua Caffeoylquinic Acid Compounds with Levofloxacin Against Uropathogenic Escherichia coli: Insights from Molecular Dynamics Simulations, Antibiofilm, and Antimicrobial Assessments. Molecules 2024; 29:5679. [PMID: 39683837 DOI: 10.3390/molecules29235679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Urinary tract infections (UTIs), primarily caused by uropathogenic Escherichia coli (UPEC), have high morbidity and recurrence rates. Resistance to levofloxacin hydrochloride (LEV), a commonly used treatment for UTIs, is increasingly problematic, exacerbated by biofilm formation mediated by interactions between cyclic di-GMP (c-di-GMP or CDG) and YcgR. In this study, we identified three caffeoylquinic acid compounds from Pyrrosia lingua-chlorogenic acid (CGA), sibiricose A5 (Si-A5), and 3-O-caffeoylquinic acid methyl ester (CAM)-that target YcgR through molecular docking. Biological assays revealed that combining these compounds with levofloxacin hydrochloride significantly enhanced antibacterial activity against standard UPEC strains in a concentration-dependent manner and clinically isolated UPEC strains. Notably, chlorogenic acid and sibiricose A5, when used with levofloxacin hydrochloride, enhanced intracellular c-di-GMP levels and swimming motility, significantly reduced YcgR gene expression, and effectively inhibited biofilm formation of UPEC at multiple time points. Additionally, molecular dynamics simulations elucidated the strong binding of these compounds to YcgR, underscoring the critical roles of residues, such as Arg118 and Asp145. This research serves as a foundation for tackling antibiotic resistance and developing innovative therapeutics for UTIs.
Collapse
Affiliation(s)
- Yan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Fangfang Jiao
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Derong Zeng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yongqiang Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Juan Xue
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| |
Collapse
|
4
|
Zhou Y, Chang J, Li F, He M, Li R, Hou Y, Zhang Y, Lu R, Yang M. H-NS-Mediated Regulation of Swimming Motility and Polar Flagellar Gene Expression in Vibrio parahaemolyticus. Curr Microbiol 2024; 82:5. [PMID: 39579231 DOI: 10.1007/s00284-024-03993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Vibrio parahaemolyticus is equipped with two distinct flagellar systems: a polar flagellum and numerous lateral flagella. The polar flagellum plays a role in propelling swimming in liquids, while the lateral flagella serve to enhance swarming on surfaces or in viscous environments. H-NS is a histone-like nucleoid structuring protein that plays a regulatory role in both the swimming and swarming motility of V. parahaemolyticus. However, the detailed mechanisms have not been fully understood. In this study, we have demonstrated that the deletion of hns hindered the growth rate of V. parahaemolyticus during the logarithmic growth phase and significantly decreased the swimming motility. H-NS directly activated the transcription of flgMN, flgAMN, flgBCDEFGHIJ, and flgKL-flaC located within the polar flagellar gene clusters. The expression of H-NS in Escherichia coli led to a marked elevation in the expression levels of flgM, flgA, flgB, and flgK, suggesting the positive effect of H-NS on the expression of polar flagellar genes in E. coli. This work demonstrates that the positive regulation of H-NS on the swimming motility in V. parahaemolyticus may be achieved through its regulation of polar flagellar gene expression and bacterial growth.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jingyang Chang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Feng Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Rui Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
5
|
Zhou Y, Chang J, Zhang M, Li X, Yang W, Hu L, Zhou D, Ni B, Lu R, Zhang Y. VPA0198, a GGDEF domain-containing protein, affects the motility and biofilm formation of Vibrio parahaemolyticus and is regulated by quorum sensing associated regulators. Microb Pathog 2024; 195:106882. [PMID: 39197692 DOI: 10.1016/j.micpath.2024.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Cyclic di-GMP (c-di-GMP), a ubiquitous secondary messenger in bacteria, affects multiple bacterial behaviors including motility and biofilm formation. c-di-GMP is synthesized by diguanylate cyclase harboring a GGDEF domain and degraded by phosphodiesterase harboring an either EAL or HD-GYP domain. Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, harbors more than 60 genes involved in c-di-GMP metabolism. However, roles of most of these genes including vpa0198, which encodes a GGDEF-domain containing protein, are still completely unknown. AphA and OpaR are the master quorum sensing (QS) regulators operating at low (LCD) and high cell density (HCD), respectively. QsvR integrates into QS to control gene expression via direct regulation of AphA and OpaR. In this study, we showed that deletion of vpa0198 remarkably reduced c-di-GMP production and biofilm formation, whereas promoted the swimming motility of V. parahaemolyticus. Overexpression of VPA0198 in the vpa0198 mutant strain significantly reduced the swimming and swarming motility and enhanced the biofilm formation ability of V. parahaemolyticus. In addition, transcription of vpa0198 was under the collective regulation of AphA, OpaR and QsvR. AphA activated the transcription of vpa0198 at LCD, whereas QsvR and OpaR coordinately and directly repressed vpa0198 transcription at HCD, thereby leading to a cell density-dependent expression of vpa0198. Therefore, this work expanded the knowledge of synthetic regulatory mechanism of c-di-GMP in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yining Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China; Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Jingyang Chang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China; Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Bin Ni
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
6
|
Chang J, Zhou Y, Li X, Zhang M, Zhang Y, Ni B, Lu R. Identification of an LysR family transcriptional regulator that activates motility and flagellar gene expression in Vibrio parahaemolyticus. Lett Appl Microbiol 2024; 77:ovae059. [PMID: 38906839 DOI: 10.1093/lambio/ovae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Vibrio parahaemolyticus utilizes a polar flagellum for swimming in liquids and employs multiple lateral flagella to swarm on surfaces and in viscous environments. The VPA0961 protein is an LysR family transcriptional regulator that can regulate the swimming and swarming motility of V. parahaemolyticus, but the detailed regulatory mechanisms are not yet fully understood. Herein, we designated the protein as AcsS, which stands for activator of swimming and swarming motility. Our data provided evidence that deleting the acsS gene significantly reduced both swimming and swarming motility of V. parahaemolyticus. Furthermore, AcsS was found to activate the expression of both polar (flgA, flgM, flgB, and flgK) and lateral (motY, fliM, lafA, and fliD) flagellar genes. Overexpression of AcsS in Escherichia coli induced the expression of flgA, motY, and lafA, but did not affect the expression of flgB, flgK, flgM, fliM, and fliD. Interestingly, His-tagged AcsS did not bind to the upstream DNA regions of all the tested genes, suggesting indirect regulation. In conclusion, AcsS positively regulated the swimming and swarming motility of V. parahaemolyticus by activating the transcription of polar and lateral flagellar genes. This work enriched our understanding of the gene expression regulation within the dual flagellar systems of V. parahaemolyticus.
Collapse
Affiliation(s)
- Jingyang Chang
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006 Jiangsu, China
| | - Yining Zhou
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006 Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006 Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006 Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006 Jiangsu, China
| | - Bin Ni
- Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006 Jiangsu, China
| |
Collapse
|
7
|
Li X, Zhang X, Zhang M, Luo X, Zhang T, Liu X, Lu R, Zhang Y. Environmental magnesium ion affects global gene expression, motility, biofilm formation and virulence of Vibrio parahaemolyticus. Biofilm 2024; 7:100194. [PMID: 38577556 PMCID: PMC10990858 DOI: 10.1016/j.bioflm.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Vibrio parahaemolyticus is widely distributed in marine ecosystems. Magnesium ion (Mg2+) is the second most abundant metal cation in seawater, and plays important roles in the growth and gene expression of V. parahaemolyticus, but lacks the detailed mechanisms. In this study, the RNA sequencing data demonstrated that a total of 1494 genes was significantly regulated by Mg2+. The majority of the genes associated with lateral flagella, exopolysaccharide, type III secretion system 2, type VI secretion system (T6SS) 1, T6SS2, and thermostable direct hemolysin were downregulated. A total of 18 genes that may be involved in c-di-GMP metabolism and more than 80 genes encoding putative regulators were also significantly and differentially expressed in response to Mg2+, indicating that the adaptation process to Mg2+ stress may be strictly regulated by complex regulatory networks. In addition, Mg2+ promoted the proliferative speed, swimming motility and cell adhesion of V. parahaemolyticus, but inhibited the swarming motility, biofilm formation, and c-di-GMP production. However, Mg2+ had no effect on the production of capsular polysaccharide and cytoxicity against HeLa cells. Therefore, Mg2+ had a comprehensive impact on the physiology and gene expression of V. parahaemolyticus.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xiaobai Zhang
- Department of Respiratory Medicine, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xianjin Liu
- Department of Infection, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| |
Collapse
|
8
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Comparative phenotype and transcriptome analysis revealed the role of ferric uptake regulator (Fur) in the virulence of Vibrio harveyi isolated from diseased American eel (Anguilla rostrata). JOURNAL OF FISH DISEASES 2024; 47:e13931. [PMID: 38373044 DOI: 10.1111/jfd.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Vibrio harveyi is commonly found in salt and brackish water and is recognized as a serious bacterial pathogen in aquaculture worldwide. In this study, we cloned the ferric uptake regulator (fur) gene from V. harveyi wild-type strain HA_1, which was isolated from diseased American eels (Anguilla rostrata) and has a length of 450 bp, encoding 149 amino acids. Then, a mutant strain, HA_1-Δfur, was constructed through homologous recombination of a suicide plasmid (pCVD442). The HA_1-Δfur mutant exhibited weaker biofilm formation and swarming motility, and 18-fold decrease (5.5%) in virulence to the American eels; compared to the wild-type strain, the mutant strain showed time and diameter differences in growth and haemolysis, respectively. Additionally, the adhesion ability of the mutant strain was significantly decreased. Moreover, there were 15 different biochemical indicators observed between the two strains. Transcriptome analysis revealed that 875 genes were differentially expressed in the Δfur mutant, with 385 up-regulated and 490 down-regulated DEGs. GO and KEGG enrichment analysis revealed that, compared to the wild-type strain, the type II and type VI secretion systems (T2SS and T6SS), amino acid synthesis and transport and energy metabolism pathways were significantly down-regulated, but the ABC transporters and biosynthesis of siderophore group non-ribosomal peptides pathways were up-regulated in the Δfur strain. The qRT-PCR results further confirmed that DEGs responsible for amino acid transport and energy metabolism were positively regulated, but DEGs involved in iron acquisition were negatively regulated in the Δfur strain. These findings suggest that the virulence of the Δfur strain was significantly decreased, which is closely related to phenotype changing and gene transcript regulation.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
9
|
Li X, Chang J, Zhang M, Zhou Y, Zhang T, Zhang Y, Lu R. The effect of environmental calcium on gene expression, biofilm formation and virulence of Vibrio parahaemolyticus. Front Microbiol 2024; 15:1340429. [PMID: 38881663 PMCID: PMC11176486 DOI: 10.3389/fmicb.2024.1340429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Calcium (Ca2+) can regulate the swarming motility and virulence of Vibrio parahaemolyticus BB22. However, the effects of Ca2+ on the physiology of V. parahaemolyticus RIMD2210633, whose genomic composition is quite different with that of BB22, have not been investigated. In this study, the results of phenotypic assays showed that the biofilm formation, c-di-GMP production, swimming motility, zebrafish survival rate, cytoxicity against HeLa cells, and adherence activity to HeLa cells of V. parahaemolyticus RIMD2210633 were significantly enhanced by Ca2+. However, Ca2+ had no effect on the growth, swarming motility, capsular polysaccharide (CPS) phase variation and hemolytic activity. The RNA sequencing (RNA-seq) assay disclosed 459 significantly differentially expressed genes (DEGs) in response to Ca2+, including biofilm formation-associated genes and those encode virulence factors and putative regulators. DEGs involved in polar flagellum and T3SS1 were upregulated, whereas majority of those involved in regulatory functions and c-di-GMP metabolism were downregulated. The work helps us understand how Ca2+ affects the behavior and gene expression of V. parahaemolyticus RIMD2210633.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Jingyang Chang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Yining Zhou
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, China
| |
Collapse
|
10
|
Vannini A, Pinatel E, Costantini PE, Pelliciari S, Roncarati D, Puccio S, De Bellis G, Scarlato V, Peano C, Danielli A. (Re)-definition of the holo- and apo-Fur direct regulons of Helicobacter pylori. J Mol Biol 2024; 436:168573. [PMID: 38626867 DOI: 10.1016/j.jmb.2024.168573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Iron homeostasis is a critical process for living organisms because this metal is an essential co-factor for fundamental biochemical activities, like energy production and detoxification, albeit its excess quickly leads to cell intoxication. The protein Fur (ferric uptake regulator) controls iron homeostasis in bacteria by switching from its apo- to holo-form as a function of the cytoplasmic level of ferrous ions, thereby modulating gene expression. The Helicobacter pylori HpFur protein has the rare ability to operate as a transcriptional commutator; apo- and holo-HpFur function as two different repressors with distinct DNA binding recognition properties for specific sets of target genes. Although the regulation of apo- and holo-HpFur in this bacterium has been extensively investigated, we propose a genome-wide redefinition of holo-HpFur direct regulon in H. pylori by integration of RNA-seq and ChIP-seq data, and a large extension of the apo-HpFur direct regulon. We show that in response to iron availability, new coding sequences, non-coding RNAs, toxin-antitoxin systems, and transcripts within open reading frames are directly regulated by apo- or holo-HpFur. These new targets and the more thorough validation and deeper characterization of those already known provide a complete and updated picture of the direct regulons of this two-faced transcriptional regulator.
Collapse
Affiliation(s)
- Andrea Vannini
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| | - Eva Pinatel
- Institute of Biomedical Technologies - National Research Council, Via Fratelli Cervi 93, 20054 Segrate (MI), Italy.
| | - Paolo Emidio Costantini
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| | - Simone Pelliciari
- Human Genetic Unit, Institute of Genetic and Cancer - University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Davide Roncarati
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| | - Simone Puccio
- Institute of Genetics and Biomedical Research, UoS Milan - National Research Council, Via Manzoni 113, 20089 Rozzano (MI), Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano (MI), Italy.
| | - Gianluca De Bellis
- Institute of Biomedical Technologies - National Research Council, Via Fratelli Cervi 93, 20054 Segrate (MI), Italy.
| | - Vincenzo Scarlato
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS Milan - National Research Council, Via Manzoni 113, 20089 Rozzano (MI), Italy; Human Technopole, Via Rita Levi Montalcini 1, 20157 Milan, Italy.
| | - Alberto Danielli
- University of Bologna Department of Pharmacy and Biotechnology, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Rosa-Núñez E, Echavarri-Erasun C, Armas AM, Escudero V, Poza-Carrión C, Rubio LM, González-Guerrero M. Iron Homeostasis in Azotobacter vinelandii. BIOLOGY 2023; 12:1423. [PMID: 37998022 PMCID: PMC10669500 DOI: 10.3390/biology12111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Iron is an essential nutrient for all life forms. Specialized mechanisms exist in bacteria to ensure iron uptake and its delivery to key enzymes within the cell, while preventing toxicity. Iron uptake and exchange networks must adapt to the different environmental conditions, particularly those that require the biosynthesis of multiple iron proteins, such as nitrogen fixation. In this review, we outline the mechanisms that the model diazotrophic bacterium Azotobacter vinelandii uses to ensure iron nutrition and how it adapts Fe metabolism to diazotrophic growth.
Collapse
Affiliation(s)
- Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| | - Alejandro M. Armas
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - César Poza-Carrión
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| |
Collapse
|
12
|
Zhang Y, Zhang T, Qiu Y, Zhang M, Lu X, Yang W, Hu L, Zhou D, Gao B, Lu R. Transcriptomic Profiles of Vibrio parahaemolyticus During Biofilm Formation. Curr Microbiol 2023; 80:371. [PMID: 37838636 DOI: 10.1007/s00284-023-03425-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
Vibrio parahaemolyticus, the leading cause of bacterial seafood-associated gastroenteritis, can form biofilms. In this work, the gene expression profiles of V. parahaemolyticus during biofilm formation were investigated by transcriptome sequencing. A total of 183, 503, and 729 genes were significantly differentially expressed in the bacterial cells at 12, 24 and 48 h, respectively, compared with that at 6 h. Of these, 92 genes were consistently activated or repressed from 6 to 48 h. The genes involved in polar flagellum, chemotaxis, mannose-sensitive haemagglutinin type IV pili, capsular polysaccharide, type III secretion system 1 (T3SS1), T3SS2, thermostable direct hemolysin (TDH), type VI secretion system 1 (T6SS1) and T6SS2 were downregulated, whereas those involved in V. parahaemolyticus pathogenicity island (Vp-PAI) (except for T3SS2 and TDH) and membrane fusion proteins were upregulated. Three extracellular protease genes (vppC, prtA and VPA1071) and a dozen of outer membrane protein encoding genes were also significantly differentially expressed during biofilm formation. In addition, five putative c-di-GMP metabolism-associated genes were significantly differentially expressed, which may account for the drop in c-di-GMP levels after the beginning of biofilm formation. Moreover, many putative regulatory genes were significantly differentially expressed, and more than 1000 putative small non-coding RNAs were detected, suggesting that biofilm formation was tightly regulated by complex regulatory networks. The data provided a global view of gene expression profiles during biofilm formation, showing that the significantly differentially expressed genes were involved in multiple cellular pathways, including virulence, biofilm formation, metabolism, and regulation.
Collapse
Affiliation(s)
- Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Yue Qiu
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xiuhui Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
13
|
Zhang M, Luo X, Li X, Zhang T, Wu F, Li M, Lu R, Zhang Y. L-arabinose affects the growth, biofilm formation, motility, c-di-GMP metabolism, and global gene expression of Vibrio parahaemolyticus. J Bacteriol 2023; 205:e0010023. [PMID: 37655915 PMCID: PMC10521368 DOI: 10.1128/jb.00100-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
The L-arabinose inducible pBAD vectors are commonly used to turn on and off the expression of specific genes in bacteria. The utilization of certain carbohydrates can influence bacterial growth, virulence factor production, and biofilm formation. Vibrio parahaemolyticus, the causative agent of seafood-associated gastroenteritis, can grow in media with L-arabinose as the sole carbon source. However, the effects of L-arabinose on V. parahaemolyticus physiology have not been investigated. In this study, we show that the growth rate, biofilm formation capacity, capsular polysaccharide production, motility, and c-di-GMP production of V. parahaemolyticus are negatively affected by L-arabinose. RNA-seq data revealed significant changes in the expression levels of 752 genes, accounting for approximately 15.6% of V. parahaemolyticus genes in the presence of L-arabinose. The affected genes included those associated with L-arabinose utilization, major virulence genes, known key biofilm-related genes, and numerous regulatory genes. In the majority of type III secretion system, two genes were upregulated in the presence of L-arabinose, whereas in those of type VI secretion system, two genes were downregulated. Ten putative c-di-GMP metabolism-associated genes were also significantly differentially expressed, which may account for the reduced c-di-GMP levels in the presence of L-arabinose. Most importantly, almost 40 putative regulators were significantly differentially expressed due to the induction by L-arabinose, indicating that the utilization of L-arabinose is strictly regulated by regulatory networks in V. parahaemolyticus. The findings increase the understanding of how L-arabinose affects the physiology of V. parahaemolyticus. Researchers should use caution when considering the use of L-arabinose inducible pBAD vectors in V. parahaemolyticus. IMPORTANCE The data in this study show that L-arabinose negatively affects the growth rate, biofilm formation, capsular polysaccharide production, motility, and c-di-GMP production of V. parahaemolyticus. The data also clarify the gene expression profiles of the bacterium in the presence of L-arabinose. Significantly differentially expressed genes in response to L-arabinose were involved in multiple cellular pathways, including L-arabinose utilization, virulence factor production, biofilm formation, motility, adaptation, and regulation. The collective findings indicate the significant impact of L-arabinose on the physiology of V. parahaemolyticus. There may be similar effects on other species of bacteria. Necessary controls should be established when pBAD vectors must be used for ectopic gene expression.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
- School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Fei Wu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Min Li
- Department of Gastroenterology and Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Shi Y, Liao C, Dai F, Zhang Y, Li C, Liang W. Vibrio splendidus Fur regulates virulence gene expression, swarming motility, and biofilm formation, affecting its pathogenicity in Apostichopus japonicus. Front Vet Sci 2023; 10:1207831. [PMID: 37342622 PMCID: PMC10277475 DOI: 10.3389/fvets.2023.1207831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Vibrio splendidus is an opportunistic pathogen that causes skin ulcer syndrome and results in huge losses to the Apostichopus japonicus breeding industry. Ferric uptake regulator (Fur) is a global transcription factor that affects varieties of virulence-related functions in pathogenic bacteria. However, the role of the V. splendidus fur (Vsfur) gene in the pathogenesis of V. splendidus remains unclear. Hence, we constructed a Vsfur knock-down mutant of the V. splendidus strain (MTVs) to investigate the role of the gene in the effect of biofilm, swarming motility, and virulence on A. japonicus. The result showed that the growth curves of the wild-type V. splendidus strain (WTVs) and MTVs were almost consistent. Compared with WTVs, the significant increases in the transcription of the virulence-related gene Vshppd mRNA were 3.54- and 7.33-fold in MTVs at the OD600 of 1.0 and 1.5, respectively. Similarly, compared with WTVs, the significant increases in the transcription of Vsm mRNA were 2.10- and 15.92-fold in MTVs at the OD600 of 1.0 and 1.5, respectively. On the contrary, the mRNA level of the flagellum assembly gene Vsflic was downregulated 0.56-fold in MTVs at the OD600 of 1.0 compared with the WTVs. MTVs caused delayed disease onset time and reduced A. japonicus mortality. The median lethal doses of WTVs and MTVs were 9.116 × 106 and 1.658 × 1011 CFU·ml-1, respectively. Compared with WTVs, the colonization abilities of MTVs to the muscle, intestine, tentacle, and coelomic fluid of A. japonicus were significantly reduced. Correspondingly, the swarming motility and biofilm formation in normal and iron-replete conditions were remarkably decreased compared with those of WTVs. Overall, these results demonstrate that Vsfur contributes to the pathogenesis of V. splendidus by regulating virulence-related gene expression and affecting its swarming and biofilm formation abilities.
Collapse
Affiliation(s)
- Yue Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Changyu Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Fa Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Yiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Abstract
The ferric uptake regulator (Fur) protein is the founding member of the FUR superfamily of metalloregulatory proteins that control metal homeostasis in bacteria. FUR proteins regulate metal homeostasis in response to the binding of iron (Fur), zinc (Zur), manganese (Mur), or nickel (Nur). FUR family proteins are generally dimers in solution, but the DNA-bound complex can involve a single dimer, a dimer-of-dimers, or an extended array of bound protein. Elevated FUR levels due to changes in cell physiology increase DNA occupancy and may also kinetically facilitate protein dissociation. Interactions between FUR proteins and other regulators are commonplace, often including cooperative and competitive DNA-binding interactions within the regulatory region. Further, there are many emerging examples of allosteric regulators that interact directly with FUR family proteins. Here, we focus on newly uncovered examples of allosteric regulation by diverse Fur antagonists (Escherichia coli YdiV/SlyD, Salmonella enterica EIIANtr, Vibrio parahaemolyticus FcrX, Acinetobacter baumannii BlsA, Bacillus subtilis YlaN, and Pseudomonas aeruginosa PacT) as well as one Zur antagonist (Mycobacterium bovis CmtR). Small molecules and metal complexes may also serve as regulatory ligands, with examples including heme binding to Bradyrhizobium japonicum Irr and 2-oxoglutarate binding to Anabaena FurA. How these protein-protein and protein-ligand interactions act in conjunction with regulatory metal ions to facilitate signal integration is an active area of investigation.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Zhang M, Xue X, Li X, Wu Q, Zhang T, Yang W, Hu L, Zhou D, Lu R, Zhang Y. QsvR and OpaR coordinately repress biofilm formation by Vibrio parahaemolyticus. Front Microbiol 2023; 14:1079653. [PMID: 36846774 PMCID: PMC9948739 DOI: 10.3389/fmicb.2023.1079653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Mature biofilm formation by Vibrio parahaemolyticus requires exopolysaccharide (EPS), type IV pili, and capsular polysaccharide (CPS). Production of each is strictly regulated by various control pathways including quorum sensing (QS) and bis-(3'-5')-cyclic di-GMP (c-di-GMP). QsvR, an AraC-type regulator, integrates into the QS regulatory cascade via direct control of the transcription of the master QS regulators, AphA and OpaR. Deletion of qsvR in wild-type or opaR mutant backgrounds altered the biofilm formation by V. parahaemolyticus, suggesting that QsvR may coordinate with OpaR to control biofilm formation. Herein, we demonstrated both QsvR and OpaR repressed biofilm-associated phenotypes, c-di-GMP metabolism, and the formation of V. parahaemolyticus translucent (TR) colonies. QsvR restored the biofilm-associated phenotypic changes caused by opaR mutation, and vice versa. In addition, QsvR and OpaR worked coordinately to regulate the transcription of EPS-associated genes, type IV pili genes, CPS genes and c-di-GMP metabolism-related genes. These results demonstrated how QsvR works with the QS system to regulate biofilm formation by precisely controlling the transcription of multiple biofilm formation-associated genes in V. parahaemolyticus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xingfan Xue
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,Dongsheng Zhou, ✉
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,Renfei Lu, ✉
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,*Correspondence: Yiquan Zhang, ✉
| |
Collapse
|
17
|
DEAD Box Protein DhR1 Is a Global Regulator Involved in the Bacterial Fitness and Virulence of Riemerella anatipestifer. J Bacteriol 2023; 205:e0034122. [PMID: 36598230 PMCID: PMC9879107 DOI: 10.1128/jb.00341-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DEAD box proteins perform diverse cellular functions in bacteria. Our group previously reported that the transposon Tn4531 insertion in Riean_0395 (designated dhR1), which encodes a putative DEAD box helicase, attenuated the virulence of R. anatipestifer strain YZb1. Here, we show that, compared to the wild-type (WT) R. anatipestifer strain Yb2, the growth or survival of the ΔdhR1 mutant in tryptic soy broth (TSB) was significantly decreased in response to cold, pH, osmotic stress, ethanol, Triton X-100, and oxidative stress, and the dhR1 deletion significantly reduced biofilm formation and the adhesion capacity to Vero cells, whereas the growth of ΔdhR1 was less impaired in iron-limited TSB. Moreover, the virulence of ΔdhR1 in ducklings was attenuated by about 80-fold, compared to the WT. In addition, a transcriptome analysis showed that the dhR1 deletion in the strain Yb2 affected the expression of 58 upregulated genes and 98 downregulated genes that are responsible for various functions. Overall, our work reveals that the deletion of DhR1 results in a broad effect on the bacterial fitness, biofilm formation, iron utilization, and virulence of R. anatipestifer, which makes it a global regulator. IMPORTANCE R. anatipestifer infection has been a continued and serious problem in many duck farms, but little is known about the mechanism underlying the pathogenesis of R. anatipestifer and how R. anatipestifer adapts to the external environment and thereby persists in duck farms. The results of this study demonstrate that the DEAD box protein DhR1 is required for the tolerance of R. anatipestifer to cold, pH, and other stresses, and it is also necessary for biofilm formation, iron utilization, and virulence in ducklings, demonstrating multiple functions of DhR1.
Collapse
|
18
|
Zhang M, Xue X, Li X, Luo X, Wu Q, Zhang T, Yang W, Hu L, Zhou D, Lu R, Zhang Y. QsvR represses the transcription of polar flagellum genes in Vibrio parahaemolyticus. Microb Pathog 2023; 174:105947. [PMID: 36521654 DOI: 10.1016/j.micpath.2022.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus produces dual flagellar systems, i.e., the sheathed polar flagellum (Pof) and numerous lateral flagella (Laf), both of which are strictly regulated by numerous factors. QsvR is an AraC-type regulator that controls biofilm formation and virulence of V. parahaemolyticus. In the present study, we showed that deletion of qsvR significantly enhanced swimming motility of V. parahaemolyticus, while the swarming motility was not affected by QsvR. QsvR bound to the regulatory DNA regions of flgAMN and flgMN within the Pof gene loci to repress their transcription, whereas it negatively controls the transcription of flgBCDEFGHIJ and flgKL-flaC in an indirect manner. However, over-produced QsvR was also likely to possess the binding activity to the regulatory DNA regions of flgBCDEFGHIJ and flgKL-flaC in a heterologous host. In summary, this work demonstrated that QsvR negatively regulated the swimming motility of V. parahaemolyticus via directly action on the transcription of Pof genes.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China; School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xingfan Xue
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China; School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
19
|
Abstract
Vibrio parahaemolyticus, a causative agent of seafood-associated gastroenteritis, undergoes opaque-translucent (OP-TR) colony switching associated with capsular polysaccharide (CPS) production. Here, we showed that V. parahaemolyticus was also able to naturally and reversibly switch between wrinkly and smooth phenotypes. More than 1,000 genes were significantly differentially expressed during colony morphology switching, including the major virulence gene loci and key biofilm-related genes. The genes responsible for type III secretion system 1 (T3SS1), type VI secretion systems (T6SS1 and T6SS2), and flagellar synthesis were downregulated in the wrinkly spreader phenotype, whereas genes located on the pathogenicity island Vp-PAI and those responsible for chitin-regulated pili (ChiRP) and Syp exopolysaccharide synthesis were upregulated. In addition, we showed that the wrinkly spreader grew faster, had greater motility and biofilm capacities, and produced more c-di-GMP than the smooth type. A dozen genes potentially associated with c-di-GMP metabolism were shown to be significantly differentially expressed, which may account for the differences in c-di-GMP levels between the two phenotypes. Most importantly, dozens of putative regulators were significantly differentially expressed, and hundreds of noncoding RNAs were detected during colony morphology switching, indicating that phenotype switching is strictly regulated by a complex molecular regulatory network in V. parahaemolyticus. Taken together, the presented work highlighted the gene expression profiles related to wrinkly-smooth switching, showing that the significantly differentially expressed genes were involved in various biological behaviors, including virulence factor production, biofilm formation, metabolism, adaptation, and colonization. IMPORTANCE We showed that Vibrio parahaemolyticus was able to naturally and reversibly switch between wrinkly and smooth phenotypes and disclosed the gene expression profiles related to wrinkly-smooth switching, showing that the significantly differentially expressed genes between the two colony morphology phenotypes were involved in various biological behaviors, including virulence factor production, biofilm formation, metabolism, adaptation, and colonization.
Collapse
|
20
|
Liu L, Liu W, He Y, Liu Y, Zhang Y. The cyclic AMP receptor protein (CRP) controls expression of the ferric uptake regulator (Fur) in Yersinia pestis. Can J Microbiol 2022; 68:501-506. [PMID: 35801716 DOI: 10.1139/cjm-2021-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yersinia pestis, the causative agent of plague, is one of the most dangerous pathogens in the world. Both the cyclic AMP receptor protein (CRP) and ferric uptake regulator (Fur) are global regulators that control the expression of a great deal of genes involved in a variety of cellular functions in Y. pestis. In this work, two CRP box-like deoxyribonucleic acid (DNA) sequences were detected in the upstream DNA region of fur, suggesting that the transcription of fur might be directly regulated by CRP in Y. pestis. Thus, transcriptional regulation of fur by CRP was investigated by primer extension, quantitative real-time PCR, LacZ fusion, and electrophoretic mobility shift assays. The results demonstrated that CRP was able to bind the regulatory DNA region of fur to activate its transcription. The data presented here not only suggested that the CRP and Fur regulons were bridged together via the direct regulation of fur by CRP, but also provided us a deeper understanding of the transcriptional regulation of fur in Y. pestis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan 430070, Hubei, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wanbing Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan 430070, Hubei, China
| | - Yingyu He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yan Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | | |
Collapse
|
21
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
22
|
Li X, Sun J, Zhang M, Xue X, Wu Q, Yang W, Yin Z, Zhou D, Lu R, Zhang Y. The Effect of Salinity on Biofilm Formation and c-di-GMP Production in Vibrio parahaemolyticus. Curr Microbiol 2021; 79:25. [PMID: 34905101 DOI: 10.1007/s00284-021-02723-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Vibrio parahaemolyticus is a moderately halophilic, salt-requiring organism that exhibits optimal growth at approximately 3% salt. Thus, salinity stress is one of the most important stimuli during its lifecycle. The bacterium possesses a strong ability to form biofilms on surfaces, which are thought to be involved in protecting it from adverse environmental conditions. In the present study, salinity-dependent biofilm formation by V. parahaemolyticus was investigated by combining crystal violet staining, colony morphology, intracellular c-di-GMP quantification and quantitative PCR. The results showed that biofilm formation by V. parahaemolyticus was significantly enhanced in low salinity growth conditions and was affected by incubation time. In addition, low salinity reduced intracellular c-di-GMP degradation in V. parahaemolyticus. Transcription of genes encoding ScrABC and ScrG proteins, which are involved in intracellular c-di-GMP metabolism, was inhibited by low salinity growth conditions. Thus, reduced intracellular c-di-GMP degradation in V. parahaemolyticus in low salinity growth conditions may be mediated by repression of scrG and scrABC transcription. Taken together, these results demonstrated for the first time that salinity regulates biofilm formation and c-di-GMP production in V. parahaemolyticus.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China
| | - Junfang Sun
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China
| | - Miaomiao Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xingfan Xue
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China.
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China. .,School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
23
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
24
|
Zhang Y, Qiu Y, Gao H, Sun J, Li X, Zhang M, Xue X, Yang W, Ni B, Hu L, Yin Z, Lu R, Zhou D. OpaR Controls the Metabolism of c-di-GMP in Vibrio parahaemolyticus. Front Microbiol 2021; 12:676436. [PMID: 34163453 PMCID: PMC8215210 DOI: 10.3389/fmicb.2021.676436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis worldwide, has a strong ability to form biofilms on surfaces. Quorum sensing (QS) is a process widely used by bacteria to communicate with each other and control gene expression via the secretion and detection of autoinducers. OpaR is the master QS regulator of V. parahaemolyticus operating under high cell density (HCD). OpaR regulation of V. parahaemolyticus biofilm formation has been reported, but the regulatory mechanisms are still not fully understood. bis-(3'-5')-cyclic di-GMP (c-di-GMP) is an omnipresent intracellular second messenger that regulates diverse behaviors of bacteria including activation of biofilm formation. In this work, we showed that OpaR repressed biofilm formation and decreased the intracellular concentration of c-di-GMP in V. parahaemolyticus RIMD2210633. The OpaR box-like sequences were detected within the regulatory DNA regions of scrA, scrG, VP0117, VPA0198, VPA1176, VP0699, and VP2979, encoding a group of GGDEF and/or EAL-type proteins. The results of qPCR, LacZ fusion, EMSA, and DNase I footprinting assays demonstrated that OpaR bound to the upstream DNA regions of scrA, VP0117, VPA0198, VPA1176, and VP0699 to repress their transcription, whereas it positively and directly regulated the transcription of scrG and VP2979. Thus, transcriptional regulation of these genes by OpaR led directly to changes in the intracellular concentration of c-di-GMP. The direct association between QS and c-di-GMP metabolism in V. parahaemolyticus RIMD2210633 would be conducive to precise control of gene transcription and bacterial behaviors such as biofilm formation.
Collapse
Affiliation(s)
- Yiquan Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junfang Sun
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Miaomiao Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xingfan Xue
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ni
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
25
|
Gao H, Wang H, Qin Q, Gao Y, Qiu Y, Zhang J, Li J, Lou J, Diao B, Zhang Y, Kan B. Transcriptional regulation of the mannitol phosphotransferase system operon by the ferric uptake regulator (Fur) in Vibrio cholerae El Tor serogroup O1. Res Microbiol 2021; 172:103848. [PMID: 34089838 DOI: 10.1016/j.resmic.2021.103848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS) allows bacteria to use various carbohydrates as energy resources including mannitol. The mannitol-specific PTS transporter in Vibrio cholerae is encoded by the mtlADR operon. Expression of the mtl operon has been shown to be strictly regulated by CRP, MtlS, and MtlR. In the present study, we investigated the regulation of mtlADR by the ferric uptake regulator (Fur). The results showed that Fur binds to the promoter-proximal DNA region of mtlADR to repress its transcription independent of iron, in mannitol-containing growth medium. The capacity for mannitol fermentation was significantly increased in Δfur relative to that of WT for normal and iron-replete growth media. The level of organic acids produced by Δfur was significantly enhanced relative to that produced by the WT strain in the normal and iron-replete media but not in an iron-starved medium. The results provided for a deeper understanding of the regulation of mtlADR in V. cholerae.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Han Wang
- Department of Clinical Diagnostic Centre, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Qin Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue Gao
- First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|